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Methods

• Large, abrupt data shifts can be induced unintentionally in sensor-based PV power and irradiance time
series. Common reasons for data shifts include replacing hardware or performing software configuration
changes [1].

• These shifts do not reflect an actual change in system performance but are usually a result of data
acquisition issues. For example, by changing the scale factor for a particular data output, or by
accidentally converting an AC energy data stream to an AC power data stream

• Including data with these shifts in PV analysis can lead to inaccurate results
• Previous research focusing on identifying and eliminating data shifts from time series has relied on

manual identification of data shift periods, or assumed that degradation is linear when making
corrections [1, 2, 3]

• Goal: to develop a solution that automatically identifies data shift points in PV time series data, with the
option to filter out shifted periods for future PV analysis.

• Data sets: To benchmark algorithm performance when detecting data shifts, 101 sensor-based PV power
and irradiance data streams were manually labeled

• Data pre-processing: The following pre-processing steps were performed on each labeled time series:

– Erroneous data, such as negative/stale data and outliers, was removed

– The time series was min-max normalized

– For time series longer than 2 years in length, seasonality was removed

• Changepoint Detection: Changepoint detection was run on the processed time series (Ruptures Python
package was used)

– Grid Search: search method (Window, Binary Seg, Bottom-Up, PELT), cost function (rbf, L1, L2), penalty
(ranges between 10-100)

• Each model configuration was run on the 101 labeled data sets, and
model performance was benchmarked.

– F1-Score: Measures the ability of each model to correctly identify
data shift points within 30 days of their labelled occurrence.

– Average run time: Taken across all 101 of the data sets

• Model results shown in the table below

• Best model for seasonality-removed data: Bottom-Up model. Fastest
but still performant

• Best model for normalized-only data: Window-based model
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Data Model Penalty F1 Run 
Time (s)

Seasonality-removed PELT 40 .767 50.81

Seasonality-removed Binary Seg 50 .763 2.24

Seasonality-removed Bottom-Up 40 .760 .26

Normalized Only Window 30 .745 .2

PVAnalytics Package & Further Research
• All models developed in this research are publicly available via the

Python PVAnalytics package
(https://github.com/pvlib/pvanalytics/pull/142).

• The data shift pipeline includes the option to filter out the longest
continuous time series segment free of data shifts, for future analysis
(see below left image)

• In future research, we plan to hone our logic for selecting the “best”
segment to run analysis on, by comparing segment data quality and
availability

• Plan to investigate whether data shifts caused by scaling issues or
similar can be identified and corrected, without compromising the
overall quality of the time series and biasing future analyses
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