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Probabilistic Modeling of Commercial Building Occupancy Patterns 
Using Location-Based Map Data 

Rawad El Kontar1, Jing Wang1, Xin Jin1, Jennifer King1, and Tarek Rakha2 
1 National Renewable Energy Laboratory and 2 Georgia Institute of Technology  

ABSTRACT 

Considering occupancy patterns is crucial to simulate buildings' energy use. Current energy 
models use inputs that simplify the actual diversity in occupancy into static occupancy patterns 
and are not able to represent the numerous variations in occupancy patterns between buildings and 
across different locations. Recently, inferring occupancy schedules from metered electricity 
consumption data was used to model occupancy in commercial buildings. However, the translation 
from metered data to occupancy schedules requires many assumptions that might not capture the 
reality, and the process is hindered by the availability of data from advanced metering 
infrastructure. With the development of information technologies, occupancy modeling should not 
be limited to traditional approaches. The prevalence of social networks and location services with 
real-time user feedback provides publicly accessible data via Maps Application Programming 
Interfaces (APIs) such as Google Maps, SafeGraph, Mapbox, Foursquare, etc. This paper presents 
an automated framework for modeling parametric occupancy patterns using such APIs to calibrate 
commercial district buildings' energy models. This process includes three main steps: data 
extraction and processing, parametric schedules generation, and schedules integration. We 
demonstrated this framework in districts where we used maps API to generate more accurate 
behavioral patterns for operations and electric vehicle charging events. We used these patterns to 
determine differences in energy use across key sociodemographic and spatial parameters. The 
presented method has the potential for worldwide applications. Users can utilize this framework 
to extract data for selected locations of interest to create more realistic behavioral patterns for 
commercial facilities across different districts. 

Introduction 

People are moving to live in cities more than ever before; more than half of the world's 
population lives in urban areas, and this is expected to increase to 68 % by 2050 (United Nations, 
2019). With this unprecedented urban development, cities now consume approximately two-thirds 
of the world's energy and consequently account for 70% of the global Carbon emissions (United 
Nations, 2020). In the U.S., buildings account for 40 % of carbon production (U.S. Energy 
Information Administration, 2018), and the role of Urban districts design is very influential in 
facilitating the implementation of building efficiency policies and carbon emission reduction plans 
(Data-Driven EnviroLab & New Climate Institute, 2020). There is an urgent need to inform design 
decisions to improve energy efficiency while enhancing the lives of individuals and districts that 
consume and produce energy.  

In the meantime, we face rapid advancements in technologies that are immersed more than 
ever in our daily lives and are constantly changing our daily activities and behavioral trends. With 
all the technological advancements, it is necessary to capture a variety of behavioral trends to 
accurately model occupant activities and behavior. These behavioral trends involve various 
choices that impact urban life and, specifically, buildings' energy use. Such decisions can include 
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work travel commute preferences and personal preferences for visiting different establishments 
such as restaurants, shopping stores, and other commercial buildings. These choices highly affect 
occupancy patterns, as well as occupants' interaction with building lighting, equipment, heating, 
and cooling systems that determine the temporal energy use behavior of buildings.   

Consequently, a vast amount of data is being collected to capture these behaviors and 
activities; robust information technologies can capture different types of information enabled by 
advances in sensors, ubiquitous communications, distributed computing, and deep learning 
algorithms. For instance, information can be measured data such as energy use and temperature or 
can be retrieved from surveys like demographic, economic, and categorical information. 
Moreover, the prevalence of social networks and location services with real-time user feedback 
also provides data for individuals' activity-related choices, including mobility and building 
occupancy patterns. With more access to data, buildings energy modelers can develop detailed 
models and perform a wide range of analyses. Many open-source simulation engines have been 
developed to perform building and urban scale energy simulations (Crawley et al., 2008).  

