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ABSTRACT 

With the progressing electrification of the transportation sector, the source of carbon 

emissions is gradually shifting from fossil fuel to grid electricity because of electric vehicles (EVs). 

The carbon intensity of the grid can fluctuate significantly within hours due to the time-varying 

power generation mix. Therefore, shifting EV charging loads to cleaner hours in response to the 

carbon intensity signals can reduce carbon emissions. Existing EV charging control methods 

typically consider the electricity price or the available generation by distributed energy resources 

(e.g., photovoltaics) to inform decision-making. Such methods tend to reduce energy costs but may 

neglect the environmental impact of EV charging activities. We propose and compare four carbon 

emission responsive EV charging controllers with various control rules. The proposed controllers 

are evaluated based on simulation experiments using metrics such as carbon emission reduction 

potential, state of charge (SOC) at departure, and peak demand. We found that the need of EV 

owners to have full batteries at departure could lead to an emission increase when the curtailed EV 

charge was compensated before departure. Further, up to 12.7% of carbon emission reduction can 

be achieved if the EV owners reduce the target SOC at departure by less than 15%.  

Introduction 

In the United States, the transportation sector accounted for 36% of the total energy-related 

carbon dioxide (CO2) emissions in 2020 (U.S. Energy Information Administration, 2022). Given 

the continued increase in electric vehicle (EV) penetration, the transportation sector will develop 

a higher dependence on the electric power sector for EV charging. Moreover, the time-varying 

generation mix of the power grid leads to significant fluctuations in the carbon emission intensity 

within hours. Therefore, shifting EV charging loads to cleaner hours in response to carbon intensity 

signals can reduce carbon emissions and help achieve the United States’ decarbonization goal. 

To date, most EV charging control algorithms have been designed either to reduce charging 

costs or to better utilize renewable energy generation. Liu et al. (2019) proposed a transactive real-

time EV charging management scheme for commercial buildings with on-site PV generation. The 

controller scheduled its net electricity exchange with the grid under uncertainties of PV generation 

and EV parking to maximize its profit. Huang et al. (2019) reported a case study of a residential 

cluster with photovoltaics (PV), centralized heat pumps, thermal energy storage, and EVs. The 

genetic algorithm was adopted for maximizing the self-consumption rate of the locally generated 

energy. Babaei et al. (2020) proposed a demand-side management approach based on the 

predetermined hourly generation and time-varying tariffs to enhance the reliability and quality of 

standalone energy systems. Mixed-integer linear programming was adopted to optimally manage 

the renewable generation, battery, and EV. 
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More recently, an increasing interest has been identified in integrating grid carbon intensity 

data into EV charging control studies. Shi and Karimzadeh (2021) conducted the analysis using 

location- and time-based grid power mix data with in-field EV charging data to discover the carbon 

emissions of common EV charging patterns. They concluded that optimizing EV charging for 

carbon intensity would yield 8-14% reductions in related carbon emissions across 44 states in the 

United States. Dixon et al. (2020) applied optimal EV charging scheduling to minimize carbon 

emissions while maximizing the absorption of excess wind energy generation. Between 

35gCO2/km to 56gCO2/km EV emissions were achieved through the proposed charging 

scheduling algorithm. 

Besides the optimization-based controls discussed above, many works focus on the 

development of rule-based EV charging control, considering their simplicity and broadness in 

deployment with comparable performance to optimal control when designed carefully. 

Khemakhem et al. (2020) developed a supervisory control logic for smoothing residential home 

power profiles through EV charging and discharging control. The coordination among the EVs, 

the home load profile, and the load profiles of the neighbors was taken into consideration. Shanti 

et al. (2020) discussed the modeling and control of integrated EV charging infrastructure in 

buildings and mixed-use communities. An EV charging control logic according to the solar 

irradiance and its trend is adopted to better align the EV charging loads with the PV generation. 

Zhou and Cao (2019) compared various dynamic grid-responsive control strategies for PV and 

EV. Different off-peak electricity tariffs and rated renewable capacities were compared in terms 

of their ability to provide energy flexibility.  

To the best of the authors’ knowledge, no rule-based control study has been performed to 

explore the feasibility of EV charging in response to the time-varying carbon intensity of the grid. 

