
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

  

Conference Paper 
NREL/CP-5D00-83163 
September 2022 

Occlusion-Perturbed Deep Learning for 
Probabilistic Solar Forecasting via Sky 
Images 
Preprint 
Cong Feng, Wenqi Zhang, Bri-Mathias Hodge, and 
Yingchen Zhang 

National Renewable Energy Laboratory  

Presented at 2022 IEEE Power & Energy Society General Meeting 
Denver, Colorado 
July 17-21, 2022 



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

Conference Paper  
NREL/CP-5D00-5D00-83163 
September 2022 

Occlusion-Perturbed Deep Learning for 
Probabilistic Solar Forecasting via Sky 
Images 
Preprint 
Cong Feng, Wenqi Zhang, Bri-Mathias Hodge, and 
Yingchen Zhang 

National Renewable Energy Laboratory  

Suggested Citation  
Feng, Cong, Wenqi Zhang, Bri-Mathias Hodge, and Yingchen Zhang. 2022. Occlusion-
Perturbed Deep Learning for Probabilistic Solar Forecasting via Sky Images: Preprint. 
Golden, CO: National Renewable Energy Laboratory. NREL/CP-5D00-83163. 
https://www.nrel.gov/docs/fy22osti/83163.pdf.  

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of 
this work in other works. 

https://www.nrel.gov/docs/fy22osti/83163.pdf


 

 

NOTICE 

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This work was 
supported by the Laboratory Directed Research and Development (LDRD) Program at NREL. The views expressed 
herein do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains 
and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a 
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or 
allow others to do so, for U.S. Government purposes. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,  
NREL 46526. 

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/
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Abstract—Solar forecasting is shifting to the probabilistic
paradigm due to the inherent uncertainty within the solar
resource. Input uncertainty quantification is one of the widely-
used and best-performing ways to model solar uncertainty.
However, compared to other sources of inputs, such as numerical
weather prediction models, pure sky image-based probabilistic
solar forecasting lags behind. In this research, an occlusion-
perturbed convolutional neural network, named the PSolarNet, is
developed. The PSolarNet provides very short-term deterministic
forecasts, forecast scenarios, and probabilistic forecasts of the
global horizontal irradiance from sky image sequences. Case
studies based on 6 years of open-source data show that the
developed PSolarNet is able to generate accurate 10-minute
ahead deterministic forecasts with a 5.62% normalized root mean
square error, realistic and diverse forecast scenarios with a 0.966
average correlation with the actual time series, and reliable and
sharp probabilistic forecasts with a 2.77% normalized continuous
ranked probability score.

Index Terms—Deep learning, solar forecasting, sky image
processing, Bayesian model averaging

I. INTRODUCTION

With the increasing penetration of solar photovoltaics (PV)
in power systems, there is a growing need for accurate and
reliable solar forecasts. Due to the inherent uncertainty of solar
power (e.g., cloud motion, meteorological variation, climate
change), any solar forecast is erroneous. Therefore, research
interest in the solar forecasting domain is shifting from deter-
ministic forecasts toward probabilistic forecasts represented by
predictive distributions, intervals, quantiles, etc. Compared to
deterministic solar forecasts, probabilistic forecasts are able
to quantify forecast uncertainty, which can be utilized in
various power system problems, such as probabilistic power
flow, probabilistic optimal power flow, and stochastic opti-
mization [1]. However, probabilistic solar forecasting is still at
an early stage compared to the development of deterministic
forecasting techniques.

Probabilistic solar forecasting techniques can be categorized
by different aspects. The most commonly-used categorization
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is by the existence of a pre-assumed distribution. One group of
methods that assume a predictive distribution beforehand are
called parametric methods. For example, a normal distribution
was used to fit the density function around deterministic
forecasts in Ref. [2]. An unavoidable drawback of this category
of method is the lack of a universally optimal distribution
that could quantify the solar uncertainty. Therefore, the second
group of methods, called the nonparametric methods, dominate
the research, and include methods such as quantile regression,
kernel density estimation, bootstrapping, gradient boosting,
and various analog ensemble methods [3].

