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Abstract
Switchgrass (Panicum virgatum L.) is a promising feedstock for bioenergy and 
bioproducts; however, its inherent variability in chemical attributes creates chal-
lenges for uniform conversion efficiencies and product quality. It is necessary 
to understand the range of variation and factors (i.e., field management, envi-
ronmental) influencing chemical attributes for process improvement and risk as-
sessment. The objectives of this study were to (1) examine the impact of nitrogen 
fertilizer application rate, year, and location on switchgrass chemical attributes, 
(2) examine the relationships among chemical attributes, weather and soil data, 
and (3) develop models to predict chemical attributes using environmental fac-
tors. Switchgrass samples from a field study spanning four locations including 
upland cultivars, one location including a lowland cultivar, and between three 
and six harvest years were assessed for glucan, xylan, lignin, volatiles, carbon, 
nitrogen, and ash concentrations. Using variance estimation, location/culti-
var, nitrogen application rate, and year explained 65%–96% of the variation for 
switchgrass chemical attributes. Location/cultivar × year interaction was a sig-
nificant factor for all chemical attributes indicating environmental-based influ-
ences. Nitrogen rate was less influential. Production variables and environmental 
conditions occurring during the switchgrass field trials were used to successfully 
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1   |   INTRODUCTION

Biomass production is being pursued in the United States 
and worldwide to supply renewable energy resources, 
support reduced fossil fuel usage, meet national energy 
security policies, and provide potential environmental 
benefits (Demirbas, 2009; United States Congress, 2007). 
Second-generation perennial energy crops are of particu-
lar interest for use in bioenergy and bioproducts because 
of their potential environmental benefits. These include 
carbon sequestration and the capacity to grow on land that 
is marginal for food crops and vulnerable to environmen-
tal degradation (Bessou et al., 2011; Gelfand et al., 2013; 
Tilman et al., 2006). Switchgrass is a perennial grass spe-
cies of interest for biomass production in North America 
because it is native and has potential for high biomass 
yields. The species also grows well on marginal lands, 
tolerates low-nutrient soils, and even displays promising 
responses to water stress (Barney et al., 2009; Wright & 
Turhollow, 2010).

Meeting biomass supply is often considered the crit-
ical factor for developing a bioenergy industry, and the 
best-case scenario for a bioenergy facility would be a con-
sistent supply of biomass that can meet process specifica-
tions (Cundiff et al., 2009). Switchgrass has potential to 
produce high biomass yields; however, yields can vary by 
location and from year to year as a result of factors such 
as cultivar, climate, extreme weather events, soils, disease, 
production/management practices, and field history (Fike 
et al., 2017; Hong et al., 2014). Some control can be exerted 
by selecting ecotypes with properties better suited for the 
growing conditions. Lowland ecotypes have greater yield 
potential than upland ecotypes if planted where they 
are well adapted (Lee et al., 2018). Lowland ecotypes are 

adapted to lower elevations and latitudes and wetter cli-
mates, whereas upland ecotypes are better suited for sites 
with higher elevations, greater latitudes, and drier envi-
ronments (Casler et al., 2004; Sanderson et al., 1996).

Although appropriate pairing of cultivars or ecotypes 
with local or regional growing conditions can help miti-
gate low or variable biomass yields, ecotypic differences 
may have feedstock quality implications. That is, different 
cultivars or ecotypes could affect the chemical attributes 
of the feedstock given that lowland switchgrass is larger 
and upland switchgrass is shorter with thinner stems that 
have the potential to be less lignified (Hong et al., 2014; 
Lee et al., 2018). Along with chemical and physical at-
tribute differences due to ecotype, variability in these 
attributes also results from plant responses to field man-
agement practices and environmental conditions. Hong 
et al. (2014) found that location and year affected cellu-
lose, hemicellulose, lignin, ash, and nitrogen concentra-
tions; however, nitrogen fertilization rate had less of an 
impact. The effects of increasing nitrogen application rate 
on lignocellulosic concentrations have varied in field tri-
als from no impact on hemicellulose, cellulose, and lignin 
within each month switchgrass was harvested (Ibrahim 
et al., 2017) to decreased hemicellulose (Hong et al., 
2014; Lemus et al., 2008) to increased cellulose and lignin 
(Lemus et al., 2008; Waramit et al., 2011). A meta-analysis 
of more than 50 studies found that nitrogen addition de-
creased hemicellulose and increased lignin, but cellulose 
and non-structural carbohydrates remained unchanged 
(Liu et al., 2016). A recent study observed reduced hemi-
cellulose, particularly xylose, in response to increased 
nitrogen application under ambient rainfall conditions; 
however, hemicellulose was unchanged with nitrogen 
application when precipitation was reduced by adding a 

predict chemical attributes using linear regression models. Upland switchgrass 
results highlight the complexity in plant responses to growing conditions because 
all production and environmental variables had strong relationships with one or 
more chemical attributes. Lowland switchgrass was limited to observations of 
year-to-year environmental variability and nitrogen application rate. All explana-
tory variable categories were important for lowland switchgrass models but stand 
age and precipitation relationships were particularly strong. The relationships 
found in this study can be used to understand spatial and temporal variation in 
switchgrass chemical attributes. The ability to predict chemical attributes critical 
for conversion processes in a geospatial/temporal manner would provide state-of-
the-art knowledge for risk assessment in the bioenergy and bioproducts industry.
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bioenergy, drought, environmental explanatory variables, lowland ecotype, nitrogen, 
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rainout shelter (Emery et al., 2020). Drought conditions 
have also decreased switchgrass lignin, glucan, and xylan 
concentrations and increased soluble sugar concentra-
tions and extractive components (Ong et al., 2016). These 
later constituents may have antiquality effects because 
they can lead to the formation of pyrazines and imidaz-
oles, known fermentation inhibitors, following ammonia 
fiber expansion (AFEX) pretreatment (Ong et al., 2016). In 
contrast, in another drought study no composition or reac-
tivity effect was observed, perhaps due to drought severity 
or timing during the growing season (Hoover et al., 2018), 
or as a result of some level of drought tolerance in the 
species (Lewandowski et al., 2003; Wright & Turhollow, 
2010). Growing degree days (GDDs) necessary for plant 
growth also impacts plant chemistry; Alamo and Cave-
in-Rock switchgrass grown in Texas and Virginia had an 
increase in lignocellulosic components with degree days 
that occurred at the same time as internode elongation 
(Sanderson & Wolf, 1995). In contrast, protein, ash, and 
potassium decreased with more degree days. The varied 
results of these past studies demonstrate the complexity of 
how plants respond to the environment and production/
management practices. Therefore, many environmental 
and production factors need to be considered simulta-
neously to understand the impact on biomass chemical 
attributes.