To simulate how a building's electricity demand varies by time of day, current energy urban 
energy models (UBEMs) estimate the load patterns of building systems based on inputs that 
characterize the building properties. The generation of such energy models requires data inputs for 
building geometries and non-geometric inputs that include occupancy schedules, which 
significantly shape internal loads. Therefore, identifying building occupancy patterns is essential 
for modeling accurate occupant energy use behavior and performing building energy analyses. It 
is challenging to predict occupancy schedules due to their stochastic nature and variability based 
on different locations and building types. Currently, many energy modelers utilize ASHRAE 90.1 
defined profiles for occupancy-related input. These inputs simplify the actual diversity in 
occupancy into static occupancy patterns and cannot represent the numerous variations in 
occupancy patterns between buildings, leading to unrealistic energy simulation, especially at the 
urban district scale (Wilke et al. 2013). This results in simulations where all occupants perform 
identical actions, leading to erroneous hourly demand peaks (He et al. 2015) and ultimately 
misrepresenting urban energy demands. Hence, uncertainty in defining behavioral and occupancy 
patterns is a major reason for discrepancies in simulated energy when compared to measured data. 
At the district scale, unreal coincident peak occupancy hours caused by static schedules will 
overestimate the peak demand and, consequently, misinform decision-making when designing 
district energy systems. 

Many methods have been used in the past to extract the occupancy for the building energy 
model. One of these methods is utilizing sensors that detect occupancy in buildings, such as 
movement and sound-based sensors (Agarwal et al. 2010) (Dong et al. 2019).   Unfortunately, such 
sensors can only provide the occupancy presence information without the count of people at a 
specific time of the day. Therefore, they fall short of informing the inputs for building energy 
modeling and analysis (Pang et al. 2020).  

In response to this shortcoming, vision-based technologies such as RGB and thermal 
cameras (Jazizadeh and Jung 2018) and indoor air technologies such as CO2 sensors (Jin et al. 
2018) were developed. These technologies support the detection sensors to determine the number 
of people in a specific location. However, such coupled sensors have critical shortcomings such as 
const and privacy that hinder the scalability of installing such technologies to gather data at a 
district and urban/ nation scale. 

 In more recent approaches, extrapolating operational hours from metered electricity 
consumption data was used to model occupancy in commercial buildings (Bianchi et al., 2020). 
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However, the translation from metered data to occupancy schedules requires many assumptions 
that might not capture the reality. In addition, this process is also hindered by the availability of 
advanced metering infrastructure data. 

The studies mentioned above do show potential to extract building occupancy patterns; 
however, their shortcomings are significant. Therefore, new data sources for building occupant 
behavior extraction should be explored. For example, with the release of the American Time of 
Use data (ATUS) for residential buildings; parametric and stochastic occupancy models have been 
developed and integrated into residential building modeling frameworks (Chen et al., 2021). These 
models prove to help add realistic variability in assumed home occupancy profiles rather than 
smoothed/averaged profiles, leading to more realistic variability in residential load profile 
predictions. This is important for achieving realistic diversity factors when building loads are 
aggregated to predict overall load profiles, peak loads, etc. On the other hand, similar data sets for 
commercial building are currently not available and is more challenging to acquire, and only very 
few buildings' sensor data can be found with the limited feasibility of installing advanced metering 
infrastructure and sensors in commercial building all over the nation.  

With the development of information technologies in the internet-of-things era, occupancy 
modeling should not be limited to traditional approaches. As more than a billion people have come 
to rely on Maps to go from one place to another. Many apps have been built on top of such data 
that people use and rely on nowadays. Individuals use such map apps to drive to a certain place, 
such information is anonymously collected and used to determine how busy that place is. The 
companies that provide location services and Map Application Programming Interfaces (APIs) 
know the location of the users at all times. Individuals are considered as a phone; if an individual 
GPS service is enabled then, the phone is constantly tracking their location. Information from 
different phones is summarized to determine the occupancy of an establishment. These phone-
based application uses anonymized location data, real-time searches, and past statistics to 
determine how busy a place is. If there's not enough data, the system uses past statistics to predict 
busy times. In this process, machine learning algorithms help extrapolate past and incomplete data 
to arrive at more accurate estimates. This data is updated constantly; within short time intervals, 
applications are collecting new information about the world in real time and updating the 
predictions of occupancy levels. With the significant number of users, hundreds of unique 
information contributions every second, and robust machine learning techniques, the derived 
statistics are significant and can scale across our communities.   

