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Motivation & Introduction
• Utilizing generation from variable and uncertain renewable energy resources could enhance 

distribution system resilience in the event of a transmission system outage

• The Critical Load Restoration Problem (CLRP) is that of scheduling available distribution system 
resources to maintain as much load as possible during transmission system outage

• Optimization-based Model Predictive Control (MPC) is a common approach for CLRP, while 
Reinforcement Learning (RL) is an emerging approach for this problem

• We propose a hybrid RL-MPC approach through an operational energy reserve to 
characterize renewable generation uncertainty
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Hybrid Control Design
• RL determines an energy reserve policy: the amount of energy to have available at the end for 

the MPC time-horizon

• State is determined by wind and solar forecasts, current power output, current restored load, 
and energy available as fuel and in batteries

• The action is the final end-state battery energy and fuel energy available

• Reward function is identical to MPC objective: maximize restored load whilst not shedding 
previously restored load

• Maximize the cumulative expected reward utilizing Proximal Policy Optimization

• MPC-based Optimal Scheduling and Restoration (OSR), including

• Prioritized Loads (real & reactive)

• Linearized distribution power flow with voltage constraints

• Microturbine dispatch (real & reactive) with fuel constraints

• Battery charging/discharging with state-of-charge management

• Renewable power generation/curtailment with limited reactive power dispatch

• Enforcing RL-based reserve policy for end-state battery state-of-charge and fuel availability

Case Study
• Method is applied to a modified IEEE 13-bus distribution test system containing wind, solar, 

microturbine, and battery (see Figure 2)

• Performance of RL-MPC dynamic energy reserve policy (RP1) is compared against four MPC-
based fixed energy reserve policies (RP2, RP3, RP4, & RP5) on 20 outage scenarios

Fig 1. Hybrid RL-MPC controller learning framework

Fig 2. Modified IEEE 13-bus feeder Fig 3. Total reward across 20 scenarios for RP1 – RP5 

Simulation Results
• The RL-MPC approach (RP1) has several distinguishing characteristics over the fixed energy 

reserve policies – it has the highest median reward, best worst-case performance, and lowest 
sample variance, as shown in Figure 3

• As shown in the example in Figure 4, the RL-MPC controller manages the DERs interactively to 
monotonically increase the total restored load with a dynamic energy reserve policy

Fig 4. Single scenario example. Upper: sample power dispatch and restored 
load. Lower: RL-based dynamic energy reserve policy.

Conclusions
• The RL-MPC hybrid controller utilized RL to learn MPC parameters while the MPC included 

sophisticated operational constraints (e.g., voltage limits) which could be difficult to enforce with 
RL alone.

• This hybrid approach out-performed the MPC-based alternatives


