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Introduction

The Circular Economy Lifecycle
Assessment and Visualization
(CELAVI) framework hybridizes
discrete event ulation,
system dynamics modeling,
material flows, and life cycle
concepts into a dynamic
multiscale framework for
assessing how impacts vary as
supply chains transition from
linearity toward circularity.

Captures supply chains using
detailed, dynamic models of
production, use, and circular
pathways that are linked to
background life cycle
processes.

How much technological learning needs to occur before circularity technologies
reach cost parity with linear technologies?

How does increasing circularity change the environmental impacts of renewable
energy technologies?

How do end-of-life pathway costs, locations of supply chain facilities, and
deployment trajectories modify circularity?

What level of circularity could be reached with investment in new circularity
technologies?

Applications

Our intended audience for CELAVI includes governing bodies, corporations, and
nongovernmental organizations at multiple levels.

The framework’s initial focus is on renewable power systems and materials, but
the intent is to develop a flexible and modular approach that can be used in other
applications as well.

the CELAVI framework,
circularity metric calculations are
therefore kept as post-processing steps
applied to the material flow outputs of
the discrete event simulation; this
allows the metric calculations to be
changed to suit different case studies
with relative ease.
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Outflow circularity =
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Circularity metrics calculated within

CELAVI are inflow and outflow

Inflow circularity = circularity
Circular material inflow

Circular material inflow + Virgin material inflow

Additional mass-based circularity metrics can
also be calculated.

Framework Modules

B| Cost Graph is a network
representation of the
supply chain
superstructure,
including all supply
chain fa s, end-of-
life pathways,
processing and
transportation costs,
transportation distances,
and any other supply
chain characteristics.

Calculates preferred
routes using algorithms.

Python-LCIA (PyLCIA) is

::LC::\, a rapid LCA calculation
sulfts module that removes
dependencies on
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PyLCIA also includes a
dynamic electric grid mix
that changes with

and state.
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IOWA Scope

* Turbines installed and retired in the U.S.
m states of Iowa & Missouri, 2000~ 2050
f— m_m‘,m:’e\ + Glass fiber and epoxy materials contained
in GFRP blades

/\ - + EOL pathway options are cement co-
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Landfil Conmetine landfilling
/ Scenarios

*  Low, moderate, and high circularity costs

*  Low, moderate and high installed wind
capacity between 2020 and 2050 (ReEDS
Standard Scenarios)
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