Biorefineries are open to substantial operational and 
economic risk when biomass has high variability in mate-
rial attributes (United States Department of Energy, 2016). 
Given research findings that switchgrass yield and chem-
ical attributes differ from year to year and across spatial 
extents, information regarding variability of biomass yield 
and chemical attributes over a longer period is needed for 
operational design and risk mitigation and management. 
This type of information is important for determining 
critical material attribute ranges necessary to build proper 
robustness into preprocessing and conversion unit opera-
tions at biorefineries and to determine economic impacts 
over time. To inform this problem, it is necessary to tease 
out the factors that have the largest impact on switchgrass 
chemical attributes, but few data sets exist with spatial 
and temporal data extensive enough to do this.

The overarching goal of this study was to under-
stand the impact of sources of variability on switchgrass 

chemical attributes. To address this objective, chemical 
analysis was performed for switchgrass grown as part of 
the Sun Grant/DOE Regional Feedstock Partnership field 
trials that were planted in 2008 to address barriers to bio-
mass supply for biorefineries. The field trials span five 
fields each in a different state over 6 years capturing di-
verse spatial and temporal environmental conditions. This 
study examines the variability in important bioenergy 
conversion chemical attributes and quantifies how these 
chemical attributes are impacted by nitrogen application 
rate, year, and location/cultivar. Further, this study used 
relationships among the biomass chemical attributes and 
weather—precipitation, drought, temperature—and soil 
variables to determine the primary factors impacting bio-
mass chemistry and to derive models for predicting these 
biomass chemical attributes using publicly available data 
sets of these environmental factors. The study took into 
consideration as many known factors as possible; where 
information gaps existed, they were noted for consider-
ation for future experiments. The various cultivars were 
grouped into upland and lowland ecotypes and investi-
gated separately to account for genetic differences that are 
more broadly applicable to cultivars within these ecotypes 
not represented in these field studies.

2   |   MATERIALS AND METHODS

2.1  |  Biomass

Switchgrass was grown as part of the Sun Grant/DOE 
Regional Feedstock Partnership Field Trials that started 
in 2008 (Owens, 2018; Owens et al., 2016). Field locations 
for the study were selected where switchgrass was well 
adapted and productive, and the range of locations had 
diverse climatic and edaphic conditions (Owens, 2018). 
Lowland or uplands switchgrass cultivars were selected 
based suitability to each field location (Owens, 2018). 
Upland switchgrass cultivars were planted in Tompkins 
County, New York (42.462386, −76.460608); Muskogee 
County, Oklahoma (35.7425, −95.6392), and Day County, 
South Dakota (45.268965, −97.835825) in 2008 and in Story 
County, Iowa in 2009 (41.983056, −93.697232) (Table 1). 
A lowland switchgrass cultivar was planted in Pittsylvania 

Cultivar type Cultivar Location
Planting 
date Crop years

Upland Cave-in-rock Iowa 5/8/2009 2011–2013

Cave-in-rock New York 5/29/2008 2009–2014

Blackwell Oklahoma 9/2/2008 2010–2014

Sunburst South Dakota 5/17/2008 2009–2012, 2014

Lowland Alamo Virginia 7/1/2008 2009–2014

T A B L E  1   Cultivar type, cultivar, 
planting date, and crop years with 
samples that have chemical material 
attribute data used in the study for each 
field location state
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County, Virginia in 2008 (36.932296, −79.189968). The 
field study included three nitrogen fertilization levels—0, 
56, and 112 kg N ha−1—in a randomized complete block 
design with four replicate plots. Hong et al. (2014) and Fike 
et al. (2017) have additional details regarding field sites 
and management. Dry biomass yields for each plot were 
determined as described in Fike et al. (2017). Samples for 
chemical characterization were collected from windrows 
in Iowa from 2011 to 2013, New York from 2009 to 2014, 
and Virginia from 2009 to 2014. Samples were collected 
from bale cores in Oklahoma from 2010 to 2014 and South 
Dakota from 2009 to 2012 and in 2014. Stand age was cal-
culated as the number of years since planting. Switchgrass 
samples for characterization were dried at 60°C for 48 h 
and then milled to pass a 2-mm sieve using a Thomas 
Model 4 Wiley Mill (Thomas Scientific, Swedesboro, NJ, 
USA).

2.2  |  Chemical composition

Duplicates of each milled sample were placed in a desicca-
tor at room temperature for a minimum of 72 h. A Thermo 
Antaris II FT-NIR with auto-sampler attachment and 
Omnic software (Thermo Scientific, Waltham, MA, USA) 
was used to collect 128  NIR spectra over wavenumbers 
4000–10,000 cm−1 that were averaged to get one spectrum 
per duplicate sample. The resulting duplicate spectra were 
averaged to get a final spectrum per sample for prediction. 
Percent glucan (from cellulose and starch), xylan, and 
lignin were predicted using a mixed herbaceous feedstock 
partial least squares (PLS) 2 model built in Unscrambler X 
10.3 software (Camo Software Inc., Woodbridge, NJ, USA). 
The PLS2 model has been described previously (Payne & 
Wolfrum, 2015). Calibration samples were analyzed using 
NREL Laboratory Analytical Procedures (Sluiter et al., 
2010) and consisted of perennial cool season grasses as 
described in Payne et al., (2017), corn stover (Zea mays 
L.), Miscanthus × giganteus, sorghum (Sorghum bicolor 
(L.) Moench), switchgrass (Panicum virgatum L.), and rice 
straw (Oryza sativa L.). A summary of calibration and vali-
dation statistics is in Table S1.

