

Biochar as a building material: Sequestering carbon and strengthening concrete

TCBiomass 2022, Denver, CO April 21, 2022

M. Brennan Pecha

Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory

Lori Tunstall

Colorado School of Mines Julia Hylton Colorado School of Mines

CONCRETE

41% Gravel or Crushed Stone (Coarse Aggregate)

26% Sand (Fine aggregate)

16% Water

11% Portland cement 6% Air

0.06-0.6% Super-plasticizer

Energy guzzler, GHG felon

- 10 exa Joules energy (#3 industrial)
- 2.2 Gt $CO₂$ (#2 industrial)
- ~8% of world's GHG emissions
- \cdot 1 t CO₂ / t cement
 Cement making

Cement's simple recipe

Cement has two ingredients and one major byproduct.

https://www.iea.org/reports/cement

Current activities to reduce cement GHG emissions

- 1. Green cement manufacturing process
	- High TRL
	- No/minimal impact on product quality

2. Green alternatives to Portland cement

- Fly ash (supply is decreasing)
- CarbonCure 25 lbs CO2/cubic yd (7% reduction)
- Low TRL, new concepts like microbial mineralization
- Limestone, calcined clay
- Steel slag

3. Replacement of aggregate with $CaCO₃$

Biochar: The oldest technology

- Biochar is 1 of 5 technologies recognized by the IPCC for carbon sequestration
- 1 ton biochar \approx 2.2 ton CO₂
- New standards for char released by USDA, CA Air Pollution Control Officers Association, IBI, USBI
- Industrial production (high TRL)
- Can be applied to agriculture, but difficult to make profitable

Carbon transformation

The vision

Char *enhances* concrete if it is milled

• 2% loading of char:cement **reduces net GHG emissions by 15%**

Table 3

Compressive strength development of mortar with ground and normal biochar under moist curing and air curing.

Gupta, S. and H. W. Kua (2019). "Carbonaceous micro-filler for cement: Effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar." Science of the Total Environment **662: 952-962.**

Original hypothesis

Because fast pyrolysis chars have higher surface area + higher water sorption capacity, we can achieve higher cement replacement levels than prior reports

Mortar sample prep

- **1) Dry mix cement, sand, char in powered mixer**
- **2) Add standard water:cement ratio**
- **3) Adjust flowability (slump) to match control with Sika ViscoCrete superplasticizer following ASTM C1437**
- **4) Cure in cubic forms for compression, elongated forms for tensile (at least triplicate)**
- **5) Compression load testing ASTM C109, flexural ASTM C348**

Biochar preparation

- Local collaborator Lori Tunstall at Mines
- NREL TCPDU 500 °C char
- 60% air-classified forest residues, 30% clean pine and 10% hybrid poplar
- Milled char to 10 um (RockLabs RM2000)

Biochar characterization

Biochar characterization

We are using high surface area fast pyrolysis char

Results: Why are we able to achieve the strength at such high loadings?

- 1. Milling- sub 20 μm
- 2. Modulate flowability
- 3. Do not add excess water
- 4. Fast pyrolysis char

Neglecting One Component of the Recipe

United States Patent & Trademark Office (USPTO) **Application No. 17/698,569**

Results: Compression vs time

Mechanisms for strength enhancement

- 1. Water sorption capacity imbues internal curing through slow release of moisture
- 2. Biochar surface has nucleation sits for dispersed formation of calcium silicate hydrate (as opposed to calcium hydroxide)
- 3. Biochar itself is a supplemental cementitious material (SCM)

Cement hydration products

Char particle

Mechanism 1: Internal curing

Biochar can absorb 8% water by weight, but removing this amount of water from control only accounts for small strength gains

Mechanism 2: Nucleation

- Differential scanning calorimetry
	- CH decomposes 500 °C
- High surface area disperses hydration products, nucleates CSH
- Internal curing only accounts for densification, not major change in strength

Mechanism 3: Biochar as **SCM**

SEM shows a complex story

Mechanism 3: Biochar as **SCM**

- Pozzolonic activity catalyzes CSH formation – remaining CH
- Chappelle test- mix 3g CaO with 1g suspected pozzolan in water, stir and heat 90C, dissolve Ca(OH)₂ with saccharose and titrate with HCl

Results: Mechanism domination

- Smaller pores = improved flexural strength
- Increased pozzolanic activity exposes biochar surface acidity at higher char loadings?
- Better balance of mechanisms at lower loadings

Results: Carbon neutral mix

- 32% replacement of cement with biochar
- Big challenge to mixbroke the KitchenAid

Thank you

Funding: NREL-Mines Nexus seed grant State of Colorado US Department of Energy- EERE

www.nrel.gov United States Patent & Trademark Office (USPTO) **Application No. 17/698,569** brennan.pecha@nrel.gov

HUGE THANKS: Mines: Lori Tunstall, Julia Hylton NREL: Michael McIntyre, Peter Ciesielski, Matt Oliver, Eric Payne

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36- 08GO28308. Funding provided by the National Renewable Energy Laboratory. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

NREL/PR-2800-82445

