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A B S T R A C T   

Bacterial gene expression is orchestrated by numerous transcription factors (TFs). Elucidating how gene 
expression is regulated is fundamental to understanding bacterial physiology and engineering it for practical use. 
In this study, a machine-learning approach was applied to uncover the genome-scale transcriptional regulatory 
network (TRN) in Pseudomonas putida KT2440, an important organism for bioproduction. We performed inde
pendent component analysis of a compendium of 321 high-quality gene expression profiles, which were previ
ously published or newly generated in this study. We identified 84 groups of independently modulated genes 
(iModulons) that explain 75.7% of the total variance in the compendium. With these iModulons, we (i) expand 
our understanding of the regulatory functions of 39 iModulon associated TFs (e.g., HexR, Zur) by systematic 
comparison with 1993 previously reported TF-gene interactions; (ii) outline transcriptional changes after the 
transition from the exponential growth to stationary phases; (iii) capture group of genes required for utilizing 
diverse carbon sources and increased stationary response with slower growth rates; (iv) unveil multiple evolu
tionary strategies of transcriptome reallocation to achieve fast growth rates; and (v) define an osmotic stimulon, 
which includes the Type VI secretion system, as coordination of multiple iModulon activity changes. Taken 
together, this study provides the first quantitative genome-scale TRN for P. putida KT2440 and a basis for a 
comprehensive understanding of its complex transcriptome changes in a variety of physiological states.   

1. Introduction 

Pseudomonas putida KT2440 has received much attention as a 
workhorse for numerous biotechnological applications due to its ver
satile metabolism that allows it to utilize a broad spectrum of substrates 
and express stress-tolerant phenotypes (Nikel and de Lorenzo, 2018; 
Wackett, 2003). Despite its industrial importance, understanding of its 
genome-scale transcriptional regulatory network (TRN) is to date 

limited compared to other widely used microorganisms in biotech
nology, such as Escherichia coli and Bacillus subtilis. Therefore, unveiling 
its TRN is imperative to improving our mechanistic understanding of 
gene expression changes to maximize its biotechnological potential 
(Fang et al., 2020; Herrgård et al., 2004). 

Traditionally, genome-scale TRNs have been reconstructed in a 
bottom-up fashion by revealing regulons, one at a time, which are 
defined as the set genes regulated by the same transcription factor (TF) 
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(Santos-Zavaleta et al., 2019). Specifically, the binding of TFs to puta
tive promoter sites was historically investigated in vitro using 
low-throughput experimental techniques such as an electrophoretic 
mobility shift assay (Hellman and Fried, 2007) and a fluorescence po
larization assay (Checovich et al., 1995; Lundblad et al., 1996). 
Although recent DNA affinity purification (DAP) sequencing method 
(Bartlett et al., 2017) enabled a high throughput studies, this method is 
still limited to in vitro interactions. Genome-wide in vivo binding studies 
are still relying on chromatin immunoprecipitation (ChIP) (Gao et al., 
2021; Huang et al., 2019) sequencing technologies. These genome-wide 
binding results are typically compared with differentially expressed 
genes from TF knock-out and overexpression studies to distinguish 
functional binding sites from nonfunctional ones. Although these 
methods are essential to identify and validate regulons, elucidation of 
the genome-scale TRN, focusing on one known TF at a time is very 
laborious as there are approximately 500 proteins involved in tran
scriptional regulation in P. putida KT2440. Thus, a broader strategy is 
needed to elucidate the global TRN. 

Recently, independent component analysis (ICA) has been shown to 
efficiently uncover bacterial genome-scale TRNs from gene expression 
profiles, obtained by using methods such as microarray hybridization 
and RNA sequencing (Poudel et al., 2020; Rychel et al., 2020; Sastry 
et al., 2019). ICA is an unsupervised blind source separation algorithm, 
which can identify statistically independent components (ICs) from 
mixed signals (Comon, 1994; Hyvärinen, 1999; Liebermeister, 2002); it 
was found to perform the best in a comparative analysis of signal 
extraction algorithms for TRN inference (Saelens et al., 2018). ICs from 
gene expression profiles are independently modulated groups of genes 
(iModulons), which are likely under the regulation of the same under
lying biological signal (e.g. TF or genetic perturbation). iModulons are 
similar to regulons (Sastry et al., 2021), but not identical since they were 
obtained in a top-down data-driven manner. While Principal Component 
Analysis (PCA) is often used to identify variance within datasets, prin
cipal components (PCs) are statistical measures that usually lack clear 
biological interpretations. However, we have demonstrated that iMo
dulons recapitulate known regulatory mechanisms and can thus be 
considered as knowledge-based representations of the composition of 
the transcriptome. Indeed, recent studies successfully applied ICA for 
model bacteria (e.g., E. coli (Sastry et al., 2019), Bacillus subtilis (Rychel 
et al., 2020)) and even less-studied bacteria (e.g., Staphylococcus aureus 
(Poudel et al., 2020), Mycobacterium tuberculosis (Yoo et al., 2022), 
Sulfolobus acidocaldarius (Chauhan et al., 2021), P. aeruginosa (Rajput 
et al., 2021)); these efforts allowed rapid identification of strain-specific 
genome-scale TRNs and their systematic comparsion across species 
(Sastry et al., 2021). 

In this study, to elucidate the genome-scale TRN of P. putida KT2440, 
we perform ICA for an RNA-seq compendium, named putidaPRE
CISE321, consisting of 321 high-quality gene expression profiles, of 
which 305 were previously published and 16 were newly generated in 
this study (Supplementary Data). We obtained 84 iModulons, which 
explain 75.7% of the variation in the compendium. With the iModulons, 
we show that the genome-scale TRN in P. putida KT2440 can be effec
tively uncovered by identifying regulatory target genes of 38 TFs. In 
cases where the iModulon did not match previously described regulons 
well, we propose improved gene-regulator interactions that are 
corroborated by motif analysis. In addition, we demonstrate the ability 
of iModulons to comprehensively interpret transcriptional responses to 
environmental or evolutionary changes. We demonstrate the iModulon 
clustering, effectively representing a stimulon, to suggest an activating 
condition of a less-characterized functional cluster (i.e., the Type VI 
Secretion System). Collectively, the 84 iModulons delineate the genome- 
scale TRN in P. putida KT2440 by deconvolution of complex tran
scriptomic responses orchestrated by multiple TFs. Detailed, searchable, 
interactive dashboards for all 84 iModulons are publicly available on 
iModulonDB (https://imodulondb.org) (Rychel et al., 2021). 

2. Results 

2.1. ICA reveals 84 independently modulated groups of genes in P. putida 
KT2440 

We generated a compendium of RNA-seq datasets for P. putida 
KT2440 by downloading, aligning, and performing rigorous quality 
control on all public datasets available from SRA as of Aug 31, 2020 and 
in-house datasets using our established pipeline (Sastry et al., 2021) (See 
Methods; Fig. 1a and Supplementary Fig. 1). We named the compen
dium putidaPRECISE321, for putida Precision RNA-seq Expression 
Compendium for Independent Signal Exploration. It consists of 321 
samples from 118 unique experimental conditions across 21 projects 
(Bentley et al., 2020; Bojanovič et al., 2017; Jayakody et al., 2018; Lei 
et al., 2020; Lim et al., 2020, 2021; Miyazaki et al., 2018; Nakamura 
et al., 2020; Pobre et al., 2020; Xiao et al., 2018). We centered each 
project to a baseline condition to remove batch effects (Supplementary 
Fig. 2) and then used the ICA algorithm (Sastry et al., 2021) to extract all 
independent expression signals (iModulons) from the data. The results, 
therefore, represent co-regulated gene sets and regulator activities 
across all genes perturbed by any available high-quality transcriptome 
for P. putida KT2440. 