Volatiles, carbon, ash, and nitrogen were also pre-
dicted using NIR spectra collected as described in the 
previous chemical composition section. PLS1  models 
were built to predict volatiles, carbon, ash, and nitro-
gen, and a summary of calibration and validation statis-
tics is in Table S2. Calibrations included mixed perennial 
grasses—which included mixtures of little bluestem 
(Schizachyrium scoparium), intermediate wheatgrass 
(Thinopyrum intermedium), orchardgrass (Dactylis glom-
erata), pubescent wheatgrass (Agropyron intermedium 
var. trichophorum), smooth bromegrass (bromus inermis), 

tall fescue (Schedonorus phoenix), alfalfa (Medicago), 
Lespedeza, red clover (Trifolium pratense), white clover 
(Trifolium repens), and yellow sweetclover (Melilotus 
officinalis)—energycane (Saccharum hyb.), Miscanthus 
× giganteus, sorghum, switchgrass, willow (Salix spp.), 
and hybrid poplar (Poplar hyb.) samples. Calibration sam-
ples were analyzed for volatiles and ash using a LECO 
Thermogravimetric Analyzer (TGA) 701 (St. Joseph, MI, 
USA) following ASTM D 5142–09. Volatiles were deter-
mined by adding caps to crucibles after the samples were 
dried at 107°C and then ramping the temperature 50°C/
min under 10  lpm of UHP N2 until it reached 950°C 
where it was held for 9 min. To measure ash, caps were 
removed after the instrument cooled to 600°C. Then the 
instrument was heated at 13°C/min under 3.5 lpm of O2 
until it reached 750°C where it was held until the sam-
ple reached a constant weight. To determine carbon and 
nitrogen, samples were analyzed on a LECO TruSpec 
CHN Analyzer according to a modified ASTM D 5373–
10  method (Flour and Plant Tissue Method) that uses a 
slightly different burn profile.

2.3  |  Environmental variables

Precipitation, drought, and GDD were included in the PLS 
regressions because these variables have been previously 
demonstrated to affect biomass chemical attributes (Ong 
et al., 2016; Sanderson & Wolf, 1995). Each variable was 
calculated from the first frost-free day in spring until the 
first frost in fall as a representation of the growing season. 
In addition, these variables were calculated for the last 30 
days before frost in the fall because it was hypothesized 
that the final days of the growing season would have an 
impact on the resulting biomass chemistry. This was based 
on previous research in which switchgrass responded 
well to moisture following drought (Barney et al., 2009). 
Weekly drought conditions for each county in the study 
were obtained from the University of Nebraska-Lincoln 
U.S. Drought Monitor (U.S. Drought Monitor, 2018). 
Severity of drought conditions are based on several models 
and measures, including the Palmer Drought Index, the 
Climate Prediction Center Soil Moisture Model, the U.S. 
Geological Survey Weekly Streamflow, the Standardized 
Precipitation Index, drought duration, and additional 
region-specific information. The U.S. Drought Monitor 
conditions are broken into five drought categories: abnor-
mally dry (D0), moderate drought (D1), severe drought 
(D2), extreme drought (D3), and exceptional drought 
(D4). The weekly data from the U.S. Drought Monitor was 
a percent area in each county that was in each drought cat-
egory (D0-D4). The Drought Severity and Coverage Index 
(DSCI)—developed by Adnan Akyuz at North Dakota 
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State University and implemented by the U.S. Drought 
Monitor—was used to calculate one value per county for 
each week (Equation 1) and the Accumulated Drought 
Severity and Coverage Index (ADSCI) was used to calcu-
late a value for a county over a designated time period (2) 
(Akyuz, 2017). DSCI values can range from 0 to 500.

where D0 is abnormally dry and D4 is exceptional drought.

where n is weeks.
ADSCI was calculated for four different timeframes per 

year for each site—first frost free day to harvest, first frost-
free day to first frost, 30 days before harvest, and 30 days 
before first frost. Note that the drought data were reported 
on a weekly basis, so the timeframes would start at the 
beginning of the week or end at the end of the week that 
included each of the days specified. According to NOAA, 
when temperatures drop below 2°C localized frost can 
occur, below 0ºC widespread frost with some freeze oc-
curs, and below −2°C a hard freeze can happen (NOAA, 
2020). In this study, frost was considered −2°C based on 
the temperature NOAA considers a hard freeze.

Precipitation and temperature data were obtained from 
weather stations near each site where switchgrass was 
grown (Station USW00094989, Ames Municipal Airport, 
IA; Station USC00304174, Ithaca Cornell University, 
NY, US; USW00093953, Muskogee Davis Field, OK, US; 
USC00390120, Andover number 2, SD, US; USC00441614, 
Chatham, VA, US). Precipitation was summed for four 
different time periods—first frost-free day to harvest, first 
frost-free day to first frost, 30  days before harvest, and 
30  days before first frost. GDDs were calculated for two 
time periods—January 1 to harvest and first frost-free day 
to first frost—using Equation (3).

where Tmax was the maximum daily temperature, Tmin 
was the minimum daily temperature, Tbase = 12°C (Kiniry 
et al., 2008), and if Tmax+Tmin/2 was less than 12°C then 
Tmax+Tmin/2 was set equal to Tbase (12°C).

Soil cores were collected from three landscape posi-
tions in each plot—shoulder, backslope, footslope—at 
depths of 0 to 5, 5 to 15, and 15 to 30 cm as described pre-
viously in Hong et al. (2014). Soils were collected at differ-
ent depths because soil properties can change over the soil 
depth profile. Soil samples were collected from Iowa in 
May 2009, New York in April 2008, Oklahoma in October 

2008, South Dakota in May 2008, and in Virginia in March 
2009. Soil data from each plot was summarized on a per 
location basis for analyses described below. Soil samples 
from each depth were analyzed for bulk density (g cm−3), 
pH, and total soil nitrogen (%). Total soil C and nitrogen 
(TN) were analyzed by dry combustion using a TruSpec 
CHN analyzer (LECO Corporation, St. Joseph, MI). Soil 
bulk density was calculated using the core method (Blake 
& Hartge, 1986). Soil pH was determined using the pH 
meter (Thermo Scientific Orion, model-Orion Star A215). 
Soil drainage was categorized as good or poor according to 
Fike et al. (2017). National Commodity Crop Production 
Index (NCCPI) values were obtained from USDA-NRCS 
Soil Survey Geographic Database (SSURGO) for corn, soy-
beans (Glycine max (L.) Merr.), cotton (Gossypium spp.), 
small grains, and highest overall value (NRCS, 2008).

