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GrainCDM Overview

• Grain-scale Continuum damage model
• Couples electrochemistry and mechanics
• Perform CC-CV charge/discharge cycles
• Parallel implementation:

– 1 Cycle, 1.67 hours, 926 K DOFS, 72 Procs 
– 1.3x to 24x real time (depending on C-rate)

• Collaborators
– Andrew M. Colclasure
– Donal P. Finegan
– Weijie Mai
– Anudeep Mallarapu
– Kandler Smith
– Francois Usseglio-Viretta

– Ankit Verma
– Peter J. Weddle
– Sheila Whitman
– Volker Schmidt
– Orkun Furat
– Tanvir Tanim

https://fenicsproject.org/
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• Domain: single cathode particle
• Bulk equations: Li concentration, Potential
• Boundary condition: Butler-Volmer, CC, CV
• Small modification for anisotropic diffusion  

within grains:

Cathode Electrochemistry Cathode:

Butler–Volmer Interface Condition:

CC:                             CV:
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• Anisotropic Values: Diffusion, Stiffness, Expansion
• Achieved by applying a series of rotations:

– Roll 
– Pitch 
– Yaw 

• Different values defined in each grain
• Currently random
• Eventually empirically determined

Anisotropic Properties

Normal/Orientation

Diffusion Plane

z

y
x

Electrode Particle

Grains
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Mechanical Model

• Mechanics (Linear elasticity with infinitely small-strain theory)

• Anisotropic Stiffness and Expansion Tensors:
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Damage Calculation

• Damage based Equivalent Strain (Cracks when expanding)

• Damage Thresholding (does not recover)

• Coupling by attacking Stiffness and Diffusion
Complete Failure

Crack Initiation 
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Large Grain at 6C

Displacement Amplified by 10x
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Generated Particles 
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Structure of Simulation:
1. Performed Formation Cycle
2. Cycled 25 time at 1, 4, 6, 9 C
3. Calculate C/20 capacity loss

Data Calibration for 𝑘𝑘𝑖𝑖 (NMC532)
(data from T. Tanim, et. al., 2021)
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Capacity Loss
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Modeling Electrolyte Infiltration

• Limit cracks to grains boundaries 
using 𝑘𝑘𝑖𝑖bulk and 𝑘𝑘𝑖𝑖

grain

• Track which cracks are connected 
to surface

• Treat surface cracks as new 
boundary conditions (scaled by 
new surface area)

• Assumptions:
– Electrolyte instantly fills cracks
– Li+ immediately available 
– Li+ Does not deplete

𝑘𝑘𝑖𝑖bulk

𝑘𝑘𝑖𝑖
grain
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Modeling Electrolyte Infiltration

Rescale colorbar for more detail
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Within Cracks:
Li+: Available
e-: Limited

Unexpected Complications

• Adding EI significantly reduces resistances
• Damage is now a benefit 
• More damage leads to higher capacity
• To remedy this, we are investigating 

Electrical Isolation:
1. Use realistic conductivity, e-
2. Remove the potential flux BC from 

surface cracks
3. Damage affects conductivity

• We are currently working on 
implementing this
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Conclusions & Future Work

• Conclusions:
– Without EI, smaller particles with larger grains experience 

reduced capacity loss
– EI allows Lithium to penetrate deeper into the bulk of a particle

• Future Work:
– Investigate if EI can explain why NMC811 has resilient capacity 

despite significantly cracking
– Looking to couple this high-fidelity model to a reduced-order 

model to facilitate full life-time simulations.
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