The ICA of putidaPRECISE321 revealed 84 iModulons. Each iModu
lon has member gene weights (stored in the columns of a matrix M), 
from which outliers are identified as “member genes”, and activities in 
each sample, or condition (stored in the rows of a matrix A). The 84 
iModulons contain genes with closely related biological functions 
(Fig. 1b and Supplementary Fig. 3a). The median gene number in the 84 
iModulons was 10 (Supplementary Fig. 3b). Together, these iModulons 
include 1265 genes (23% of the total annotated ORFs), whose expression 
levels actively changed under the conditions represented in the dataset. 
A total of 75.7% of the gene expression variance was mechanistically 
explained by these iModulons, which is comparable to the variance 
found by PCs (Supplementary Fig. 3c). 

The iModulons were characterized and categorized into four groups, 
depending on their level of characterization and likely underlying 
mechanisms: regulatory, functional, genomic, and uncharacterized 
iModulons. “Regulatory” iModulons (46.4% of the 84 iModulon) have 
significant overlaps (false discovery rates, FDRs <10− 4) with previously 
reported regulons mostly from bottom-up experiments. We compiled 
1993 experimentally validated or predicted interactions, as part of this 
study, from multiple databases and literature (see Methods). Conse
quently, we found 39 iModulons associated with TFs (Supplementary 
Table 1). In addition, 24 “functional” iModulons (28.6%) were defined 
by enrichment of genes found in a given metabolic pathway from the 
KEGG database, or by inferring roles based on gene functional annota
tions or their active conditions. Additionally, three “genomic” iModu
lons (3.5%) contain differentially expressed genes due to genomic 
variations (e.g., gene deletion) in the host strains. The remaining 18 
iModulons (21.4%) were classified as “uncharacterized”. They typically 
contained short hypothetical genes or genes with unknown functions or 
unclear active expression conditions. “Uncharacterized” iModulons 
represent potential discoveries of new regulons. Regulatory or func
tional iModulons were named based on their regulators (if associated) or 
related characteristics (see Methods). Genomic or uncharacterized 
iModulons were numbered in order based on the number of genes that 
they contain, with smaller iModulons appearing first. 

To investigate the accuracy of TRN uncovered by iModulons, we 
systematically compared the 39 regulatory iModulons with associated 
TF regulons using two metrics (Fig. 1c): iModulon recall (MR) and 
regulon recall (RR), where MR is the fraction of shared genes in a given 
iModulon and RR is the fraction of shared genes in a linked TF regulon 
(Supplementary Fig. 4a). Depending on these two metrics, regulatory 
iModulons were further categorized into four groups (one for each 
quadrant of Fig. 1c) with a threshold value of 0.6 for both MR and RR: 
well-matched, regulon subset, regulon discovery, and poorly-matched 
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(Rychel et al., 2020; Sastry et al., 2019). 12 regulatory iModulons (both 
MR and RR ≥ 0.6), including HexR, GlcC, AcoR, and BenR, were 
“well-matched” with linked regulons (Supplementary Fig. 4b), indi
cating that ICA successfully recapitulated previously reported 

regulation. Regulon subset iModulons (MR ≥ 0.6 and RR < 0.6) indicate 
that a subgroup of a linked regulon shows an independent signal, sug
gesting different strength of regulation within regulon genes or another 
layer of regulation by unstudied co-regulator(s). Larger established 

Fig. 1. Independent component analysis (ICA) of the putidaPRECISE321 transcriptome compendium. (a) Overall data processing pipeline for independent component 
analysis (ICA) of putidaPRECISE321. By performing ICA, the gene expression profiles [X] (5564 genes by 321 conditions) were deconvoluted into an [M] matrix 
containing weights of 5564 genes for each of the 84 iModulon identified, and an [A] matrix containing iModulon activities for each condition. A part of this diagram 
was adapted from Sastry et al. (2021). (b) A treemap of P. putida’s 84 iModulons. The size of each rectangle indicates the explained variances in the data sets 
attributable to each iModulon. (c) Bottom-up vs top-down assessment of co-regulated genes (i.e, bio-molecular vs data-driven). The scatter plot shows Regulon 
Recalls (RR) and iModulon Recalls (IR) for 39 regulatory iModulons. For iModulons with names consisting of two regulators, RR and IR are the values of the first 
regulator. Colors indicate iModulon types. (d) An example of a well-matched case: HexR. Gene weights of the HexR iModulon. (e) Condition-dependent HexR 
iModulon activities with the supplementation of different carbon sources. Asterisks indicate the reference conditions (glucose minimal media). It should be noted that 
each project (separated by gray lines) was normalized to its unique control condition (Supplementary Data) to remove batch effects, so activity values from different 
projects should not be directly compared. (f) Enriched motif (top) from the upstream of HexR-regulating genes and previously reported HexR binding site (bottom, 
obtained from CollectTF (Kiliç et al., 2014)). 
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regulons often contain multiple iModulons (Rychel et al., 2020; Sastry 
et al., 2019), underlining the fact that regulons have a ‘static’ definition 
(i.e., TF binding) and iModulons have a ‘dynamic’ definition (i.e., are 
computed from expression profiles). 

We identified ten regulon subset iModulons associated with TFs, 
including FleQ (PP_4373), GlnG (PP_5048), and PedR1 (PP_2665), 
known to regulate relatively large numbers of genes. In addition, we also 
obtained eight “regulon discovery” iModulons (MR < 0.6 and RR ≥ 0.6). 
These iModulons include most reported target genes of linked TFs but 
also contain additional genes whose regulation had not been previously 
reported. Given the similar expression pattern of genes in the same 
iModulons, these additional genes are potentially new target genes of a 
linked TF. Alternatively, entire iModulon genes can be co-regulated by a 
less-studied or yet unidentified regulator, closely associated with a 
linked TF. Lastly, we obtained eight “poorly-matched” iModulons (both 
MR and RR < 0.6) which have small overlaps with linked closest reg
ulons. The relatively low regulon overlap of these iModulons may be 
explained by additional, unknown TFs, weak or variable binding 
strengths for TFs with large regulons, or incompletely described 
regulons. 