Most nonparametric methods seek to represent uncertainties
by a (sub)set of the inputs, the models, or the output, which
is another interesting way to classify probabilistic solar fore-
casting methods–by the uncertainty source. The most popular
way to represent the forecasting probability is by modeling
the input uncertainty. For example, most numerical weather
prediction systems provide ensemble forecasts, which add
perturbations to the initial boundary conditions [4], which can
be post-processed by various methods to generate probabilistic
forecasts [5]. Other input uncertainty modeling includes mete-
orological time series generation using statistical methods. For
example, weather parameter correlations were modelled by a
Copula joint distribution [6]. To the best of our knowledge,
among various input data, solar forecast scenario generation
using sky images has not yet been investigated before.

To bridge the aforementioned gaps in probabilistic solar
forecasting, we propose a deep learning probabilistic solar
forecasting network, called the Probabilistic SolarNet (PSo-
larNet). The PSolarNet provides very short-term deterministic
forecasts, forecast scenarios, and probabilistic forecasts of the
global horizontal irradiance (GHI) from sky image sequences.
The contributions of this paper include: (i) developing an
accurate convolutional neural network (CNN) for deterministic
solar forecasting via sky image input, (ii) generating realistic
and diverse forecast scenarios from sky image perturbation,
(iii) providing reliable and sharp probabilistic forecasts by
modeling the sky image input uncertainty using Bayesian
model averaging (BMA).

The remainder of this paper is organized as follows. Sec-
tion II introduces three components of the developed PSo-
larNe. The case study dataset and benchmark models are
described in Section III. Section IV discusses the results.
Conclusions are made in Section V.
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Figure 1. The overall structure of the Probabilistic SolarNet (PSolarNet). Colors indicate different layer types.

II. THE PROBABILISTIC SOLARNET

In this research, we seek to provide probabilistic 10-minute
ahead GHI forecasts using the method we have named PSolar-
Net. The forecasting problem has a 10-minute lead time with
a 10-minute resolution and a 10-minute update rate [7]. The
overall framework of the PSolarNet is shown in Fig. 1, where
the core forecasting engine is a deterministic SolarNet. There
are mainly three stages (indicated by numbers) to generate
probabilistic forecasts by PSolarNet: (i) forecasting model
training, which trains a SolarNet for deterministic GHI fore-
casting; (ii) occlusion-perturbed scenario generation, which
generates a set of deterministic GHI forecasting scenarios by
sky image occlusion perturbations; (iii) BMA probability den-
sity estimation, which estimates probability density functions
(PDFs) from deterministic GHI forecast scenarios. In the rest
of this section, we will further describe these three stages.

A. SolarNet

A SolarNet is composed of 5 feature learning blocks, as
shown in the bottom part of Fig. 1. Each block stacks 2 or
3 convolutional layers and a max-pooling layer. The SolarNet
contains small filters to extract more receptive fields with local
spatial correlations from the input tensors. The filter amount
of the next block is doubled to extract more abstract and infor-
mative features. The SolarNet forecasts the GHI, y ∈ RN×1,
from the stacked sky image sequence, X ∈ RN×W×H×D,
without numerical measurements and feature engineering [8].

At the training step, actual GHI and the corresponding sky
images are used to guide the model parameter optimization,
y = F (X,W), where N , W , H , D are the sample size,
image width, image height, and image channel amount × the
image sequence length, respectively; y is the actual GHI;
X is the image input; W is the trainable parameters in
the SolarNet; F is the SolarNet function. To perform GHI
forecasting, optimal parameters should be obtained first at the
training stage. Since forecasting is a regression problem, we
use L1 loss (i.e., the mean absolute error) to respect the overall
performance of the model [8]: J(W) = − 1

N

∑N
n=1 |ŷn− yn|,

where n is the sample index; ŷ and y are forecast and
actual GHI values at a certain time, respectively. Then, the

objective in the training process is to optimize the parameters
by minimizing the loss function in an end-to-end manner
(i.e., from images to GHI values). Once the optimal model
parameters, W∗, are obtained, the well-trained deep learning
models are used to generate forecasts in the forecasting/testing
stage: ŷ = F ∗(X,W∗), where ŷ is the GHI forecast vector;
F ∗ indicates the well-trained deep learning model.

