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Motivation & Introduction
• Distributed Energy Resources (DER) with controllable power set-points, e.g., photovoltaics (PVs), 

energy storage systems (ESSs), electric vehicle supply equipment (EVSE), buildings with heating, 
ventilation, and air conditioning units (HVACs), are expected to be a large part of the future power 
grid

• These DERs could potentially offer flexibility to the larger transmission system and its associated 
market, if integrated together in a controlled and coordinated fashion

• Controlling many DERs with inter-temporal constraints (such as ESSs, EVs, and buildings) and 
periodic variations (such as PVs) requires look-ahead formulations with fast evaluation of the 
control algorithm that coordinates the DERs and market signals (price, economic dispatch, or 
automatic generation control signal).

• Existing studies for integrating DERs either do not consider a look-ahead period, or are conducted 
on a small scale, i.e., tens of devices

• We propose a look-ahead optimization formulation which can control thousands of DERs 
utilizing a variable time granularity formulation of the optimal control problem

Fig 1. Variable granularity implementation of the proposed look-ahead controller

Proposed Control Approach
• We consider variable time granularity where time steps near the control horizon have finer time 

resolutions (5 minutes), and those further in the future have coarser time resolutions, up to 2 hours 
(see Figure 1)

• The MPC-based controller solves each optimization problem in successive five-minute time steps 

• Optimization formulation includes:

• Real power-balance constraints

• Feeder-head power injection/withdraw at locational marginal price (LMP)

• ESS charging/discharging with state-of-charge management and mileage costs

• PV power generation & curtailment

• Building model, including HVAC heating/cooling complementarity, building thermal dynamics, 
and indoor temperature comfort

• EV charging station with aggregate power and energy requirements

• Minimization of total cost

Case Study
• Two sample distribution systems – a small-scale example with 50 devices, and a large-scale 

example with 2507 devices, including curtailable PVs, ESSs, buildings with HVACs, and EVSEs.

• Control problem is formulated as a mixed-integer optimization problem and solved with XpressMP

• Proposed control policy (MPC1) is compared against two similar MPC-based policies:

• MPC2: Uniform 5-minute time granularity and a 24-hour look-ahead horizon

• MPC3: Uniform 5-minute time granularity and a 3-hour look-ahead horizon

Simulation Results
• Simulated a day of operations – 288 problems total, once every 5 minutes

• Figure 2 shows the overall performance of the MPC-based control approach, which manages to 
shift demand from when it is expensive to when it is inexpensive

• Controller injects power during the morning LMP peak at 5:00 and the evening price peak at 
19:00, while withdrawing power at the LMP nadir near 11:00 and 13:00

• Building and EVSE dispatch is moved to times when LMPs are near $0/kWh

Fig 2. Aggregate dispatch profile for each device type (left) and the LMP signal (right)

Table 1. Performance Comparison – Distribution System with 50 Controllable DERs
Controller (time step / horizon) Total Operating Cost ($) Mean Computation Time (sec)
MPC1 (variable / 24 hours) 420.5627 0.9856
MPC2 (5 min / 24 hours) 420.2215 5.4049
MPC3 (5 min / 3 hours) 430.2215 0.6272

Performance Comparison
• In the small test system (50 devices, Table 1):

• MPC1 achieves similar operational cost as the more-ideal MPC2 (<0.1% difference)

• Has a similar computational burden as the higher-cost MPC3

• For the large test system (2507 devices, Table 2):

• MPC2 needed 29 minutes to complete the first control step, removing it from consideration

• MPC1 achieves a ~16% reduction in cost over MPC3, with a modest increase (42%) in 
computational time, while still well within the 5-minute control step duration

• Total operating cost is negative – load shifting, storage arbitrage, along with negative LMPs

Table 2. Performance Comparison – Distribution System with 2507 Controllable DERs
Controller (time step / horizon) Total Operating Cost ($) Mean Computation Time (sec)
MPC1 (variable / 24 hours) -567.4760 209.51
MPC3 (5 min / 3 hours) -488.3263 146.78

Conclusions
• Large numbers of DERs can effectively be controlled utilizing off-the-shelf MIP technology when 

care is taken in the look-ahead formulation

• Coarser time granularity in the time periods in the medium term do not hurt operational 
performance but significantly improve computational performance