The 84 iModulons reproduce many known details of the P. putida 
KT2440 TRN, including the TFs and their target genes, regulatory 
modes, and binding sites. For example, the HexR iModulon has an MR 
and RR of 1, indicating that it precisely captured the previously reported 
regulation of HexR (PP_1021), a glucose metabolism regulator (Dad
daoua et al., 2009) for nine target genes (zwfA, pgl, gapA, eda, edd, gltR-II, 
glk, PP_1013, hexR, Fig. 1d). Since HexR represses the expression of itself 
and the 8 other genes (Del Castillo et al., 2008), ICA assigned a negative 
gene weight to hexR and a positive gene weight to the remaining genes. 
In addition, the activity of the HexR iModulon was found to be decreased 
when non-glucose carbon sources were provided (Fig. 1e), consistent 
with its expected function. Lastly, a binding site of HexR can be also 
computationally predicted by enriching a consensus motif in the up
streams of iModulon member genes (Bailey et al., 2009). With a 
maximum window of 30 bp, we found the 
“GTWWTGTTGTKGKWWTTACWASATTATYCM” motif is present in the 
upstream regions of all four transcriptional units (TUs, e-value of 7.5 ×
10− 15, Fig. 1f, see Supplementary Note 2 for each symbol), which 
perfectly includes a previously reported motif. Similar characterization 
can be extended to other TFs from iModulons; we provided summaries 
and identified motifs of selected iModulons in Supplementary Tables 1 
and 2, respectively. The agreement between well-matched regulons and 
iModulons shows commonality in the output of the complementary 
bottom-up (biomolecular) and top-down (data analytics) approaches. 

2.2. iModulons allows data-driven curation of the TRN in P. putida 
KT2440 

Regardless of iModulon types, differences between iModulons and 
corresponding regulons indicate the presence of gaps between the ICA- 
defined gene groups and existing knowledge and thus allow further 
data-driven curation of P. putida KT2440’s TRN. As examples, we pro
vided detailed characterizations of FleQ/Fur, Zur, PP_0204/CysB iMo
dulons, a representative iModulon of each ‘regulon subset,’ ‘regulon 
discovery,’ and ‘poorly-matched’ iModulons. 

A regulon subset iModulon shows co-regulation in the FleQ regulon by 
multiple TFs - ICA identified a regulon subset iModulon (originally 
named as FleQ-1 but renamed to FleQ/Fur) in the FleQ regulon (MR and 
RR of 0.72 and 0.09, Fig. 2a). FleQ (PP_4373) is a c-di-GMP(cyclic-di- 
GMP)-dependent TF, known to regulate up to 300 genes, involved in 
iron transport, flagellar synthesis, and biofilm formation (Blanco-R
omero et al., 2018; Molina-Henares et al., 2017). This iModulon contains 
36 genes, mostly involved in inorganic ion transport and metabolism 
(Supplementary Figs. 5a and 5b) and regulated by FleQ. Its activity 
increased when P. putida was grown in a relatively less-aerated condi
tion, in a medium containing acetate, or in cells which were adapted to 

minimal media conditions; conditions which likely affected oxygen or 
iron availability (Fig. 2b). We hypothesized that this independent signal 
within the FleQ regulon is owing to the presence of another regulator(s) 
for genes. 

To test this hypothesis, we computationally enriched a consensus 
sequence from the upstream sequences of 27 transcriptional units in this 
iModulon using MEME (Bailey et al., 2009). Notably, one motif (AAT
GYKAAYRATWHTBAYTHBCAWTWD, Fig. 2c), distinctively different 
from a known FleQ motif (Supplementary Fig. 5a), was enriched with 
high confidence (an e-value of 0.7 × 10− 46) from 25 TUs (34 of the total 
36 genes, 94%, shown in bold in Supplementary Fig. 5a). By comparing 
this enriched motif to known TF binding sites in public databases using 
TOMTOM (Gupta et al., 2007) (See Methods), we found that the motif is 
highly similar to the binding site of E. coli Fur (a ferric uptake regulator) 
at an e-value of 2.51 × 10− 7. This result strongly suggests the 
co-regulation by Fur (PP_4730) in addition to FleQ. Additionally, we 
obtained another FleQ regulon subset iModulon (MR of 0.86 and RR of 
0.12, originally named as FleQ-2 but renamed to FleQ/AmrZ) containing 
44 genes, mostly encoding machinery for cell motility such as flagella 
synthesis (Fig. 2a and Supplementary Fig. 5c). Its activity decreased 
when fleQ was deleted or cells were osmotically stressed (Fig. 2d). 
Despite their common regulation by FleQ, activities of the two iModu
lons did not have a significant correlation (Pearson coefficient <0.12), 
suggesting the presence of another co-regulator. Indeed, from the up
stream regions of 13 out of the 18 TUs (30 of the total 44 genes, 68.2%), 
another motif (GGTDTTGGYSWTGGCVTYGGCCWGS), similar to the 
binding site of P. aeruginosa AmrZ (PA3385, alginate and motility 
regulator Z), was commonly enriched at an e-value of 5.2 × 10− 7 

(Supplementary Table 2). This observation suggests that most of the 
member genes in this iModulon are possibly co-regulated by AmrZ. 
Collectively, these subset iModulons clearly indicate multiple roles of 
FleQ, controlling together with other TFs, in inorganic ion uptake and 
cell motility and provide a baseline for future regulation study for an 
in-depth understanding of associated TFs. 

ICA suggested an expanded regulatory role of Zur for metal uptake genes - 
ICA identified the co-expression of 33 genes which were down-regulated 
when an excess amount of zinc was included in a medium or different 
carbon sources were utilized (Fig. 2e and f). This iModulon, named Zur 
(MR of 0.52 and RR of 1.00, “regulon discovery”), included all seventeen 
genes (znuBC, zur, znuA, PP_0506-8, PP_1446, PP_3320-3, folEB, 
PP_5359-62), known to involve in zinc uptake and to be regulated by Zur 
(PP_0119) (Lim et al., 2013). Interestingly, 16 new genes which do not 
have any reported regulation by Zur, were additionally detected by ICA 
to form an iModulon that is larger than the corresponding bottom-up 
defined regulon. 

To investigate the possibility of common regulation by Zur, we 
enriched a common motif from the upstream sequence of all 19 TUs of 
the Zur iModulon genes. Notably, a common motif “WRRYGT
TATRWTRTAACAWKWHWHW” was found in the upstream of 11 TUs 
including 22 genes (67%) at an e-value of 1.4 × 10− 27 (Fig. 2g). This 
enriched motif is highly consistent with a previously known binding 
motif (TTGTTATAAGATAACAT) of Zur in P. protegens Pf-5 at an E-value 
of 1.39 × 10− 5) (Guo and Houghton, 1999; Lim et al., 2013), supporting 
their regulation by Zur. The 22 genes include seven newly predicted 
target genes (PP_0509, PP_2416-9, PP_3325-6, Fig. 2h). In particular, the 
PP_2416-9 operon was annotated to encode an iron ABC transporter, 
which indicates that Zur has an expanded regulatory role in iron uptake, 
not limited to zinc. The activity changes depending on carbon sources 
(Fig. 2f), which may suggest different levels of metal requirements; 
further related studies are warranted. Nevertheless, these results show 
how iModulons in combination with binding motifs are useful to identify 
additional target genes of a given regulator. 