2.4  |  Statistical analysis

Variance estimation for each chemical component was 
conducted using restricted maximum likelihood method 
(REML) mixed models in JMP 14.2.0 (SAS Institute, Inc., 
Cary, NC) to determine if there were any statistically sig-
nificant differences in switchgrass chemistry resulting from 
location, harvest year, block, and interactions between fac-
tors. All locations and ecotypes were analyzed together in 
these REML mixed models. Nitrogen application rate was 
considered a fixed factor. Location, which includes cultivar 
differences, harvest year, block, and interactions between 
factors were considered random. Factors were considered 
significant if p < 0.05 (Wald p-value for random factors). 
Normality assumptions were assessed by reviewing histo-
grams of residuals and normal quantile plots. Assumptions 
related to homogeneity of residuals were assessed by re-
viewing plots of residuals versus predicted values and 
O’Brien and Brown–Forsythe tests. Glucan and volatile 
data sets were reflect- and square root transformed (reflect 
= added one to the maximum value of the data set and then 
subtracted each value from this constant, followed with a 
square root transformation) and the ash data set was log10 
transformed to meet the assumptions of normality and ho-
mogeneity required for analysis.

2.5  |  Partial least squares models

Models were developed to understand relationships among 
the biomass chemical attributes and environmental and 
production variables to determine the primary variables 
impacting biomass chemistry and to predict these biomass 
chemical attributes using publicly available data sets of envi-
ronmental variables. A PLS algorithm was selected because 

(1)DSCI = 1 ∗ D0 + 2 ∗ D1 + 3 ∗ D2 + 4 ∗ D3 + 5 ∗ D4

(2)ADSCI =
∑n

i=1
DSCI

(3)Σ
Tmax + Tmin

2
− Tbase
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the various environmental variable representations used in 
this study are collinearly related (Figures S1 and S2). Biased 
regression approaches like PLS are well suited to handle 
this collinearity while still providing means to mathemati-
cally compare the factors using VIP scores. Partial least 
squares (PLS) models were developed in MATLAB R2017b 
® (The Math Works, Natick, MA) using environmental and 
production factors to predict chemical composition (glu-
can, xylan, lignin, volatiles, fixed carbon, nitrogen, ash) and 
determine predictor variables with the most importance to 
the model. Upland switchgrass cultivars were combined 
into one data set, whereas the lowland switchgrass cultivar 
in Virginia was in a separate data set. Upland and lowland 
switchgrass have been separated in previous research on 
yield potential maps (Daly et al., 2018). The USDA plant 
hardiness zone ranges are different for these two switch-
grass ecotypes (Daly et al., 2018). The intent of this design 
was to ensure the results would be more applicable when 
new cultivars are developed compared with models based 
on each cultivar individually. Fifty-eight environmental 
and production variables were used for upland models and 
included the following 15 variables: stand age, nitrogen 
application rate (three rates), dry biomass yield, drought 
(ADSCI calculated for four different timeframes), precipi-
tation (summed for four different time periods), and GDD 
(summed for two different time periods). In addition, 43 soil 
and NCCPI variables were included for each location and 
are described in Table S3. Lowland models used 15 envi-
ronmental and production variables including stand age, 
nitrogen application rate (three rates), dry biomass yield, 
drought (ADSCI calculated for four different timeframes), 
precipitation (summed for four different time periods), and 
GDD (summed for four different time periods). Predictor 
variables that were categorical—nitrogen application rate 
and soil drainage—were entered into the model as dummy 
variables (−1, 1). For example, for nitrogen application rate 
there were three categories, or levels—low (0 kg/ha), me-
dium (56 kg/ha), and high (112 kg/ha)—and for each sam-
ple a 1 was entered for the level that was applied and a −1 
was entered for each of the other two levels. Both predictor 
variables and response variables (chemical composition) 
were mean-centered and scaled to a standard deviation of 1. 
The SIMPLS algorithm was used and the number of factors 
to include in each model was determined based on balanc-
ing the bias/variance trade-off by minimizing the sum of 
the range scaled root-mean-square errors of calibration/
cross validation (RMSEC/RMSECV) and normalized re-
gression vectors (Kalivas & Palmer, 2014). A leave-multiple 
out cross validation was done where 20% of the data set was 
randomly selected and left out, and this was repeated over 
20 iterations. Models were made for lowland and upland 
ecotypes of switchgrass separately. Lowland models in-
cluded Virginia only. Variable importance in project (VIP) 

scores were used to compare the importance of each pre-
dictor variable in the PLS models. Predictor variables were 
considered important if their VIP score was greater than 0.8 
and highly important if their VIP score was greater than 1, 
which are typical cutoffs used when discussing variable im-
portance (Akarachantachote et al., 2014; Kuhn & Johnson, 
2013).

3   |   RESULTS AND DISCUSSION

3.1  |  Chemical material attribute 
variability

Upland and lowland switchgrass chemical attributes varied 
within and across locations supporting the need to investi-
gate potential sources of this variability. Chemical variabil-
ity was larger for upland switchgrass because it included 
four field locations—Iowa, New York, Oklahoma, South 
Dakota—compared with lowland switchgrass that had one 
field location in Virginia. Glucan ranged from 28 to 37%, 
xylan from 18 to 24% and lignin from 16 to 21% for upland 
switchgrass (Figure 1). More limited variability existed for 
lowland switchgrass chemical composition with glucan 
ranging from 33 to 38%, xylan from 22 to 25%, and lignin 
from 19 to 22% (Figure 1). Harvest in Virginia was much 
later, which may have resulted in greater weathering per-
haps partly contributing to the lower variability observed.