This paper compares the performance of several carbon responsive EV charging controllers 

regarding their decarbonization potential and peak demand. A simulation experiment has been 

conducted on a mixed-use community in Denver, Colorado. Through the comparison, the impact 

of control thresholds, range anxiety, and maximum charging power limit is discussed. According 

to the authors’ earlier studies on carbon-responsive building control (Wang, et al., 2022), rule-

based controllers can reduce a home’s annual carbon emissions by 6.0% to 20.5%. Therefore, this 

work applies rule-based controllers to EV charging as a preliminary effort to facilitate the 

investigation of decarbonization control design for EVs. The main contributions of this work are: 

• Development of EV charging controllers in response to the real-time grid carbon emission 

intensity signal; 

• Simulation-based evaluation of the proposed controllers on different building EV loads; 

• Qualitative and quantitative discussion of the trade-offs between carbon emission, state of 

charge (SOC) at departure, and peak demand. 

The remainder of this paper is organized as follows: The Methodology section presents the 

research methodology of the proposed rule-based carbon responsive control framework. The Case 

Study section describes the building and EV load models, as well as the simulation inputs for the 

case study. The Results and Discussions section discusses the simulation results with the metrics 

of annual carbon emission and peak power. The Conclusion section concludes the work and 

recommends future topics for further study. 

Methodology 

The concept of carbon emission responsive EV charging control is to enable load shifting 

from hours of high grid carbon intensity to those of low carbon intensity so that the total carbon 
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emissions during a given period are reduced. To determine whether an hour has “clean” energy 

(i.e., low carbon intensity) or “unclean” (i.e., high carbon intensity), this paper adopts a three-range 

categorization method. Two carbon intensity thresholds—higher threshold (HT) and lower 

threshold (LT)—are adopted. If an hour has a carbon intensity value (unit: kg CO2e.q./MWh) that 

is higher than the HT, it is then classified as the unclean hour, and vice versa. The vehicle owners’ 

range anxiety, which is the need to have a full battery at departure, is accounted for through the 

compensation for EV load curtailment in the last two hours before departure. In this work, we 

assume that the EV arrival and departure times align with the corresponding building operation 

hours that they are attached to. We only implemented the control every day during those operation 

hours. EV loads outside those control hours still exist but are comparatively less and are thus 

uncontrolled.  

Figure 1 shows the flow chart of the proposed charging controller, which repeats daily. At 

the first timestep of the day, the controller determines if the current timestep belongs to the 

controlled hours ranging from 𝑡𝑠𝑡𝑎𝑟𝑡  to 𝑡𝑒𝑛𝑑 . If it doesn’t, the originally scheduled EV power 

𝑃𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒
𝑡  based on the prediction will be adopted for the current timestep. If the current timestep 

belongs to the controlled hours, the controller proceeds to the EV control. Note that at the 

beginning timestep of the control 𝑡𝑠𝑡𝑎𝑟𝑡, the total curtailed EV energy 𝐸𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑
𝑡  is reinitialized as 

zero for the current control cycle. When the timestep proceeds into the carbon emission responsive 

control hours, the current grid electricity carbon intensity value is compared with the 

predetermined HT and LT to determine the control action. For the unclean hour, a zero EV 

charging power is dictated. For the hour that lies in between the HT and LT, an EV power 𝑃𝑡 is 

calculated with the following equation: 

𝑃𝑡 = 𝑟 ∗ 𝑃𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒
𝑡 , (1) 

where the 𝑃𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒
𝑡  is the originally scheduled EV power based on the prediction; 𝑟 is the charge 

ratio obtained by: 

𝑟 = 1 −
𝑒𝑡 − 𝐿𝑇

𝐻𝑇 − 𝐿𝑇
. (2) 

In Equation (2), 𝑒𝑡 represents the grid emission intensity at the current timestep 𝑡. Note that 𝑟 has 

a range of 0~1, meaning that the effective EV power will be less than or equal to the originally 

scheduled EV load. This ensures that when the carbon intensity is larger than LT, EV load will be 

curtailed. The closer it is to HT (i.e., unclean), the smaller the EV power.  

For the clean hours, a load compensation for the accumulated curtailed EV energy for the 

day will be implemented. The power for curtailment compensation is calculated by: 

𝑃𝑡 = 𝑃𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒
𝑡 +

𝐸𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑
𝑡

∆𝑡
, (3) 

where 𝐸𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑
𝑡  is the accumulated curtailed EV energy for the day until the current timestep, ∆𝑡 

is the control timestep. During the compensation, the effective EV power 𝑃𝑡 is larger than the 

scheduled power 𝑃𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒
𝑡 . In this way, the EV load is shifted from the unclean hours to the clean 

hours. 