A ‘poorly-matched’ iModulon suggests conserved CysB regulation in P. 
putida KT2440 - We obtained a poorly-matched iModulon, PP_0204/ 
CysB (originally named as PP_0204), which contains 29 genes in 17 TUs 
(Fig. 2i, MR of 0.10 and RR of 0.38). These iModulon genes were 
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Fig. 2. iModulons allow data-driven curation of the TRN in P. putida. (a-d) Characteristics of the FleQ regulon subset iModulons. (a) A Venn diagram of the two FleQ 
iModulons, FleQ/Fur and FleQ/AmrZ, and the FleQ regulon. (b) An activity plot of the FleQ/Fur iModulon in selected conditions. (c) Comparison of a motif found in 
the upstream regions of the FleQ/Fur iModulon genes and previously known binding motifs of Fur in E. coli (obtained from CollectTF (Kiliç et al., 2014)). The 
common motif was enriched from 25 out of 27 TUs (94.4% of the genes) in the FleQ/Fur iModulon. (d) A scatter plot of activities of the FleQ/Fur and FleQ/AmrZ 
iModulons for all conditions. The Pearson correlation of the two iModulon activities was 0.12. Selected samples with high activities were colored and growth 
conditions were indicated in the inset. Activities of the FleQ/AmrZ iModulon changed when fleQ was deleted or an excess amount of NaCl was added. (e–h) 
Characteristics of the Zur regulon discovery iModulon. (e) A Venn diagram of the Zur iModulon and related Zur regulon. (f) An activity plot of the Zur iModulon in 
selected conditions. High activities of the Zur iModulon were observed when zinc ion or nanomaterial was added. The CJ522 strain is an engineered P. putida KT2440 
strain ΔcatRBCA::Ptac:catA ΔpcaHG::Ptac:aroY:ecdB:asbF ΔpykA::aroGD146N:aroY:ecdB:asbF ΔpykF Δppc Δpgi-1 Δpgi-2 Δgcd (Johnson et al., 2019). (g) Comparison 
with an enriched motif from 11 TUs in the Zur iModulon (66.7% of the total genes) and a previously reported P. protegens Pf-5 Zur binding motif (obtained from 
CollectTF (Kiliç et al., 2014)). (h) A schematic diagram of regulation by Zur. Previously known regulations were colored in black while newly predicted regulations 
were colored in red. Potential indirect regulations were indicated with dashed gray lines. (i–l) Characteristics of the PP_0204 poorly-matched iModulon. (i) A Venn 
diagram of the PP_0204/CysB iModulon and PP_0204 regulon. (j) An activity plot of the PP_0204 iModulon in selected conditions. Asterisks indicate the reference 
conditions. (k) Comparison with an enriched motif from 11 TUs in the PP_0204 iModulon and an enriched motif from 14 TUs in the E. coli CysB regulon (obtained 
from RegulonDB (Santos-Zavaleta et al., 2019)) (l) Gene weight correlation of the PP_0204/CysB iModulon and the Cbl+CysB iModulon of E. coli. The dashed lines 
indicate the threshold values (0.054 and 0.075) for E. coli and P. putida to determine iModulon member genes. See Methods for the calculation. (a, e, and i) Gene 
numbers were shown in these diagrams. (b, f, and j) Asterisks indicate the reference conditions. 
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annotated to involve transportation of sulfur-containing compounds (e. 
g, sbp-II, tauABC, ssuEADCB encoding sulfate or sulfonate transporters) 
and showed high expression in the presence of hydrogen peroxide or 
glycolaldehyde, known to induce oxidative stress in microorganisms 
(Bojanovič et al., 2017) (Fig. 2j). Although PP_0204 (a GntR family TF) 
was originally enriched as a regulator, this TF was previously suggested 
to be a local regulator for itself and neighboring genes (e.g., PP_0205 and 
PP_0206 encoding an oxidoreductase and 4Fe–4S ferredoxin) (Szklarc
zyk et al., 2019). 

We hypothesized that there might be another major TF regulating 
these iModulon genes with a close interaction to PP_0204. This hy
pothesis was supported by a motif found from 11 of the total 17 TUs (23 
genes of the 29 genes, 79%) at an e-value of 3.5 × 10− 21 (Fig. 2k). To 
infer a potential main regulator of this iModulon, we compared its 
member gene weights with those of previously reported iModulons in 
E. coli (Sastry et al., 2019). Notably, the comparison showed that this 
iModulon is highly consistent with the Cbl+CysB iModulon in E. coli 
(Lamoureux et al., 2021) (Fig. 2l). Among the two E. coli TFs, we found 
that the cysB gene is also present in P. putida KT2440. In addition, CysB 
in the two strains shows high similarity (Supplementary Fig. 6), sug
gesting this TF is the main regulator. We further compared a previously 
reported binding motif of E. coli CysB with the enriched motif. Although 
the significance was relatively low (p-value of 3.86 × 10− 1), the two 
motifs commonly share AT-rich sequences (Fig. 2k), also supporting 
common regulation for these genes by CysB in P. putida KT2440. 
Consequently, this iModulon was renamed as PP_0204/CysB based on 
these observations and this example shows that a poorly-matched 
iModulon can be evidence of regulation by an unstudied TF closely 
related to a linked TF. 

2.3. iModulons provide a comprehensive description of transcriptome 
changes after the transition from the exponential growth phase to the 
stationary phase 

Since iModulons represent biologically meaningful groups of co- 
regulated genes, complex transcriptomic changes can be simplified 

and comprehensively interpreted by monitoring iModulon activities 
rather than investigating the roles of huge numbers of differentially 
expressed genes (DEGs) (Poudel et al., 2020; Sastry et al., 2019). To 
demonstrate this capability, we analyzed changed iModulon activities 
after the transition from the exponential growth phase to the stationary 
phase (project phase, Supplementary Data). When we applied the con
ventional DEG analysis, we obtained 1454 genes (padj < 0.05) which 
correspond to 26.1% of the total number of genes (Supplementary 
Fig. 7). 

In contrast, we obtained only 22 iModulons with differentially 
changed activities at an FDR <0.05 and an activity threshold of 5; 67.8% 
of the total variance was explained by using iModulons (Fig. 3a). Among 
them, a total of sixteen iModulons showed increased activities while the 
activities of six iModulons were decreased. Changes of many iModulons 
were consistent with previous literature or reasonable in view of 
decreased metabolism and stress response due to nutrient depletion 
(Supplementary Table 3). For example, increased activities of PydR/ 
RpoS for starvation responses, LiuR for ribose and lipid catabolism were 
identified whereas decreased activities of translation for protein syn
thesis, and HexR for glucose metabolism were observed. Additionally, 
there were some iModulons (e.g., BkdR, Osmotic stress-1, GbdR, TurA-2) 
that showed unexpected activity changes; they can be targeted for 
detailed future studies. 

The characteristics of PydR/RpoS and Translation iModulons were 
further investigated since they exhibited the greatest activity changes 
(Supplementary Figs. 8a and 8b). PydR/RpoS, a regulatory iModulon 
(MR and RR of 0.17 and 1, respectively, regulon discovery), contains 30 
genes presenting at various locations on the genome and explains the 
highest fraction of the total variance in our compendium (Supplemen
tary Fig. 3d). Increased activities of the PydR/RpoS iModulon were 
consistently observed in all samples collected at the stationary phase in 
another project (project: H-NS protein, Fig. 3b). Its activity also changed 
depending on the carbon source (citrate, ferulate, or serine) or the 
presence of a stressor in the media. Originally, PydR was enriched as a 
major regulator; this TF is known to regulate the expression of four 
nucleobase degradation genes (Rinas et al., 1995) which display high 