B. Occlusion-perturbed Forecast Scenario Generation

Occlusion analysis is widely used in the computer vision
field to understand the importance and contribution of image
pixels. In this research, we borrow this technique to gener-
ate GHI forecast scenarios, which provides direct inputs to
stochastic modeling in power systems. As shown in Fig. 2, the
occlusion perturbation is achieved by sliding a black window
across the input sky image stack. The newly constructed sky
image stacks, X′, are input to the trained PSolarNet to generate
one forecast scenario, ŷ′: ŷ′k = F ∗(X′k,W

∗), where k is the
scenario index, whose maximum, K, is determined by two
parameters: the window size s and the sliding stride l. Both
parameters are set to be 16 in this study to balance the number
of scenarios and the computational efficiency.

Figure 2. An example of occlusion-perturbed forecast scenario
generation. The red and green lines are actual GHI series and
forecast GHI series. The grey lines are forecast scenarios with
the newly constructed perturbed sky image sequences.

C. BMA Probabilistic Forecasting

BMA is a kernel-dressing method, which was first applied
in probabilistic forecasting for precipitation, wind speed, and
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was recently introduced in day-ahead probabilistic solar fore-
casting [5]. In BMA for scenario ensemble forecasting, each
forecast scenario ŷ′k is associated with a conditional PDF
pk(y|ŷ′k), which assumes the PDF of the GHI y conditional
on ŷ′k being the best forecast in all the scenarios. Then, the
BMA predictive PDF is [9]:

p(y|ŷ′1, . . . , ŷ′K) =
K∑
k=1

wkpk(y|ŷ′k) (1)

where wk is the posterior probability of forecast scenario k
being the best one. pk(·) is assumed to be a truncated normal
distribution between 0 and maximal GHI (GHImax) [5]:

pk(y, µk, σk) =
φ(y−µk

σk
)

σk(Φ(GHImax−µk

σk
)− Φ( 0−µk

σk
))

(2)

where φ(·) and Φ(·) are the PDF and cumulative distribution
function (CDF) of the standard normal distribution with mean
µk and standard deviation σk. With respect to our estimation
procedure, µk is estimated using a simple linear regression of
y on each PDF of forecast scenario yk for bias correction [5].
Then, wk and σk are estimated using maximum likelihood
based on the training data. With the PDF and CDF calculated
by the BMA, other forms of probabilistic forecasts, such
as quantiles, percentiles, and intervals, could also be readily
generated.

III. EXPERIMENTAL SETUP

A. Dataset Description

Following the suggestion of using open-source datasets
to practice solar forecasting, this research conducts all the
experiments on a publicly available dataset–the National Re-
newable Energy Laboratory (NREL) solar radiation research
laboratory (SRRL) dataset. The SRRL dataset is one of the
largest publicly available datasets with both sky images and
meteorological measurements. The data has been collected
since 1981 at the South Table Mountain Campus of NREL
(longitude: 105.18◦ W, latitude 39.74◦ N, elevation 1,828.2
m). More information about the dataset can be found in Stoffel
and Andreas [10]. The data can be accessed through the
OpenSolar package [11].

Two types of data, namely, sky images and numerical me-
teorological measurements, are downloaded from the NREL
SRRL database. The sky images taken by a Yankee Total Sky
Imager every 10-min are selected for the case studies. Six
years of sky images are downloaded and pre-processed. Every
image contains 352×288 pixels. The developed PSolarNet
requires minimal preprocessing due to its end-to-end learning
capability. The only preprocessing is using a binary mask
to circularly crop the images to avoid the presence of hazy
sky and obstacles. Every image with a region-of-interest has
256×256 pixels. Then, the resolution is decreased to 128×128
to reduce the PSolarNet training complexity. Based on our
study, stacking 2 images yields the best results, which is
adopted in this research [12]. Figure 3 demonstrates the
only image pre-processing applied in this research. Numerical

measurements are averaged from 1-minute to 10-minute to
keep consistency with the sky images. To ensure a successful
training process and avoid over-fitting, six years (i.e., 155,644
data points in the daytime) of data are used for case studies,
where the first three years of data (i.e., from 2012-01-01 to
2014-12-31) are used for training, the following one year
of data (i.e., from 2015-01-01 to 2015-12-31) are used for
validation, and the last two years of data (i.e., from 2016-01-
01 to 2017-12-31) are used for testing.