Another type of load compensation happens during the last two hours before the EV 

departure time. Similar to Equation (3), the compensation power is calculated by: 

𝑃𝑡 = 𝑃𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒
𝑡 +

𝐸𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑
𝑡

𝑡𝑒𝑛𝑑 − 𝑡
, (4) 
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where 𝑡𝑒𝑛𝑑 is the EV departure time (assumed to be the same as building operation end hour) and 

𝑡 is the current time. From Equations (3) and (4), it can be inferred that the lower limit of 𝑃𝑡 is 

𝑃𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒
𝑡 . However, to mitigate the potential peak demand increase issue due to EV load shifting, 

an upper limit for 𝑃𝑡 is set in some controllers for comparison. The effective EV charging power 

cannot exceed the maximum charging power of the EV charger, which varies with the building 

size.  

 

Figure 1. Flow chart of the proposed carbon emission responsive EV charging controller. 

 

Table 1 lists the different configurations of the carbon emission responsive controllers 

studied in this work. Controller 1 sets the baseline of all controllers, where the lower threshold 

value is 40% of the annual carbon intensity range and the higher threshold is 60%. Compensation 

for curtailed EV energy before departure time is involved in the base control. No charging power 

upper limit is implemented in this control. In Controller 2, we modified the thresholds to 30% and 

70% to investigate the impact of control rules. In Controller 3, we removed the load compensation 
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before EV departure based on Controller 2. This allows the impact analysis of the last-minute 

compensation. Finally, in Controller 4, we added an upper limit for EV charging power on top of 

Controller 3 to discuss its effect on EV peak demand. Such sequential variation design of the 

controller configurations allows us to analyze one impact factor of EV charging control at a time. 

Table 1. Configurations of proposed EV charging controllers. 

Controller 

Configuration 

Thresholds Compensation 

Before Departure 

Charging Power 

Limit 

1 (Base control) 40%/60% Yes No 

2 (Adjusted rules) 30%/70% Yes No 

3 (No compensation) 30%/70% No No 

4 (Power limit) 30%/70% No Yes 

Case Study 

The proposed carbon emission responsive controllers were tested on the EV charging loads 

of a mixed-use community (Figure 2) in Denver, Colorado. The community is currently under 

construction and will have 148 buildings, most of which are large commercial buildings including 

offices, shopping malls, retail stores, hotels, schools, hospitals, etc. All residential buildings in this 

community are multifamily buildings.  

 

Figure 2. Three-dimensional rendering map of the mixed-use community (Wang, et al., 2022). 

We used URBANoptTM (El Kontar, et al., 2020) to build a high-fidelity physics-based 

model for all buildings in this community. The EV charging load is modeled as static load profiles, 

which were created for a Denver district to reflect different EV charging behavior (Pless, et al., 

2020). The building types in the case study community were mapped into three charging station 

types: residential, public, and workplace. The different charging behaviors (e.g., business as usual, 

free workplace charging) were stochastically assigned to each building. More information about 

URBANopt’s EV modeling capability can be found in the reference (National Renewable Energy 

Laboratory, 2021). The EV charging controller proposed in this work is implemented through an 

OpenStudioTM Energy Management System measure. We note that since the detailed charging 

events and EV batteries are not modeled, the SOC at departure in this work is defined as the 

percentage of the total charged EV energy over the originally scheduled EV charging energy.  
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The grid carbon emission intensity data were adopted from the Cambium 2021 data set 

(Gagnon, et al., 2021). Specifically, the short-run marginal CO2e.q. emission rate data for the year 

2022 was used. Marginal carbon emissions represent the emissions that would come online if any 

new load was added (Listgarten, 2019) and it is thus often used in informing control decisions. 

While the short-run marginal rate only accounts for the operational changes posed to the grid, the 

long-run marginal rate also considers the structural change of the grid such as the expanded 

renewable energy integration. Figure 3 compares the short-run and long-run marginal signals for 

2022. We see that the short-run data present a higher carbon intensity and more daily and seasonal 

fluctuations than the long-run data. In this paper, we chose the short-run data as our control input 

while noting that the choice of short-run versus long-run signals is under debate and is out of this 

paper’s scope.  

 

Figure 3. Short-run versus long-run marginal carbon emission data from Cambium. 

Annual simulation with an hourly timestep was run for the case study community in 2022. 

Typical Meteorological Year 3 weather data for Denver was used. Given the page limit of this 

paper, the simulation results for 10 different buildings, one from each building type in the 

community, will be discussed as a proof of concept. More aggregated results for the whole 

community will be included in a future journal publication.  

Results and Discussions 

This section presents the results from the simulation experiments and discusses the results 

with regard to the charging behavior, annual carbon emissions, and peak demand.  