Fig. 3. iModulons describe global transcriptional changes after the transition from the growth phase to the stationary phase. (a) Differentially changed iModulon 
activities during the transition from the exponential growth phase to the stationary phase at a threshold of 5 and an FDR of 0.05. Unexpected changes were colored in 
purple. (b) Activities of the PydR/RpoS and Translation iModulons in selected samples. Project names are colored in gray. Asterisks indicate the reference conditions 
for each project. (c) Activity correlation of the PydR/RpoS and Translation iModulons. Activity of these two iModulons showed a negative correlation across samples 
(Pearson correlation coefficient R of − 0.58, p-value < 1 × 10− 10). 
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gene weights in this iModulon: pydXA, hyuC, and pydB (Supplementary 
Fig. 8a). However, additional member genes for carbohydrate trans
porters (e.g., PP_1121), stress-mitigation (e.g., katG encoding catalase 
peroxidase and PP_1121 encoding OmpA family protein), and energy 
generation (e.g., icd encoding NADP+-specific isocitrate dehydrogenase) 
were identified. Notably, a motif was enriched from all 27 TUs, 
including the PydR regulon genes, at an e-value of 2.8 × 10− 7 

(Supplementary Table 2), suggesting that not only are the four genes 
regulated by a common regulator, but all the other genes are as well. In 
many microorganisms including E. coli, a similar stationary response 
was shown to be governed by RpoS and a RpoS iModulon explained the 
largest variance in a corresponding gene expression compendium 
(Poudel et al., 2020; Rychel et al., 2020; Sastry et al., 2019). Further
more, its activity also showed a high correlation with the expression 

Fig. 4. iModulons show transcriptional responses to the utilization of different substrates. (a) Metabolic pathway associated with iModulons for substrate utilization 
in P. putida. Boundaries of iModulons (names in red) were indicated by colored rounded shapes. Names of genes belonging to iModulons were colored in black. 
Subcellular localization information was obtained from Pseudomonas.com (Winsor et al., 2016). (b) Activities of the carbon utilization iModulons depending on 
substrates. For a clear comparison, the minimum and maximum activity values were set to − 15 and 15, respectively. (c) The activities of the 22 iModulons, that 
showed differential activities during the transition to the stationary phase from the growth phase, during utilization of each substrate. For clear visualization, the 
minimum and maximum activities were set to − 25 and 25, respectively. (b and c) Multiple RNA-Seq samples with the same substrates were differentiated by adding 
numbers. iModulon activities in the glucose condition are zero. (d) A scatter plot of the growth rates and Pearson correlation coefficients of activities of the “sta
tionary response” in iModulons in the group. Abbreviations: GAL, galactose; GLC, glucose; GLCN, gluconate; XYL, xylose; ACE, acetate; MA, myristic acid; CIT, 
citrate; FRU, fructose; SER, serine; 2-KG, 2-ketogluconate; XYLNT, xylonate; 2K3DXT, 2-keto-3-deoxyxylonate; 2KGSA, 2-keto-glutaric semialdehyde; G6P, 
glucose-6-phosphate (P); 6 PG, 6-phosphogluconate; 2KG6P, 2-ketogluconate-6-P; Gal1P, galactose-1-P; F-1-P, fructose-1-P; UDP-Glc, uridine diphosphate-glucose; 
UDP-Gal, uridine diphosphate galactose; G1P, glucose-1-P; KDPG, 2-dehydro-3-deoxy-phosphogluconate; PYR, pyruvate; G3P, glyceraldehyde-3-P; 3 PG, 
glycerate-3-P; 2 PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; acetyl-CoA, acetyl coenzyme A (CoA), CIT, citrate; ICT, isocitrate; αKG, α-ketoglutarate; 
SUC-CoA, succinyl-CoA; SUC, succinate; FUM, fumarate; MAL, malate; OAA, oxaloacetate; GLY, glyoxylate. 
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level of rpoS rather than pydR (Supplementary Figs. 9a and 9b). 
Collectively, this iModulon may represent the regulation by RpoS 
(PP_1623) in P. putida KT2440 and thus renamed to PydR/RpoS. 

On the other hand, the Translation iModulon, a functional iModulon 
with an unknown regulator, includes 45 genes that are mostly ribosomal 
proteins and clustered together on the genome (Supplementary Fig. 8b). 
Additionally, it includes genes encoding RNA polymerases (rpoB and 
rpoC), elongation factors (e.g., tufA, fusA), cytochrome oxidases (cyoC 
and cyoD), and ATP synthase subunits (atpG and atpA), important for 
protein synthesis and energy production. Therefore, its reduced activity 
at the stationary phase indicates decreased biomass production. Inter
estingly, a global inverse correlation of the PydR and Translation iMo
dulon activities were observed across samples regardless of growth 
phases (Pearson coefficient of − 0.58 at a p-value < 10− 10, Fig. 3c), 
except a few conditions (e.g., butanol addition). 

Previously, a similar negative correlation between stationary-phase 
induced genes and growth-related genes was described as a major 
transcriptomic trade-off in E. coli (Sastry et al., 2019). The observation in 
P. putida KT2440 indicates a similar trade-off is conserved across species 
for diverting resources from growth to maintenance. Collectively, the 
changed iModulon activities clearly illustrate the transcriptional 
changes that occurred during the transition from the growth phase to the 
stationary phase. 

2.4. iModulons identify substrate-specific gene groups and show increased 
stationary phase response during utilization of poor carbon sources 

We examined how iModulon activities reflect the utilization of 
different substrates. Although catabolic efficiencies vary depending on 
substrates, resulting in global changes in growth rates, understanding of 
transcriptome changes in P. putida KT2440 depending on substrates has 
been limited. putidaPRECISE321 includes seventeen gene expression 
profiles with 11 different carbon source conditions: glucose (as a refer
ence), gluconate, fructose, galactose, xylose, citrate, coumarate, fer
ulate, serine, acetate, and myristic acid. In addition, it should be noted 
that gene expression profiles with xylose and galactose utilization were 
obtained from engineered P. putida KT2440 strains with heterologous 
gene expression (Lim et al., 2021). 

ICA identified multiple iModulons (e.g., HexR, GltR-II, FruR, PsrA, 
PP_5350) containing genes responsible for transport and catabolism for 
each substrate (Fig. 4a). Except for the GlnG iModulon, the activity of 
most iModulons specifically showed increased or decreased activity 
depending on catabolic routes for each carbon source (Fig. 4b). For 
example, the PsrA and PP_5350 iModulons responsible for β-oxidation 
and glyoxylate shunt pathway, respectively, showed high activities only 
when myristic acid, a C-14 fatty acid, was utilized as a sole carbon 
source. These observations indicate that the expression of catabolic 
genes is tightly regulated by multiple related TFs. Additionally, high 
activities of the GlnG iModulon were observed in most non-glucose 
conditions (e.g., galactose, xylose, fructose) in addition to the serine 
utilization condition. This iModulon is the regulon subset of GlnG 
(PP_5048, also called NtrC) is known to control the expression of 63 
nitrogen metabolism genes (Hervás et al., 2009). Although it is not clear, 
this observation implied that intracellular nitrogen availability could be 
affected depending on carbon sources. 