(a) An original sky im-
age stack

(b) A binary
region-of-interest
mask

(c) A processed sky
image stack

Figure 3. Sky image pre-processing.

B. Benchmarks

Two sets of benchmarks are used to compare with the
PSolarNet deterministic forecasts and probabilistic forecasts,
respectively. The deterministic benchmarks include 6 machine
learning methods and the persistence of cloudiness (PoC)
method. The machine learning methods are selected from a
larger volume of methods based on their performance in the
empirical study. The selected machine learning benchmarks
include two ANNs, three gradient boosting machine methods
(GBMs), and a random forest (RF) method. These machine
learning represent the state-of-the-art techniques in solar fore-
casting, which were extensively used in recent research [8],
[13], [14]. The hyperparameters are optimized through cross-
validation. The inputs to the machine learning models include
GHI, direct normal irradiance, diffuse horizontal irradiance,
clear sky GHI, clear sky direct normal irradiance, clear sky
diffuse horizontal irradiance, dry bulb temperature, wind chill
temperature, relative humidity, wind speed, peak wind speed,
and atmospheric pressure, all at the current time point and at
the previous 10 minute reading. The same data partition is
applied to the benchmark modeling.

The second set of benchmarks include four widely-used
very short-term probabilistic solar forecasting methods, which
are the climatology method (CLI), the complete-history persis-
tence ensemble (Ch-PeEn), the persistence ensemble (PeEn),
and the Gaussian error distribution (GAU). The detailed
methodology description, model setups, and code can be found
in Ref. [7].

IV. RESULTS AND DISCUSSION

Case studies are conducted on high performance computing
GPU nodes and CPU nodes in the Eagle system at NREL.
Each GPU node contains dual Intel Xeon Gold Skylake 6154
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CPUs and Dual NVIDIA Tesla V100 PCIe 16 GB GPUs.
Each CPU node has the same configuration as the GPU nodes,
except for the GPUs. The PSolarNet and benchmark models
are implemented using the Keras library with Tensorflow
backend in Python 3.7.0, the caret package, and the
solarbenchmarks in R. It took around 18.42 millisecond
to generate forecasts for one timestamp, which indicates the
high applicability even considering the communication time in
realword.

A. Deterministic Forecasts

Three evaluation metrics, the normalized root mean square
error (nRMSE), the RMSE-based forecast skill score (FSS)
compared to the PoC, and the normalized mean bias error
(nMBE), are used to evaluate the overall performance of deter-
ministic forecasts. The definitions of the metrics can be found
in Refs. [8], [13]. Table I lists forecast errors and skill scores of
the SolarNet (i.e., the deterministic part of PSolarNet) and the
seven benchmarks. Smaller nRMSEs and larger FSSs indicate
better deterministic forecasts. Therefore, the PSolarNet with
two sky images outperforms the PoC baseline and machine
learning models using numerical measurements.

Table I. Deterministic forecast nRMSE [%], nMBE [%], and
FSS [%]

Metric SolarNet PoC ANN1 ANN2 GBM1 GBM2 GBM3 RF
nRMSE 5.62 7.17 6.74 7.01 6.94 6.93 7.07 6.61
nMBE 0.10 0.33 0.53 -0.49 -0.07 -0.09 -0.19 0.00
FSS 21.65 0.00 6.03 2.32 3.28 3.43 1.40 7.84

Figure 4 shows joint distributions and scatter plots by
hexagon bins of the actual and forecast GHI of the SolarNet
and deterministic benchmarks. The plots evaluate the quality
of the forecasts in a time-independent manner by the disper-
sion of scatter points along the diagonal. The SolarNet is con-
centrated along the diagonal in a denser fashion, which means
that the model has fewer large biases than the benchmarks.
Compared to GBM models that have truncated distributions,
the SolarNet covers the full GHI range equally. Compared to
ANN models, the SolarNet distributions have more balanced
probabilities on the upper and lower sides of the diagonal. The
findings are consistent with what is revealed by the overall
metrics in Table I. Hence, it is concluded that the SolarNet
provides more accurate point forecasts.