The prevalence of social networks and location services with real-time user feedback can 
be utilized to a) provide accessible data either publicly or through purchased licenses via Map 
APIs such as Google Maps, Mapbox, Foursquare, Bing Maps, etc. b) create new opportunities for 
defining variable commercial building occupancy probability distributions based on such data 
across different building types and locations and then using the distributions to generate variability 
in commercial building occupancy across a district. To address this gap, this paper presents an 
automated framework for modeling parametric occupancy schedules using Location-based data 
from  Foursquare TomTom API that utilizes Foursquare data (https://foursquare.com/)  and 
SafeGraph API foot traffic data (https://www.safegraph.com/) to calibrate commercial district 
buildings' energy models. We demonstrated this framework by extracting such data from different 
areas in Colorado, USA, and deriving probability distribution models that summarize the operation 
hours and occupancy patterns across the commercial building in Colorado. The results include 
comparing different summarized occupancy patterns across the key location. We also present a 

https://foursquare.com/
https://www.safegraph.com/
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case study of modeling a district in Denver and utilizing the derive probability distribution models 
to model more accurate occupancy behaviors and achieve variability in energy demand profiles.  

Methodology 

An automated framework is developed for modeling parametric occupancy schedules and 
integrating such schedules in commercial district buildings' energy models. This process includes 
three main steps: data extraction and processing, parametric schedules generation, and schedules 
integration (Figure 1). In the data extraction and processing step, we run automated HTTP API 
requests to retrieve opening hours data for various commercial building types and specific 
locations selected by the user. The schedules are then generated by processing the data and creating 
a temporal probability distribution for each building type representing the deviation of occupancy 
throughout each day of the week. In the last step, we integrate the schedules as inputs to the 
developed urban energy model, where occupancy schedules are stochastically assigned to each 
building model to represent the diversity of occupancy patterns more accurately in the district.  

This framework is applied using two different types of data. 1) opening hours data derived 
from Foursquare data and TomTom API  2) hourly occupancy data derived from SafeGraph API 
– foot traffic patterns data.  

 
Figure 1. Proposed automated framework 

Data extraction and processing 

For data extraction, users can define a set of locations by specifying a point coordinate 
following the longitude and latitude coordinate system and a radius corresponding to each defined 
point. The output of this process is described in Figure 2, where different areas are defined, 
preparing the data extraction process for 10 locations of interest in Colorado.  
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Figure 2. Selecting area of interest defined by longitude, latitude coordinates, and radius. 

Then an HTTP API request is sent to the targeted Maps API. To retrieve a response with 
data from the specified area for building operational hours, we used the TomTom API request to 
retrieve opening hours for different building types. The opening hours include start and end times 
for each week of the day. The data source is Foursquare data. For retrieving the hourly occupancy 
profile, we used the SafeGraph data and API to retrieve patterns data of occupancy for different 
weeks of the day. This raw data includes information for all the establishments that can be found 
within this radius. We then extract opening hours data and group it by defined commercial building 
type.  

Probability distributions generation 

The schedules are generated by processing the extracted data and creating a temporal 
probability distribution for each building type representing the deviation of occupancy throughout 
each day of the week. When modeling urban districts, daily building hours of operation times and 
occupancy levels vary from building to building and from day to day. By aggregating operation 
time and occupancy levels for all analogous building types, it is possible to represent the building 
variation as a whole, grouping all hours of operation or hourly occupancy configurations to a single 
probability distribution per building type. This approach allows for more flexible and adaptable 
manipulation of building operation and hourly occupancy for a large group of buildings while 
preserving its diversity.  

The probability distributions are computed by calculating the relative frequencies of the 
unique values. The relative frequency is calculated with the following formula: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑓𝑓
𝐹𝐹

 (1) 

  
Where 𝑓𝑓 is the subgroup frequency, the number of times the data occurred in an observation; 𝐹𝐹 is 
the total frequency.  
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 For operational hours, we grouped the sample of opening hours data (defined by a start 
time and operation duration) for each building type. The probability for each start time and hours 
of operation is computed, forming a probability distribution of the hours of operation for each 
building type for a typical weekday and a weekend. Figure 3 shows the extracted probability 
distributions of restaurants' weekday start times and operational hours derived from a sample of 
~560 restaurants located in the defined areas of interest.  