Charging Behavior 

Figure 4 shows the EV charging behaviors of the strip shopping mall building on a summer 

weekday as an example. The four plots represent the four controllers. The first subplot at the top 

shows the grid carbon emission intensity, which is the same across all controllers. The middle 

subplot shows the charge state of the EV, where the value of 0~1 means EV load is curtailed based 

on the charge ratio obtained from Equation (2). The charge state 2 means compensation for EV 

curtailment, and 3 means charging at the originally scheduled EV power. The bottom subplot 

shows the original EV power without control versus the effective power with various controllers. 
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Figure 4. Comparison of EV charging behavior in strip shopping malls across different controllers. 

Comparing Controllers 1 and 2 that have different control thresholds, we see that the same 

carbon intensity value tends to be classified as clean easier in Controller 1, which has a higher LT 

value (1,196.68 kg/MWh) than Controller 2 (897.51 kg/MWh). For instance, at 12 PM, the carbon 

intensity of 901.9 kg/MWh is considered clean in Controller 1 while unclean in Controller 2. This 

leads to a slight EV curtailment in Controller 2. Figure 5 plots the relationship between charge 

ratio 𝑟 and the carbon intensities under different control rule settings. At the carbon intensity of 

around 1,500 kg/MWh, the two rules have the same charge ratio. Below 1,500, Controller 1 has a 

larger charge ratio, which corresponds to less curtailment (i.e., load shifting), and vice versa. 

Therefore, the actual carbon emissions reduction potential of the two controllers is dependent on 
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the frequency distribution of the annual carbon intensities of the grid. More discussion on this is 

in the following subsection. 

 

Figure 5. Values of charge ratio 𝑟 at varying carbon emission intensities under different control rules. 

Controllers 2 and 3 have the same control thresholds, but no last-minute compensation was 

implemented in Controller 3. From Figure 4, we notice that during hours 17 and 18, Controller 2 

has a relatively even EV power as the total curtailed EV energy was compensated evenly during 

the last two hours before departure. However, in Controller 3, the EV load was first curtailed at 

hour 17 due to the high carbon emission intensity and then compensated at hour 18, where the 

intensity drops below the LT. The different charging behavior has led to a different carbon 

emissions reduction potential, as well as a different battery SOC at departure. Additionally, 

Controller 3 has a higher peak power than Controller 2 as the compensation for curtailment 

happened in a shorter period of one hour rather than two hours. This peak demand increase is 

mitigated in Controller 4, where an upper EV charging power limit is introduced.  

Annual Carbon Emissions 

Figure 6 plots the annual carbon emission changes of different charging controllers 

compared to no controller. From the figure, we see similar trends of carbon emissions across 

different building types. In Controllers 1 and 2, the annual carbon emissions increased compared 

to when there is no EV charging control. This has been caused by the mechanism of last-minute 

compensation, in which much of the earlier curtailed EV energy was shifted to the last two hours 

before EV departure. However, those two hours are not necessarily with the lowest carbon 

intensities. As a result, compensating during the last two hours turned out to cancel out the carbon 

emission reductions from EV load shifting from unclean to clean hours. More specifically, 

Controller 1 with the 40%/60% thresholds has an even higher carbon emission increase than 

Controller 2 with the 30%/70% rule. This is because, during the whole year, most carbon emission 

intensities fall into the range below 1,500 kg/MWh (see Figure 7). This has led to a higher average 

charge ratio with Controller 1 (see Figure 5). Therefore, less EV load is shifted from high carbon 

intensity hours to low carbon intensity hours under Controller 1. Hence, a higher carbon emissions 

increase is seen.  
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Figure 6. Annual carbon emission changes of different charging controllers compared to no controller (negative 

value means carbon reduction). 

 

Figure 7. Histogram of carbon emission intensities over the year 2022. 

In scenarios with Controller 3, large carbon emission reductions are seen compared to no 

controller. The emission reductions range from 3.2% in the mixed office and retail building to 

7.0% in the office building. This can be attributed to the fact that Controller 3 did not include last-

minute compensation. Hence, EV curtailment compensation only happens when the grid carbon 

intensity is low. This ensures that EV load is shifted from the high carbon hours to low carbon 

hours. Though the battery SOC at departure is not guaranteed to be at 100%, the loss of battery 

SOC is traded off for emission reductions. 

Finally, in Controller 4 where we added an upper power limit for EV charging, we see 

more carbon reductions—ranging from 3.4% in the mixed office and retail building to 12.7% in 

the secondary school. This is because the limit on maximum charging power further constrained 
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the energy charged into the battery during the curtailment compensation. As a result, the battery 

SOC at EV departure will further decrease while the carbon emission reductions rise.  