B. Forecast Scenarios

A total of 64 scenarios are generated by the occlusion
perturbation using a 16×16 sliding window. After removing
the scenarios identical to the deterministic forecast time series
(due to the overlap of the occlusion window and the mask
black margin), 58 forecast scenarios are left. Figure 5a shows
the scatter plot of error metrics of the deterministic forecasts
and the forecast scenarios, which indicates accurate but dis-
tinct forecast scenarios. Statistical properties of the generated
scenarios are evaluated by the autocorrelation, CDF, and
correlation, which are shown in Figs. 5b–5d. Autocorrelation
represents the temporal correlation within a GHI time series.

GBM1 GBM2 GBM3 RF

SolarNet PoC ANN1 ANN2

0 600 0 600 0 600 0 600

0

600

0

600

Actual GHI [W/m2]

F
or

ec
as

t G
H

I 
[W

/m
2 ]1

50
400

Figure 4. Joint distributions of the actual and forecast GHI.

It is found from Fig. 5b that the generated GHI forecast
scenarios maintain the temporal correlation in the actual GHI
series. The CDFs in Fig. 5c show that the forecast scenarios
are statistically similar to the actual GHI series and the
deterministic forecast series, which can be shown from another
perspective by the correlations in Fig. 5d. The generated
scenarios have a 0.966 average correlation with the actual
GHI series. Therefore, we can conclude that the PSolarNet
generates diverse but realistic forecast scenarios.
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Figure 5. Characteristic comparisons among the 58 GHI fore-
cast scenarios, deterministic forecast time series, and actual
time series.

C. Probabilistic Forecasts

The overall probabilistic forecast accuracy is evaluated by
two metrics, the normalized continuous ranked probability
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score (nCRPS) and the normalized pinball loss (nPL) [7].
In both metrics, smaller values indicate better probabilistic
forecasts. Table II lists the overall performance evaluation
metrics of PSolarNet and its four benchmarks, which shows
that the PSolarNet outperforms the other methods. Reliability
and sharpness are the two main characteristics assessing the
quality of a probabilistic forecast. Figure 6 compares the reli-
ability and sharpness of the probabilistic forecasting models.
A reliability curve that is closer to the diagonal means a more
reliable forecasted probability, while a sharpness curve with
smaller values indicates a lower level of uncertainty in the
forecast. It is not surprising to observe that some forecasting
models sacrifice sharpness to improve reliability, such as the
Ch-PeEn model and the CLI model. By considering both
the reliability and sharpness of probabilistic forecasts, the
PSolarNet is the best model.

Table II. Probabilistic forecast nCRPS [%] and nPL [%]

PSolarNet Ch-PeEn CLI PeEn GAU
nCRPS 2.77 32.47 14.04 38.72 5.37
nPL 1.39 4.02 6.92 11.49 2.59
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Figure 6. Probabilistic quantile reliability and sharpness.

Figure 7 shows a one-day example of the actual GHI time
series, GHI forecast time series, the 58 generated forecast
scenarios, quantiles, and the associated image sequences.
This specific day (2017-12-23) contains sunny conditions and
partially-cloudy conditions. It is observed that the PSolarNet
handles large uncertainty by generating various scenarios
during solar ramps introduced by cloud development, therefore
generating quantiles with wider intervals.

V. CONCLUSION

This paper developed a deep probabilistic convolutional
neural network, named the PSolarNet, for probabilistic solar
forecasting with sky image sequences. The PSolarNet quan-
tified the solar forecasting uncertainty by generating fore-
cast scenarios using a 21-layer deep learning model from
occlusion-perturbed sky images. The Bayesian model averag-
ing was used to post-process forecast scenarios and generate
probabilistic solar forecasts. Case studies based on 6 years of
data showed that the PSolarNet is able to provide: (i) accurate
10-minute ahead deterministic solar forecasts with a 5.62%
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Figure 7. GHI time series of the actuals, forecasts, scen-
raios, and quantiles (2017-12-23) with the associated image
sequence input.

normalized root mean square error, (ii) realistic and diverse
solar forecast scenarios with a 0.966 average correlation with
the actual time series, and (iii) reliable and sharp probabilistic
forecasts with a 2.77% normalized continuous ranked prob-
ability score. In the future, we will extend this research by
optimizing the sliding window parameters, further improving
the probabilistic forecasts, and verifying multi-step forecasting
performance.
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