NIRS prediction model error (RMSEC) was 1.7% for glu-
can, 1.1% for xylan, and 1.1% for lignin (Table S1) helping 
to establish a minimum threshold range for meaningful 
variability necessary to determine if sample differences are 
within the error of the model. Ranges of chemical attributes 
for upland switchgrass were larger than the variability of 
the NIRS prediction model (Figure 1). Results for lowland 
switchgrass were analyzed but should be viewed with more 
caution because the ranges are narrower and closer to the 
method limits for meaningful variability. Ranges of varia-
tion for carbon, volatiles, nitrogen, and ash are larger than 
primary method analytical error and NIRS prediction model 
error (RMSEC); errors were 1.3% and 0.77% for volatiles, 
0.23% and 0.58% for carbon, 0.04% and 0.10% for nitrogen, 
and 0.05% and 0.58% for ash, respectively (Figure 2, Table 
S2). The instrument error is based on acceptable or typical 
ranges of instrumental variability for analytical standards.

Upland switchgrass had a minimum of 72% volatiles 
and a maximum of 84% with most of the variation between 
location and within the Oklahoma field site (Figure 2a). 
Higher volatiles are related to increased fuel acidity fol-
lowing pyrolysis (Carpenter et al., 2014), faster burn rates 
in direct combustion (Jenkins et al., 1998), and decreased 
energy density of char from HTL (Onwudili et al., 2014). 
Carbon had location-to-location variation with an overall 
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range of 46%–51% (Figure 2c). Lowland switchgrass had 
narrower ranges for volatiles and carbon, 3% and 2%, 
respectively. Nitrogen was 1% or less for all upland and 

lowland switchgrass similar to the range identified pre-
viously for 102 switchgrass samples (mean 0.8, standard 
deviation 0.7%) (Williams et al., 2016). When perennial 
plants are harvested after killing frost, concentrations of 
nitrogen and other mobile nutrients are often low because 
of nutrient translocation to the roots. Lower nitrogen con-
centration has been reported for switchgrass harvested 
near anthesis or after a killing frost compared with earlier 
in the growing season (Mulkey et al., 2006; Vogel et al., 
2002). Ash concentration in Iowa, New York, and Virginia 
was between 2% and 6% (Figure 2b), close to physiological 
ash (Kenney et al., 2013). Ash was higher and more vari-
able in Oklahoma (6%–12%) and South Dakota (5%–9%), 
perhaps reflecting contamination that can occur during 
field harvest. Samples from Oklahoma and South Dakota 
were collected after baling by coring the bales whereas 
the samples for Iowa, New York, and Virginia were taken 
from windrows prior to baling, likely explaining this dif-
ference since it has been observed that the baler can pick 
up debris and soil from the field.

3.2  |  Nitrogen application rate, year, and 
location impacts

Overall, location/cultivar and year had more of an im-
pact on feedstock quality than fertility management. 
Location/cultivar, nitrogen fertilizer application rate, and 
year explained over 85% of the variation when all loca-
tions were considered together—based on the adjusted 
R2—for all switchgrass chemical attributes except nitro-
gen (adj R2 = 79%) and glucan (adj R2 = 65%; Table 2). 
Significant (p ≤ 0.03) location/cultivar × year interaction 
for all chemical attributes indicates the importance of en-
vironment as an influential variable. However, location 
and environmental effects are not completely distinguish-
able because different cultivars were grown at all locations 
except for Iowa and New York where Cave-In-Rock was 
planted (Table 1). Nitrogen application rate was less in-
fluential overall but significantly affected xylan, carbon, 
and nitrogen; glucan was significantly impacted by a ni-
trogen × year interaction (Table 2). These trends agreed 
with the results of Hong et al. (2014) who reported ni-
trogen application rate increased nitrogen and reduced 
hemicellulose concentrations in switchgrass; moreover, 
as with our findings, location and year had stronger effects 
on feedstock quality than fertility management. Variance 

F I G U R E  1   Variation in (a) glucan, (b) xylan, and (c) lignin 
concentration of switchgrass grown in five locations. Indicated by 
the dashed line, upland switchgrass was grown in Iowa, New York, 
Oklahoma, and South Dakota and lowland switchgrass was grown 
in Virginia
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analysis results support additional analyses to determine 
the specific environmental variables underlying the loca-
tion/cultivar × year interaction, and to assess how much 
variation can be accounted for without including factors 
like cultivar for upland switchgrass.

3.3  |  Relationships between 
production and environmental factors and 
chemical attributes

Using PLS regressions, production variables and envi-
ronmental conditions that occurred during the field trials 

were used to explain switchgrass chemical attribute vari-
ation. This is the first study to use this type of modeling 
approach to successfully build relationships of this type 
to the authors’ knowledge. These relationships are criti-
cal for both understanding the importance of key sources 
of variability on biomass chemical attributes and for pre-
dicting attribute ranges of variability that may occur over 
time and in different locations. Table 3 displays the PLS 
regression results for the seven chemical attributes for 
upland (IA, NY, OK, SD) and lowland (VA) switchgrass 
separately. These regressions included explanatory pro-
duction variables of stand age, nitrogen application rate, 
and dry biomass yield and explanatory environmental 

F I G U R E  2   Variation in (a) volatiles, 
(b) ash, (c) carbon, and (d) nitrogen 
concentration of switchgrass from five 
locations. Indicated by the dashed line, 
upland switchgrass was grown in Iowa, 
New York, Oklahoma, and South Dakota 
and lowland switchgrass was grown in 
Virginia. Iowa, New York, and Virginia 
samples were collected from windrows 
whereas Oklahoma and South Dakota 
samples were collected by coring bales

T A B L E  2   Restricted maximum likelihood variance estimation p-values for seven chemical attributes and three factors—location/
cultivar (LC), nitrogen rate (N), year (Y)