Table 2 lists the annual average EV battery SOC at departure for the four charging 

controllers. In Controllers 1 and 2, full battery at departure is guaranteed, where the SOC equals 

1. In Controllers 3 and 4, we see a trade-off of battery SOC for carbon emission reductions. 

Controller 4 has a lower SOC than Controller 3 given the maximum charging power limit. Overall, 

the SOC at departure is maintained above 85% for all buildings. Note that the large hotel building 

is marked as N/A because it is operated 24 hours a day, so no EV departure hour can be identified 

for SOC evaluation.  

Table 2. Annual average EV battery SOC at departure of different charging controllers. 

Building Controller 1 Controller 2 Controller 3 Controller 4 

Mixed retail and restaurant 1 1 0.93 0.91 

Multifamily 1 1 0.95 0.93 

Full service restaurant 1 1 0.93 0.92 

Strip mall 1 1 0.96 0.92 

Retail 1 1 0.93 0.91 

Mixed office and retail 1 1 0.94 0.85 

Office 1 1 0.93 0.90 

Large hotel N/A N/A N/A N/A 

Secondary school 1 1 0.93 0.89 

Outpatient 1 1 0.93 0.89 

Peak Demand 

Figure 8 plots the monthly EV peak demand of the four controllers. In the plots, the colored 

boxes represent the distribution of the monthly peak demands with controllers, and the black bars 

represent the peak demands without control. Because the original EV loads were modeled as static 

load profiles and no seasonal changes were included in the modeling, the original monthly peak 

demand only has one single value for each building.  
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Figure 8. Monthly peak EV demand boxplots for different controllers. 

Based on the figure, we see an overall trend of peak demand increasing from Controller 1 

to Controller 3. This can be attributed to the fact that Controller 1 has a higher average charge ratio 

than Controller 2, which makes the shifted EV loads smaller. The smaller shifted loads lead to 

smaller peak demand. In Controller 3, where the last-minute load compensation was taken out, the 

peak demand further increases because of the controller design shown in Figure 1. When no last-

minute load compensation is available, most of the curtailed EV energy is compensated whenever 

the grid carbon intensity is considered clean and the compensation takes place in one timestep. 

This has led to relatively higher peak demands than the last-minute compensation, which happens 

evenly in two timesteps. This limitation of the control algorithm can be mitigated if the forecast of 

the grid carbon intensity is available. In Controller 4, the peak demands with and without charging 

control overlap with each other because an upper limit of the charging power was set to be at the 

EV charger capacity value. 

It is also noticed that the large hotel building shows a different trend of peak demand among 

controllers. Controller 1 in the large hotel had several high peaks above 1,200 kW. This has been 

caused by consecutive unclean hours followed by a clean hour, where the large curtailed EV energy 

has been compensated at once. This was not witnessed in Controller 2 in the large hotel due to 
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their different threshold settings, where a clean hour in Controller 1 is not necessarily considered 

clean in Controller 2. Controllers 2 and 3 in the large hotel generally have the same peak demand 

values in most months except for February, where an EV load compensation power was doubled 

in Controller 3 during the last two hours due to the removal of last-minute compensation.  

To further investigate the trade-offs between carbon emission reduction, SOC at departure, 

and peak demand, a bubble plot is shown in Figure 9. The x-axis represents carbon emission 

reductions based on results without charging control. The y-axis represents the EV battery SOC at 

departure. The diameters of the bubbles showcase the values of the peak demand. From the figure, 

the correlation between carbon emission reductions and SOC at departure can be approximately 

described as a linear relationship. The higher the emission reductions, the lower the SOC at 

departure. Their correlation to the peak demand is less explicit. Controller 4 with the highest 

carbon emission reductions tends to have the lowest peak demand but for Controller 3, the 

correlation is reversed. This depends on how the controller constraints are designed. 

 

Figure 9. Correlations between carbon emission reduction, SOC at departure, and peak demand (as indicated by the 

diameter of the bubbles). 

Conclusion 

In this work, we proposed and compared four carbon emission responsive EV charging 

controllers with various control rules. The proposed controllers were evaluated based on 

simulation experiments in terms of their carbon emission reduction potential, SOC at departure, 

and peak demand. Through the qualitative and quantitative evaluation, we found that the need of 

EV owners to have full batteries at departure could lead to an emission increase when the curtailed 

EV charge was compensated before departure. Further, lowering the target battery SOC at 

departure by less than 15% can lead to up to 12.7% of carbon emission reduction depending on 

the building type. EV charging control caused higher EV peak demand, but this can be mitigated 

by constraining the upper charging power limit of the charging events. In the future, we plan to 

further improve the controllers by introducing forecasts of carbon emission intensities to enable 

predictive control. More constraints such as the lower limit for battery SOC can be investigated to 

further improve the control performance and alleviate range anxiety. 
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