We further hypothesized that poor carbon sources, which result in 
low growth rates, induce the stationary phase-like response in the 
transcriptome even if the culture is still in the exponential growth phase. 
To test this hypothesis, we investigated the activity of the “stationary 
phase” iModulons (i.e., the 22 iModulons that showed differential ac
tivity during the transition from the growth phase to the stationary 
phase) with specific growth rates (0.16 h− 1 to 0.62 h− 1, Fig. 4c and d). 
Notably, we observed that the activity of the 22 iModulons in cells 
growing on gluconate, a mixture of glucose and acetate, and galactose 
clearly showed a negative correlation (up to a Pearson correlation of 
− 0.83 at a p-value of 8.54 ✕ 10− 4) whereas cells growing on xylose, 

aromatic compounds (i.e., coumarate and ferulate), citrate, and serine 
showed positively correlated iModulon activity (up to a Pearson corre
lation of 0.89 at a p-value of 0.96 ✕ 10− 4). We found that the correlation 
of a sample’s activity levels with stationary phase activity levels is itself 
correlated with growth rate, indicating that stationary phase iModulon 
activities are a fairly conserved transcriptomic signature for slowed 
growth. Taken together, these results show that global correlations in 
transcriptomes can be efficiently found by analyzing iModulon activities 
in multiple datasets, revealing tradeoffs in transcriptome composition. 

2.5. iModulons unveil evolutionary reallocation of the transcriptome to 
achieve fast growth rates 

Once an iModulon structure for an organism is established, it can be 
used to interpret new data sets by inferring the activities of each iMo
dulon based on the gene weights from the [M] matrix of the original 
compendium. Thus, we examined the utility of the P. putida KT2440 
iModulon structure to unveil an evolutionary strategy for achieving high 
fitness in a glucose-minimal medium. We analyzed iModulon activity in 
three evolved P. putida KT2440 strains (A1_F11_I1, A3_F85_I1, and 
A4_F88_I1, see Supplementary Note 3 for naming) (Lim et al., 2020), 
displaying higher growth rates (0.64 h− 1, 0.77 h− 1, and 0.76 h− 1, 
respectively) over the wildtype (0.58 h− 1, Fig. 5a and b). These strains 
were independently evolved but all acquired mutations in relA, which 
encodes one of two guanosine tetraphosphate (ppGpp) synthetases in 
P. putida, suggesting its critical role in the improved fitness. The 
A1_F11_I1 strain which was isolated from an early flask (11th) in a 
laboratory evolution study, only has a single mutation - a frame-shift in 
relA, whereas the two latter strains have different additional mutations 
in other genes in addition to a single amino acid change or early 
termination mutation in relA. 

Initially, we investigated changes in iModulon activities in the 
A1_F11_I1 strain (KT2440 with the loss-of-function mutation in relA) to 
understand the effect of reduced ppGpp synthesis (Fig. 5c). We found 22 
iModulons with large activity changes (using a threshold of 5). Nine 
iModulons including Translation and InfA responsible for cell growth 
showed increased activities whereas thirteen iModulons including 
starvation iModulons (PydR and BkdR) and stress-hedging iModulons 
(OxyR, Multiple stress-2) showed decreased activities. These observa
tions were consistent with previous studies that ppGpp has a pivotal role 
to determine whether cells actively grow or show quiescence pheno
types (Diez et al., 2020). In addition, it also shows efficient reallocation 
of cellular resources to obtain robust cell growths in the evolution 
condition. 

We further compared iModulon activities in the A3_F85_I1 and 
A4_F88_I1 strains against the A1_F11_I1 strain (Fig. 5d and e). These two 
strains showed even higher growth rates (0.77 h− 1 and 0.76 h− 1) over 
the A1_F11_I1 strain. However, no genes other than relA were commonly 
mutated in these strains, suggesting different evolutionary strategies for 
improving growth rates. When the two strains were compared with the 
A1_F11_I1 strain, their transcriptomes have an overall positive correla
tion (Pearson R values of 0.33 and 0.77 at p-values of 2.35 ✕ 10− 3 and 
less than 10− 10, respectively), likely owing to mutations commonly 
occurred in relA. Interestingly, we identified several iModulons with 
inversely correlated activity changes in the two strains. In the A3_F85_I1 
strain, eight iModulons (colored in purple in Fig. 5d, e.g., LiuR, GlnG, 
PP_0615) showed high activities, whereas three iModulon (Uncharac
terized-2, Uncharacterized-3, PvdS, colored in green) showed decreased 
activities. On the other hand, in the A4_F88_I1 strain, only two iModu
lons (FleQ/AmrZ and Uncharacterized-2, colored in green in Fig. 5e) 
showed decreased activity. 

From these iModulon activity changes, two distinctive evolution 
strategies could be inferred. In the A3_F85_I1 strain, three mutations in 
tktA (a gene encoding transketolase A), PP_0680 (a gene encoding ATP- 
dependent protease-like protein), and arcB (a gene encoding ornithine 
carbamoyltransferase) likely activated nutrient re-assimilation or 
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utilization; their effects were shown as increased activities of iModulons 
for Ribose and lipid catabolism (LiuR), amino acid metabolism (GlnG, 
AA transport), carbon metabolism (GltR-II). Differently, the decreased 
activity of FleQ/AmrZ containing flagella synthesis genes implies that 
the A4_F88_I1 strain achieved efficient biomass formation by mini
mizing wasteful synthesis of extracellular proteins from the frame-shift 
mutation in fleQ (Smith and Chapman, 2010). Taken together, multi
ple evolutionary strategies were identified by analyzing iModulon ac
tivities. This method has significant potential to be broadly applicable to 
identify meaningful information from new gene expression profiles. 

2.6. Coordinated iModulon activity changes define a stimulon and 
underlie the activation of the Type VI secretion system (T6SS) by osmotic 
stress 

Activities of iModulons may be correlated, especially if they share 
master regulators or common activating conditions. Therefore, clus
tering the activity levels can elucidate underlying relationships or hi
erarchical transcriptional regulation and define a stimulon (i.e., genes 
with changed expression by an external stimulus (Barer, 2012)). As an 
example, we found that activities of four iModulons (Osmotic stress-1, 
Osmotic stress-2, AmrZ, T6SS) showed high correlations across sam
ples (Fig. 6a). The Osmotic stress-1 and Osmotic stress-2 iModulons 

Fig. 5. Analyzing iModulon activities unveil evolutionary strategies to achieve high fitness in a glucose minimal medium condition. (a) Mutations identified in the 
wildtype, A1_F11_I1 (early1), A1_F84_I1 (end1), A2_F83_I1 (end2), A3_F85_I1 (end3), and A4_F88_I1 (end4) strains (Lim et al., 2020). Strain names indicate passage 
numbers during an evolution study (see Supplementary Note 3). Colors: orange, single amino acid changes or an in-frame deletion; green, nonsynonymous mutation; 
red, early termination or frame-shift mutations (b) Maximum specific rates (h− 1) of the six strains in a glucose minimal medium. (c) Differential iModulon activity 
plot for the A1_F11_I1 and wildtype strains. (d and e) Differential iModulon activity plot for the A1_F11_I1 versus either (d) A3_F85_I1 or (e) A4_F88_I1 strain. 
iModulon activities in the non-wild type strains were inferred from the [M] matrix of the original iModulon activity. Dashed gray lines indicate a threshold value of 5 
and solid gray lines indicate a 45-degree line of each plot. Null iModulons were colored in gray even with changes greater than 5. 
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included 46 and 31 genes, respectively, commonly showing high ac
tivities under osmotic-stressed conditions but displaying different 
strengths depending on the types of osmotic stress (i.e., NaCl or protic 
ionic liquid addition). The AmrZ iModulon included 12 genes for algi
nate synthesis. The high correlation of the first three iModulons re
capitulates previous findings that P. putida increases the synthesis of 
alginate, which is one of the biofilm components, to create a micro
hydrated environment under high-osmotic stress conditions (Chang 
et al., 2007; Nielsen et al., 2011). Meanwhile, the T6SS iModulon in
cludes 15 machinery genes for the Type VI secretion system (T6SS, 
Fig. 6b) required for its antibacterial activity against phytopathogens (e. 
g., Xanthomonas campestris), which functions by injecting toxins (Bernal 
et al., 2017). In particular, this iModulon showed high activities in 
samples collected under regrowth phase (i.e., promoting cell growth by 
additional supplementation of a carbon source after its depletion) and 
NaCl-treated samples (Fig. 6c). Given that the T6SS iModulon was 
clustered together, it can be suggested that the secretion system is 
induced by osmotic changes. Indeed, a close relationship between the 
activity of T6SS and biofilm formation was reported in P. aeruginosa 
(Chen et al., 2020) and the activation of T6SS by OmpR, a global 
osmostress regulator, was previously suggested for Klebsiella pneumoniae 
(Barbosa and Lery, 2019). Overall, our iModulon clustering provides 
strong evidence that the T6SS system is activated by osmotic changes in 