Chemical 
component LC N Y Block LC × N LC × Y N × Y LC × N × Y R2 adj. RMSE

Glucan 0.23 0.96 0.37 0.43 0.12 0.02 0.01 0.37 0.65 0.24

Xylan 0.18 0.00 0.64 0.55 0.28 0.01 0.36 0.54 0.88 0.64

Lignin 0.41 0.97 0.91 0.53 0.29 0.01 0.91 0.15 0.87 0.41

Volatiles 0.16 0.97 0.66 0.64 0.12 0.01 0.37 0.80 0.96 0.12

Ash 0.16 0.74 0.47 0.42 0.18 0.03 0.67 0.96 0.95 0.05

Carbon 0.16 0.02 0.32 0.79 0.22 0.01 0.80 0.71 0.96 0.30

Nitrogen 0.37 0.00 0.74 0.37 0.12 0.02 0.61 0.55 0.79 0.09

Note: Significant (p < 0.05) are bolded. This analysis includes both upland and lowland ecotypes.
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variables of drought, precipitation, GDDs, soil proper-
ties, and NCCPI (Tables 4 and 5). Drought, precipitation, 
and GDD in Tables 4 and 5 were numerically expressed 
in multiple ways to better capture the environmental con-
ditions, particularly if different chemical attributes were 
sensitive to environmental conditions at different times in 
the growing season. Selection of the optimal expression of 
each variable for individual chemical attributes is beyond 
the scope of this research and would be the subject of fu-
ture work.

Environmental and production variables could explain 
72% to 92% of the variability in upland switchgrass chem-
ical attributes, except for glucan (R2 cal. = 0.58; Table 3). 
Measured values versus predicted chemical attributes 
from regressions show that most regressions were close 
to the line of equality with slight overprediction on the 
lower values and underprediction for the upper range 
(Figure 3). Most chemical attributes fell very close to the 
line of equality; glucan and nitrogen deviated the most 
from the line of equality and both attributes had less vari-
ation explained by the PLS regressions possibly because 
of similar medians across sites or sample outliers (Figures 
1–3). For specific year-location combinations, groupings 
can be seen where the chemical data predictions are sim-
ilar across all of the samples. This is especially obvious in 
the upland lignin model in Figure 3c but can be seen at 
varying levels in the other chemical attribute predictions. 
These trends indicate that the plot-to-plot factors available 
for this work, dry biomass primarily, were not sufficient 

for predicting these chemical properties. More investiga-
tion is necessary that includes other factors like soil char-
acteristics and slope at the plot level to accurately predict 
biomass chemical attributes. Additionally, this study was 
not able to pull apart the difference between location 
and cultivar. These models could potentially improve if 
cultivar was considered. There are potential interactions 
between the plot variables, soil characteristics, and the 
cultivars themselves.

Volatiles, carbon, and ash data for upland switchgrass 
clustered by location (Figures 3 and 4). This is likely a 
result of a complex interaction of factors including cul-
tivar and the environmental conditions at each location 
and across years. Stand age is another important factor 
for perennial crop chemical attributes, as biomass yield, 
which is related to plant size and structures like leaf-to-
stem ratios, typically increases during the first 3 years of 
production (Hong et al., 2014; Parrish & Wolf, 1992). Iowa 
may cluster separately from the other locations because 
only three growing seasons from Iowa were part of this 
study, whereas the other locations had 5–6 years of sam-
ples (Table 1). Samples also clustered by year for glucan, 
lignin, and volatiles even though year was not a variable in 
the models (Figure S3).

Less of the chemical variability was explained for low-
land switchgrass (55% to 68%) compared with upland 
switchgrass (Table 3) likely a result of the smaller sample 
set. In addition, these models did not include the added 
benefits of soil/landscape explanatory variables as only 

T A B L E  3   Partial least square model results for upland and lowland switchgrass

Cultivar type
Chemical 
component LV

% X variance 
explained R2 Cal. R2 CV RMSEC RMSECV

Upland Glucan 17 100 0.58 0.44 0.64 0.73

Xylan 17 100 0.78 0.74 0.47 0.52

Lignin 17 100 0.80 0.78 0.44 0.48

Volatiles 15 100 0.89 0.86 0.33 0.39

Ash 17 100 0.92 0.90 0.28 0.32

Carbon 17 100 0.92 0.90 0.28 0.31

Nitrogen 17 100 0.72 0.67 0.53 0.58

Lowland Glucan 4 74 0.66 0.60 0.57 0.62

Xylan 5 85 0.55 0.54 0.67 0.71

Lignin 4 76 0.64 0.51 0.60 0.67

Volatiles 8 100 0.67 0.61 0.56 0.61

Ash 8 100 0.68 0.61 0.56 0.67

Carbon 5 83 0.65 0.62 0.58 0.67

Nitrogen 4 78 0.56 0.51 0.66 0.71

Note: Results, except for latent variable (LV), represent the mean results from a 20-iteration cross validation using a randomly selected 20% cross validation 
sample set for each iteration.
Abbreviations: Cal., calibration; CV, cross validation; RMSEC, root mean square error of calibration; RMSECV, root mean square error of cross validation.
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one location was considered. Future research that includes 
multiple field locations for lowland switchgrass would 
allow more robust regression development. R2 and RMSE 
were similar for the regression calibrations and cross val-
idations indicating adequate model robustness; however, 
regressions overpredicted lowland feedstock constituent 
concentrations in the low range and underpredicted their 
concentration in the high range of the data similar to up-
land switchgrass models (Figure 5). Samples clearly clus-
tered by year for all chemical attributes except ash, which 
clustered by year primarily only in 2009 (Figures 4 and 
5). This was not surprising given the year-to-year variation 

in environmental conditions, length of growing season, 
stand age, and dry biomass yield (Figure 5). These results 
necessitated further assessment of the environmental and 
production variables that had the largest impact on the 
regressions.

