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Bioenergy 
Technologies Office

• Hydrodeoxygenation (HDO) reactions are needed to create more-stable
bio-oil product following catalytic fast pyrolysis (CFP) of raw biomass.1

• Noble metals supported on reducible metal oxides (e.g., Pt/TiO2) are
promising catalysts for HDO.2

• Model-compound studies of phenols show interfacial vacancies are
required to promote desired deoxygenation steps.3

• Carboxylic acids (e.g., acetic acid) are an important class of compounds
in biomass pyrolysis vapors.4

• Fundamental insights into the role of metal, interface, and vacancy sites
are lacking for carboxylic acid HDO.

• We therefore used density functional theory (DFT) to probe the role of
metal, interface, and interfacial-vacancy sites in acetic acid HDO (AA-
HDO) reaction pathways.

Introduction

Computational details
• VASP5,6

• PBE exchange-correlation functional7 

with D3 dispersion corrections8

• Transition states identified using 
climbing-image nudged elastic band 
method9,10

• Pt-metal sites: Pt(111)
• Interface/interfacial-vacancy sites: 

lattice-matching code11,12 used to 
construct anatase(101)-supported Pt-
nanowire model (PtNW/OH-TiO2)

Reaction mechanism

Based on previous experimental work,13,14 elementary steps for AA-HDO 
included steps involving the formation of:

• Acetate and acyl surface intermediates.
• Desired C-O bond-breaking products, acetaldehyde and ethane.
• Undesired C-C bond-breaking products, CO, CO2, and CH4.

Adsorption and reaction energetics
Adsorption energy (EB) Reaction energy (ΔE)

Adsorption Energy Relative to Pt(111)
• Interface stabilizes all adsorbates 

on average by:
• PtNW/OH-TiO2 0.67 eV
• PtNW/OHv-TiO2 1.56 eV

• Interfacial vacancy notably 
stabilizes oxygen-containing 
surface intermediates.

Reaction Energy Relative to Pt(111)
• C-C bond breaking step reaction 

energies differ at the interface, 
though not systematically (i.e., 
some are more endothermic, others 
more exothermic).

• C-O bond-breaking steps mostly 
shift from endothermic on Pt(111) to 
notably exothermic at the interface, 
particularly with an interfacial 
vacancy.

EB = Etot – Eclean – Egas ΔE = EFS – EIS

Activation barriers (Ea)

Activation Barriers Relative to 
Pt(111)
• Activation barriers at interface 

(with and without vacancy) are 
on average:

• Higher for C-C bond-
breaking steps.

• Lower for C-O bond-
breaking steps.

• Slightly lower for both 
dehydrogenation and 
hydrogenation steps.

Ea = ETS – EBIS

Minimum energy pathways

• Based on the lowest activation barrier for each step, minimum 
energy pathway (MEP) constructed for AA-HDO on each active-site 
model system.

• Pt(111) MEP leads to undesired decarboxylation products, CH4 and 
CO2.

• Both interface model systems form desired deoxygenation products, 
acetaldehyde and ethane.

• Interfacial vacancy may accelerate the C-O bond-breaking step for 
CH2COO (0.81 eV with vs. 1.41 eV without vacancy).

• Model systems illustrate surface chemistry underlying experimental 
observation that Pt/C and Pt/TiO2 preferentially form C-C bond-
breaking and C-O bond-breaking products, respectively.13

Conclusions
• Pt-TiO2 interface stabilizes all studied surface intermediates in AA-

HDO pathway relative to Pt.

• The addition of the TiO2 support results in a Pt-TiO2 active site that is
more favorable toward desired deoxygenation steps, which lead to
the formation of acetaldehyde and ethane.

• Interfacial vacancies may facilitate the first C-O bond-breaking step,
the predicted rate-limiting step without an interfacial vacancy;
however, vacancy formation is highly activated (1.76 eV).

• Future catalyst development for HDO could target smaller catalyst
particles that expose higher concentrations of metal-metal oxide
interface sites.
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