a surrounding environment, and reflects the classical definition of a 
stimulon. 

3. Discussion 

In this study, we elucidated the TRN of P. putida KT2440 by obtaining 
84 iModulons using ICA of 321 high-quality RNA-seq samples. 39 Reg
ulatory iModulons with linked TFs, recapitulated previously reported 
TF-gene interactions and identified knowledge gaps (e.g., the existence 
of a potential co-regulator or a new regulation target) via a systematic 
comparison of iModulon gene membership and existing TRNs. In addi
tion, we identified 24 groups of genes as functional iModulons and 
suggested them as excellent targets for future studies to elucidate un
reported regulators, given their co-expression upon environmental 
changes (e.g., osmotic stress). Compared to traditional regulon discov
ery approaches which investigate activities in a few experimental con
ditions, ICA simultaneously analyzes various gene expression profiles 
and identifies multiple gene groups likely under the same regulation in a 
high-throughput manner. 

We provided strong evidence of co-regulation of iModulon member 
genes by identifying common motifs from the upstream of TUs and their 
comparison with previously reported motifs for many prokaryote bac
teria. We obtained a total of 32 common motifs from 76% of the total 

Fig. 6. Coordinated iModulon activity changes underlie the activation of the Type VI secretion system by osmotic stress and define a stimulon. (a) Activity cor
relation of the T6SS, Osmotic stress-1, Osmotic stress-2, and AmrZ iModulons. Activities of all these four iModulons showed a positive correlation. Font colors 
indicate Pearson correlation coefficients. Samples displaying high activities were colored: pink (fuel:butanol); green (fuel:isopentanol), orange (ALE:IL_TEA_HS), 
brown (multistress:NaCl_60min), red (mobile_genes:2737_reg-w/mobile genes at the regrowth phase), and purple (mobile_genes:3227_reg-w/mobile genes at the 
regrowth phase). Dashed lines are the best fits on each plot. (b) Gene weights of the T6SS iModulon. The dashed line indicates a threshold value of 0.11 (See 
Methods). (c) T6SS iModulon activities in selected samples from projects: mobile genes and multistress (Bojanovič et al., 2017). See Supplementary Data for details of 
the experimental conditions. Asterisks indicate the reference conditions. 
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TUs in an iModulon on average (Supplementary Table 2), indicating that 
most member genes in the same iModulon are likely regulated by a 
common regulator(s). Furthermore, we found that eight best motifs for 
the FleQ/Fur, FnrA-2, HexR, Multiple stress-1, PvdS, PydR/RpoS, TCA 
cycle, Zur iModulons showed similarity to known TF binding motifs for 
E. coli and other Pseudomonas species. From this cross-species compar
ison, regulations by linked TFs (i.e., Fur, FnrA, HexR, PvdS, RpoS, Zur) 
were identified; also, potential regulators (i.e., FnrA, for the Multiple 
stress-1 and TCA cycle were suggested. 

iModulons are powerful to visualize key changes in gene expression 
profiles. In contrast, DEG analysis is not suitable for the identification of 
global changes in multiple gene expression profiles containing thou
sands of genes. Although the 26 categories of Clusters of Orthologous 
Groups of proteins (COGs) (Galperin et al., 2015) are often utilized, the 
category size is relatively small, and such categories do not consider 
individual characteristics of a specific microorganism of interest. 
Conversely, as shown in this work, iModulons were defined from gene 
expression profiles of a given microorganism and thus they are specific 
to the corresponding microorganism. This strain-specific TRN is partic
ularly important for characterizing non-model microorganisms, 
including P. putida KT2440, relatively lacking knowledge and genetic 
engineering tools compared to model microorganisms. Moreover, the 
number of iModulons is determined after a screening of the optimal 
dimensionality to avoid both under-decomposition and 
over-decomposition of a gene expression compendium (McConn et al., 
2021). With the optimum reduction in complexity, various tran
scriptomes, even newly generated, can be comprehensively interpreted. 

By using iModulons, we comprehensively explained transcriptome 
changes in various conditions that are closely related to industry- 
relevant bioprocesses (i.e., carbon-depletion induced stationary phase, 
utilization of different carbon sources with different catabolic effi
ciencies, evolutionary adaptation to a glucose minimal medium condi
tion). Although understanding the stationary phase response is essential, 
its understanding at a glance was limited owing to an absence of tools. In 
this regard, we identified 22 iModulons with differentially changed ac
tivities after transitioning to the stationary phase from the exponential 
growth phase. These iModulons indicate how P. putida KT2440 reallo
cates its transcriptome under a nutrient-depleted environment for its 
survival. Moreover, it was shown that slow growth rates on poor sub
strates induce the stationary phase-like response even at the exponential 
growth phase. Finally, multiple evolutionary strategies to achieve high 
growth rates were unveiled by using iModulons. Similar iModulon- 
based interpretation of transcriptome changes that occurred during 
diverse bioprocesses or adaptive evolution will aid a better under
standing of cellular responses and subsequent strain designing for 
diverse biotechnology applications. 

The iModulon results can be utilized in a variety of future studies. 
They can be subjected to detailed experimental validation via RNA-seq 
of TF-deleted strains or ChIP-sequencing (Gao et al., 2021) to confirm 
suggested TF-gene relationships. Regulators for functional or unchar
acterized iModulons could be identified by using the motif information 
via DNA-pull down assay. In addition, since iModulons allow efficient 
comparison across multiple conditions, they can generate many hy
potheses from the activity comparison. Based on the activity clustering, 
we suggested that the activity of the T6SS is closely related to osmoti
cally stressed conditions by monitoring gene expressions in samples. In a 
similar vein, new hypotheses can be generated and subsequently tested 
to expand our understanding of P. putida KT2440. The functions of 
uncharacterized genes (i.e., unknown function genes) can be also 
inferred from active conditions. Additionally, since iModulons provide 
boundaries of genes required for a given functionality (e.g., aromatics 
catabolism) with statistical significance, identified gene sets can be 
studied for reinforcement of functions or even heterologously trans
ferred to another microorganism for engineering. 