 

 
Figure 3. Restaurant weekdays start times and operational hours probability distribution  

For extracting the hourly occupancy profile, a probability of occupancy is computed for 
each hour of a typical weekday and weekend across the commercial building types. Figure 4 shows 
restaurants' occupancy probability distribution over the hours of a typical weekday derived from 
the popular time data for all the restaurants in the Denver downtown area.  
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Figure 4. Hourly occupancy probability distribution for a typical weekday 

Schedules generation and integration in energy models 

Utilizing the derived probability distributions, we can now generate stochastic occupancy 
profile inputs for urban energy models. In this paper, we streamline the process of generating 
inputs for URBANoptTM (El Kontar, et al., 2020) energy models using OpenStudio workflows and 
measures. These inputs include the building occupancy profiles and building hours of operation 
inputs generated from the probability distribution we computed from the previous step. Equipment 
use schedules are also derived using methods defined in the OpenStudio standards 
(https://github.com/NREL/openstudio-standards )  and described in (Bianchi et al., 2020). 

The derived schedules are implemented by updating OpenStudio ScheduleDay objects. 
The generated occupancy schedules were fed into OpenStudio, and in this process, Baseline 
schedules for equipment, HVAC, and lighting use schedules are modified as a function of the fed 
hours of operation and occupancy. Since URBANopt utilizes OpenStudio workflows, we were 
able to automate updating the schedules for all buildings of the district we are modeling via the 
URBANopt platform.  

Results and Discussions 

This section is divided into two parts:  
   

1) Part 1: Presents a case study where we compared a baseline scenario that represents default 
occupancy inputs for the different building types with an Updated Scenario where we 
utilized the process of generating probability distribution of commercial building hours of 
operation, generating parametric schedules of operation, and integrating them into a mixed-
used district designed in Denver, Colorado to analyze the resulting energy use results.  

2) Part 2: Presents the results of investigating different approaches when applying steps 1 and 
2 in the methodology for extracting and generating probability distribution of occupancy 
patterns. The generated probability distribution results are compared across different 
locations in Colorado and various commercial building types.   

Case Study: Framework implementation in a district designed in Denver, Colorado, US 

We demonstrated this framework on a large, mixed-use district under development in 
Denver, Colorado, USA. We selected a sample of 100 buildings for each commercial building type 
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from 10 nearby cities in the same metropolitan area. This sums up to a total sample of 
approximately 1000 buildings for each building type. Users can specify the sample number and 
select the data extraction areas, defined by a list of longitude/latitude points and radiuses. 
Subsequently, a query script is executed to send API requests and retrieve buildings' operational 
hours for each hour of the day and all days of the week. This data is processed to generate 
occupancy temporal probability distributions across different hours of the day and days of the 
week. We then developed a district energy model using URBANopt and fed the probability 
distribution into the model to assign the parametric occupancy schedules to each building model 
in the district. These steps are automated via a developed python module, which can output updated 
district energy packaged inputs for specific building archetypes that can seamlessly integrate into 
district energy analysis platforms like the URBANopt platform via the OpenStudio workflows 
described in step 3 of the Methodology section.  

The community is currently under construction and will have 148 large commercial 
buildings, including offices, shopping malls, retail stores, hotels, schools, hospitals, etc.  

 

 
Figure 5. Three-dimensional rendering map of the mixed-use community. 

We adopted URBANoptTM (El Kontar, et al., 2020) to build a high-fidelity physics-based 
model for all the buildings in this community. Then we created two Scenarios a Baseline Scenario 
where we used the default static schedules defined by ASHRA 90.1 and an Updated Scenario 
where we utilized our framework to generate variability in the hours of operation between the 
buildings.  
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Figure 6. Comparing Baseline Scenario vs Updated Scenario 

Figure 6 compares the energy use results of the restaurant in the district across the two 
scenarios and over the first three days of January. The Baseline Scenario shows identical energy 
use patterns with coincident peaks of energy demands. In contrast, the Updated Scenario shows 
that our methodology was successful in introducing variability in energy use demands based on 
more realistic operational hours.  