VIP scores were calculated to quantify the importance 
of each environmental and production variable on each 
chemical material attribute. VIP scores for upland switch-
grass indicated that a multitude of production and envi-
ronmental variables impacted the chemical attributes 
of switchgrass, with VIP scores greater than 1 for every 
category of variable: stand age, nitrogen application rate, 

T A B L E  4   Variable importance of projection (VIP) scores from upland PLS models for each environmental or production variable

Glucan Xylan Lignin Volatiles Ash Carbon Nitrogen

Stand age (yr) 1.5 0.8 1.1 0.7 0.6 1.0 2.2

0 Nitrogen application 
rate (kg/ha)

0.5 2.0 0.5 0.4 0.3 0.7 2.1

56 Nitrogen application 
rate (kg/ha)

0.3 0.2 0.2 0.1 0.1 0.1 0.5

112 Nitrogen application 
rate (kg/ha)

0.4 2.1 0.4 0.6 0.4 0.8 2.6

Dry biomass yield (Mg/
ha)

2.9 0.8 0.7 0.9 0.8 1.2 1.5

ADSCI-first frost-free day 
to harvest

1.1 1.1 1.9 0.8 0.8 0.8 1.7

ADSCI-first frost-free day 
to first frost

1.0 0.9 1.5 0.8 0.8 0.7 1.5

ADSCI−30 days before 
harvest

1.2 0.9 1.0 1.4 0.8 1.1 1.3

ADSCI−30 days before 
first frost

0.9 0.9 1.3 0.8 0.5 1.1 1.3

Precip.-first frost-free day 
to harvest

2.4 1.6 2.4 1.4 0.8 0.8 1.9

Precip.-first to last frost-
free day

2.5 1.4 1.7 1.4 0.9 0.6 1.4

Precip.−30 days before 
harvest

1.6 0.8 1.7 1.0 1.0 0.6 0.8

Precip.−30 days before 
first frost

0.8 0.9 1.3 0.7 0.5 1.0 0.9

GDD-January 1 to harvest 1.5 1.8 3.3 1.6 1.5 0.8 1.7

GDD-first to last frost-free 
day

1.4 1.7 3.0 1.6 1.5 0.7 1.5

Soil drainage 0/2 2/2 2/2 0/2 0/2 2/2 0/2

Total soil nitrogen 5/12 1/12 1/12 9/12 11/12 11/12 1/12

Soil bulk density 1/12 8/12 3/12 3/12 8/12 10/12 1/12

Soil pH 8/12 12/12 0/12 7/12 3/12 5/12 4/12

NCCPI 4/5 1/5 4/5 2/5 1/5 4/5 4/5

Note: Yellow values are 0.8 or greater, and green values are 1 or greater. For soil variables and NCCPI values are the number of variables out of the total in that 
category that had VIP scores greater than 0.8 (see Table S3 for soil/NCCPI VIP scores).
Abbreviations: ADSCI, accumulated drought severity and coverage index; GDD, growing degree days, NCCPI, National Commodity Crop Production Index; 
precip., precipitation.
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dry biomass yield, drought, precipitation, GDD, soils, and 
NCCPI (Table 4). Given that lowland switchgrass was 
grown at only one location, it served as a case study to 
show the effects of year-to-year environmental variability 
coupled with the production factors of nitrogen applica-
tion rate and stand age. VIP scores for lowland switch-
grass indicate that while each category of variable was 
important, stand age and precipitation were particularly 
important for all chemical attributes (VIP>1; Table 5). The 
VIP results highlight the complexity of plant responses to 
growing conditions and the need to carefully select the 
combination of factors that best represents this when try-
ing to explain as much variability as possible in a feed-
stock's chemical attributes.

Production and field management factors must be con-
sidered when trying to explain the variability in chemical 
attributes of switchgrass. Therefore, stand age (i.e., the 
number of years since planting) and dry biomass yield 
were selected for inclusion in this study; these variables 
were important likely because they are related to plant 

structure and size, which affects leaf-to-stem ratios and 
lignocellulosic concentrations. Switchgrass plant size 
and yield typically increase with stand maturity, which 
usually is reached in year 3; yields in subsequent years 
can vary but often remain relatively constant or decline 
(Hong et al., 2014; Lee et al., 2018; Parrish & Wolf, 1992). 
Further, some research has correlated increased tiller size 
from year 1 to year 2 to increases in cellulose and hemi-
cellulose, but lignin did not change (Hong et al., 2014); 
however, this trend was not seen in other studies (Lemus 
et al., 2002).

Soil fertility is an important management factor in-
cluded in many field trials, yet its influence on biomass 
yields and chemical quality is not always straightforward 
and can be complicated by factors such as harvest manage-
ment and land use history. In the PLS regression analysis, 
nitrogen application rate impacted only a few chemical 
attributes—mainly xylan, carbon, and nitrogen (VIP>0.8; 
Tables 4 and 5)—as identified in the REML variance anal-
ysis (Table 2). A previous meta-analysis found similar 

T A B L E  5   Variable importance of projection (VIP) scores from lowland PLS models for each environmental or production variable

Glucan Xylan Lignin Volatiles Ash Carbon Nitrogen

Stand age (yr) 1.4 1.2 1.8 1.5 1.5 1.3 1.6

0 Nitrogen application rate 
(kg/ha)

0.3 1.4 0.6 0.4 0.3 0.3 0.6

56 Nitrogen application rate 
(kg/ha)

0.4 0.3 0.5 0.6 0.9 0.8 0.5

112 Nitrogen application 
rate (kg/ha)

0.2 1.6 0.2 0.5 0.6 0.6 1.0

Dry biomass yield (Mg/ha) 0.8 0.6 0.8 1.4 1.1 0.7 0.9

ADSCI-first frost-free day to 
harvest

0.2 0.7 0.8 0.8 0.7 0.6 0.7

ADSCI-first frost-free day to 
first frost

0.6 0.5 1.1 0.4 0.3 0.9 0.4

ADSCI−30 days before 
harvest

0.6 0.8 0.5 1.0 0.9 0.6 1.1

ADSCI−30 days before first 
frost

1.7 0.8 1.1 0.3 0.8 1.9 0.3

Precip.-first frost-free day to 
harvest

0.7 1.3 1.1 1.8 1.0 0.9 1.2

Precip.-first to last frost-free 
day

1.3 1.6 1.4 1.3 1.6 0.9 1.5

Precip.−30 days before to 
harvest

1.2 1.0 1.0 1.3 1.5 0.7 1.6

Precip.−30 days before first 
frost

2.0 0.9 1.0 1.1 1.4 1.8 1.2

GDD-January 1 to harvest 0.6 0.5 1.0 0.5 0.3 0.8 0.3

GDD-first to last frost-free 
day

0.7 0.5 1.1 0.4 0.3 0.9 0.4

Note: Yellow values are 0.8 or greater, and green values are 1 or greater.
Abbreviations: ADSCI, accumulated drought severity and coverage index; GDD, growing degree days; precip., precipitation.
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patterns of increasing nitrogen application rates decreas-
ing hemicellulose but not cellulose concentrations (Liu 
et al., 2016). In switchgrass and switchgrass-dominated 
grasslands, feedstock nitrogen concentrations typically in-
creased with increasing nitrogen application (Hong et al., 
2014; Kering et al., 2013; Mulkey et al., 2006).