Lastly, the explanatory power of iModulons can be further increased 
by performing ICA for a larger scoped compendium to achieve a more 

detailed structure of the TRN. For example, the second round of ICA was 
performed for 815 E. coli RNA-seq samples (Lamoureux et al., 2021) to 
identify 218 iModulons, which were expanded from 92 iModulons re
ported in the first version (Sastry et al., 2019); the expansion covering 
diverse genetic perturbations and environmental conditions generated 
more detailed iModulon structures and new regulon discoveries 
(Lamoureux et al., 2021). Efforts can be similarly extended to identify a 
more detailed P. putida KT2440 iModulon structure underlying its TRN, 
given a growing number of new RNA-seq samples uploaded on public 
repositories. 

Taken together, this study provides the first global TRN analysis for 
P. putida KT2440, and we believe that the P. putida KT2440 iModulons 
will be useful for advancing our fundamental understanding and engi
neering of this microorganism for many different purposes. 

4. Methods 

4.1. Generation of a high-quality P. putida RNA-Seq compendium 

To perform ICA, a total of 541 P. putida RNA-Seq samples were 
collected; 435 samples were obtained from the NCBI Sequence Read 
Archive (SRA, https://www.ncbi.nlm.nih.gov/sra, published before Aug 
31, 2020); 9 samples were obtained from a previous study (Bentley et al., 
2020); 97 samples were newly generated in this study (Supplementary 
Data). RNA-seq samples, generated in this study, were prepared as 
described in Supplementary Method 1. Raw sequencing files were pro
cessed by the prokaryotic RNA-seq processing pipeline (Sastry et al., 
2021) (https://github.com/avsastry/modulome-workflow) imple
mented to use Nextflow v20.01.0 (Di Tommaso et al., 2017) on Amazon 
Web Services (AWS) as previously described (Sastry et al., 2021). 
Briefly, the pipeline utilizes fasterq-dump (https://github.com/ncbi/s 
ra-tools/wiki/HowTo:-fasterq-dump), Trim Galore (https://www. 
bioinformatics.babraham.ac.uk/projects/trim_galore), FastQC (htt 
p://www.bioinformatics.babraham.ac.uk/projects/fastqc/) for raw 
data processing. Sequencing reads were aligned to the reference genome 
(AE015451.2) using Bowtie (Langmead et al., 2009). Read counts were 
generated by using RSEQC (Wang et al., 2012) and featureCounts (Liao 
et al., 2014) and converted into log2 transcripts per million (TPM). 

To ensure the quality of the compendium (Supplementary Fig. 1), 
MultiQC (Ewels et al., 2016) was performed and failed samples were 
discarded based on per base sequence quality, per sequence quality 
scores, per base n content, and adapter content. Hierarchical clustering 
was also utilized to identify and discard datasets not displaying a typical 
expression profile. Furthermore, metadata for each sample was manu
ally curated by pulling information from literature and the registry and 
samples with low correlation within biological replicates (R2 < 0.95) 
were discarded. Additionally, non-P. putida KT2440 samples were 
excluded for consistency of gene expression profiles. For 321 samples 
that passed the aforementioned QC metrics, unique project and condi
tion identifiers were given (project:condition, Supplementary Data). 

4.2. Independent component analysis (ICA) 

ICA (Hyvärinen, 1999; Sastry et al., 2021) was performed as intro
duced in previous studies (Sastry et al., 2019, 2021) to decompose the 
gene expression profile [X] into independent components (i.e., iModu
lons, [M]) and their activities [A] in each sample.  

X = M × A                                                                                          

Briefly, each gene expression profile was normalized by dividing the 
log TPM values by the values of a reference condition within each 
project to remove potential batch effects. Then, the scikit-learn (v0.23.2) 
(Pedregosa et al., 2011) implementation of FastICA (Hyvärinen, 1999) 
was performed 100 times with a convergence tolerance of 10− 7 to obtain 
robust independent components (ICs). The resulting ICs were clustered 
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by using DBSCAN (Ester et al., 1996) to identify robust ICs from each 
random restart. For the clustering, an epsilon of 0.1 and a minimum 
cluster seed size of 50 were used. Because identical ICs can have oppo
site signs, distance (d) between components was calculated from the 
absolute value of the Pearson correlation (ρ) as follows:  

dx,y = 1- | ρx,y |                                                                                (1) 

To choose the optimal dimension (McConn et al., 2021), we per
formed the clustering to the gene expression profile multiple times for 
dimensions between 10 and 290 with the step size of 10. The optimal 
dimension of 220 was chosen where the number of non-single gene ICs 
was equal to the number of final components. Finally, the M and A 
matrices for 84 robust ICs (i.e., iModulons) were obtained. From the 
obtained [M] matrix, iModulon member genes for each iModulon were 
determined by choosing an optimal threshold, as explained in Supple
mentary Method 2. 

4.3. Characterization of iModulons 

The 84 iModulons were characterized by the Pymodulon package 
(https://github.com/SBRG/pymodulon) (Sastry et al., 2021). Functions 
of the iModulons were inferred by enriching known regulators, Kyoto 
Encyclopedia of Genes and Genomes (KEGG, https://www.genome.jp/ 
kegg/) annotations of member genes. In particular, we collected 1993 
TF-gene interactions (i.e., regulon) in P. putida (and some in 
P. aeruginosa) from RegPrecise 3.0 (Novichkov et al., 2013), BioCyc 
Database Collection (Karp et al., 2019), and literature. All interactions 
and their sources are listed in Supplementary Data. Subsequently, 
Fisher’s Exact Test was performed with an FDR of <10− 4 using the 
Benjamini-Hochberg correction. KEGG annotations and Cluster of 
Orthologous Groups (COG) information were obtained by running 
eggNOG-mapper (version 5) (Huerta-Cepas et al., 2019). Fisher’s Exact 
test was also utilized to enrich GO and KEGG annotations with an FDR of 
<10− 2. Common motifs in upstreams of iModulons were enriched by 
using the find_motifs function that uses MEME (Bailey et al., 2009) with 
a maximum window of 30 bp. When motifs were compared, the 
web-based TOMTOM (Gupta et al., 2007) was utilized. As a statistical 
significance, E-values were provided as adjusted p-values when more 
than one common sequence was identified or compared. iModulons 
were named with their enriched TFs from the regulons or functional 
characteristics. When additional TF was suggested from a motif search 
or a comparison of iModulons in other microorganisms, iModulon 
names were changed accordingly. Additionally, agglomerative activity 
clustering of iModulons was performed by using the cluster_activities 
function. iModulon activities in new expression profiles were inferred by 
using the infer_activities function. 

4.4. Generating iModulonDB web page 

The P. putida iModulonDB (Rychel et al., 2021) page was generated 
by using the imodulondb_export function in the Pymodulon package 
(Sastry et al., 2021) and it is accessible at https://imodulondb.org. The 
generated page includes gene information from the Pseudomonas 
Genome DB (https://pseudomonas.com) (Winsor et al., 2016). 

Data availability 

All RNA-seq raw files are available at GEO with accession numbers 
listed in Supplementary Data. Source codes for iModulon analysis and 
figures are available at https://github.com/SBRG/modulome_ppu. 
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J., Peña-Loredo, P., Ishida-Gutiérrez, C., Velázquez-Ramírez, D.A., Del Moral- 
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