Figure 7 compares aggregate and averaged energy use results across the two scenarios, 
where the 16 restaurant buildings in our district are aggregated. 
These results demonstrated that energy demand in the updated scenario is more evenly distributed 
over the course of the day, and this reflects the variability in the restaurants' schedules within the 
district. The updated scenario shows a similar peak during mid-day to the baseline scenario. 
However, the baseline scenario shows a significant dip in energy use in the late-night hours and 
higher peak demand in the late afternoon hours. These extremities are caused by the identical 
representation of occupancy schedules modeled in the baseline scenario. 
Buildings in the baseline scenario have coincident afternoon peaks and morning dips in energy 
use. When aggregated, such profiles misestimate the energy demand during critical times of the 
day. For example, when the energy cost is highest, the over-estimated energy demand in the 
afternoon misleads engineers to make suitable design decisions. A more realistic representation of 
these profiles helps better inform the design of building systems and the sizing of distributed 
energy resources and their operation. Moreover, they inform the deployment of more accurate 
load-shifting/control strategies for the buildings in the district. 
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Figure 7. Aggregate and average energy use results comparison between the 2 scenarios 

Occupancy probability distributions investigation in CO, USA 

This section compares different probability distributions of occupancy and building 
operation hours across different commercial building types and different data extraction strategies.  

In the developed framework, users have the flexibility to extract data based on the location 
of their preference. In our case study, we choose to extract data from 10 locations near our site, as 
shown in Figure 2. However, the users can investigate different approaches to data extraction 
locations. For example, suppose the urban energy modeler is designing a downtown district with 
dense urban living characteristics. In that case, they might choose sample occupancy schedules 
from areas with such characteristics. On the hand, users might want to model occupancy schedules 
that represent the behavior and patterns of rural areas.  

Figure 8 shows the occupancy probability extracted from downtowns versus rural areas in 
Colorado and compared across three different building types (restaurants, offices, and food stores).  
Based on Figure 8, we can see differences in occupancy patterns when comparing downtown 
building occupancy with occupancy patterns in rural areas. The restaurants' occupancy in 
downtown areas is more evenly distributed throughout the day and shows a higher occupancy rate 
during night hours. In contrast, the occupancy patterns for restaurants in rural areas have 
significant peak hours of occupancy at lunch and after work time. Similarly, for offices' occupancy 
distribution, downtown offices have more variability and include offices that operate during the 
night while rural areas operate mainly during the day. On the other hand, food store occupancy 
patterns are similar, with a small occupancy spike in downtown areas compared to rural areas. 
These results show that this method can be used to capture occupancy preferences and can be used 
to characterize urban energy models with more accurate occupancy and behavioral schedules.  
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Figure 8 - Occupancy probability distribution comparison between the downtown and rural 

areas 
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Conclusion 

To analyze the impact of the proposed framework, a scenario with traditional occupancy 
modeling approaches (following reference profiles from ASHRAE Standards) is constructed and 
compared to a scenario where we implemented our proposed framework. The generated occupancy 
profiles from both scenarios are compared, and the impact on energy simulation results is 
evaluated. Results reveal significant differences in energy load profiles and load distributions with 
the updated heterogeneous occupancy profiles. The study showcases the effect of occupancy on 
energy consumption and illustrates the importance of capturing the variability of occupancy 
schedules in simulation tools to enhance the accuracy of outcomes.   

The presented contribution helps model more accurate occupancy and building operational 
hour inputs and has the potential for worldwide applications. Private and public establishments 
data and location data are now collected and visualized on a global scale. Users can now utilize 
this framework to extract data for selected locations of interest to create more realistic occupancy 
schedules for commercial facilities and calibrate their urban energy models. This innovative 
approach will benefit utility companies, grid operators, urban planners, and energy modelers, 
seeking to improve the accuracy of district energy models and better inform the design decisions 
at a district scale. 
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