Switchgrass grown in a field setting is susceptible to 
a myriad of environmental conditions known to impact 
biomass chemical attributes. Precipitation, drought, 
and GDD had VIP scores greater than 0.8 for upland 
switchgrass chemical attributes. In contrast to upland 
switchgrass, precipitation had a particularly large effect 
on lowland switchgrass chemical attributes, whereas 
drought and GDD had less of an impact on overall 

chemical attributes. In 2012, there was a nationwide 
drought in the United States, and during that time the ac-
cumulated drought severity and coverage index (ADSCI) 
for Virginia was 1200, but the maximum drought extent 
for the upland switchgrass was more than 50% higher in 
Iowa (2000) and Oklahoma (1900) helping explain why 
drought variables may have been more influential in the 
upland switchgrass PLS regressions. Plants may accumu-
late solutes (e.g., non-structural sugars and osmolytes), 
during drought and low precipitation to maintain essen-
tial functions like turgor pressure and then on a percent 
dry mass basis structural sugars would proportion-
ally also change (Chaves et al., 2003; Ong et al., 2016). 
Neither a plant's stunting by nor its recovery from past 

F I G U R E  3   Measured glucan (a), 
xylan (b), lignin (c), volatiles (d), carbon 
(e), and nitrogen (f) versus these chemical 
attributes predicted using environmental 
and production variables for upland 
switchgrass cultivars in Iowa, New York, 
Oklahoma, and South Dakota. Solid line 
is the regression and the dashed line is the 
line of equality (slope=1, intercept=0)



788  |      HOOVER et al.

environmental stressors (or their combined effects) may 
be captured by calculated drought indices, which may 
explain the lower R2  calculated for upland switchgrass 
glucan concentrations (Table 3). Similar to drought in-
dices, the spread of GDD in the PLS regression was also 
much larger for upland switchgrass because samples 
were grown in multiple locations. The range of GDD 
from first to last frost was 1351–1741 GDD for lowland 
switchgrass in Virginia; in comparison, upland switch-
grass had a minimum of 742 GDD in New York in 2009 
and 2643 GDD in Oklahoma in 2012. If future work is 
focused only on explaining the most variability possible 
with optimized predictions, then data sets can include 
all environmental data available. E.g., daily precipitation 
could be used rather than aggregating precipitation over 
a given period. This study aimed to understand sources 
of variability, which necessitated some level of data ag-
gregation. In addition, one of the challenges with switch-
grass is that its growth may also be impacted by dormant 
season precipitation that recharges the soil water column. 
Future research should address the combined effects of 
moisture throughout the soil column, evapotranspira-
tion, plant development stage(s), and the timing, length, 
and degree of stress on plant growth and physiology.

Soil samples were collected and analyzed once at the 
beginning of the study at each field site; therefore, soil 
data was included in the upland switchgrass analysis 
only, since upland switchgrass was planted at multiple 
locations. All soil factors—drainage, bulk density, and 
pH—along with NCCPI had VIP scores greater than 0.8; 
however, VIP scores greater than 0.8 or 1 varied per switch-
grass chemical attribute (Table 4 and Table S3). For exam-
ple, glucan and xylan had VIP scores greater than 0.8 for 
bulk density, pH, and NCCPI but lignin was not strongly 
related to pH (Table S3). The relationship between plant 
chemistry and soil pH (whether low or high) could reflect 
the effect of this factor on the ability of plants to absorb 
nutrients and supporting growth. Similarly, NCCPI values 
indicate productivity level of the land. The results gener-
ally closely align with differences between locations be-
cause this study did not capture within location variation 
in soils. Soil properties can be spatially and temporally 
heterogeneous and measuring subtle spatial and temporal 
changes can be cost prohibitive and challenging. Future 
data sets that include additional soil information would 
be valuable.

F I G U R E  4   Measured ash versus ash predicted using 
environmental and production variables for upland switchgrass 
cultivars by location (a) and year (b) and for a lowland switchgrass 
cultivar by year (c). Solid line is the regression and the dashed line 
is the line of equality (slope=1, intercept=0)
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4   |   CONCLUSION

This study demonstrates a methodology for analyz-
ing the complex plant response to field conditions that 
leads to the large ranges of biomass quality challenging 
downstream feedstock users. The successful building of 
relationships that link environmental and production 
variables to chemical attributes in this study allows for the 
prediction of spatial and temporal variation necessary to 
understand and mitigate risk for using heterogeneous bio-
mass resources in the bioenergy and bioproducts industry. 
This study shows that PLS regression can be used to help 
understand the impact of these explanatory variables. Due 
to the complexity of interactions between the explanatory 

variables and chemical attributes, it is not possible to de-
termine which explanatory variables with similar VIP 
scores are causing the change in plant chemistry. For ex-
ample, for upland switchgrass locations, many soil prop-
erties were highly correlated with each other (Figure S1); 
in the lowland switchgrass location, precipitation was 
negatively correlated with dry biomass yield and drought 
(Figure S2). In many cases, complex interactions impact 
feedstock chemistry, and experiments will have to be spe-
cifically designed to understand these relationships, which 
is beyond the scope of this paper. This research, and the 
identified environmental and production variables, sup-
ports future work using the relationships in a predictive 
way to determine chemical attributes geospatially and 

F I G U R E  5   Measured glucan (a), 
xylan (b), lignin (c), volatiles (d), carbon 
(e), and nitrogen (f) versus these chemical 
attributes predicted using environmental 
and production variables for a lowland 
switchgrass cultivar from 2009 to 2014. 
Solid line is the regression, and the dashed 
line is the line of equality (slope=1, 
intercept=0)
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temporally using publicly available databases. This capa-
bility would provide a state-of-the-art tool for predicting 
and understanding variability in chemical attributes for 
targeted biomass resources.
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