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Bio-based polymers with
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and Eugene Y.-X. Chen®'®

Abstract | Bio-based compounds with unique chemical functionality can be obtained through
selective transformations of plant and other non-fossil, biogenic feedstocks for the development
of new polymers to displace those produced from fossil carbon feedstocks. Although substantial
efforts have been invested to produce bio-based polymers that are chemically identical to and
directly replace those from petroleum, a long-pursued goal s to synthesize new, sustainable,
bio-based polymers that either functionally replace or exhibit performance advantages relative
to incumbent polymers. Owing to anthropogenic climate change and the environmental
consequences of global plastics pollution, the need to realize a bio-based materials economy at
scale is critical. To that end, in this Review we describe the concept of performance-advantaged,
bio-based polymers (PBPs), highlighting examples wherein superior performance is facilitated
by the inherent chemical functionality of bio-based feedstocks. We focus on PBPs with C-O and
C-N inter-unit chemical bonds, as these are often readily accessible from bio-based feedstocks,
which are heteroatom-rich relative to petroleum-derived feedstocks. Finally, we outline guiding
principles and challenges to aid progress in the development of PBPs.

Most of Today’s Information Will Be Taken From Three Publications Plus Some Patent Data

Today: What do we target to make from biomass? What is needed to make new biobased monomers? Can biobased

monomers offer multiple benefits?




NREL's Approach to New Polymers
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NREL Takes a Holistic Approach to Biomass Conversion
Our work attempts to enable the biorefinery by utilizing the entirety of biomass
* Recent work has also included the conversion of ‘waste’ plastics (e.g. PET) into the same monomers

Early work focused on direct replacements (e.g. Adipic and Terephthalic acid) however, as our worked evolved we started to target
“Performance Advantaged Bioproducts” (PABPs)

*  We classify performance advantages in three areas: Manufacturing, Performance, End-of-Life



NREL's Approach to New Polymers
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Maintaining Biomass’ Functionality to Target Engineering Plastics
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Van Krevelen diagram showing chemical
distances of feedstocks to polymers (X is
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Maintaining Biomass’ Functionality

Adding or removing functionality, especially heteroatom functionality, from chemicals (biobased or petrochemical) requires energy

and emits GHG

* Thus, the heteroatom functionality of biomass makes it ideal for PABPs, notably performance polymers




Maintaining Biomass’ Functionality to Target Engineering Plastics
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From Nicholson, Rorrer, Joule 2021

Heteroatom Containing Polymers Are Formulated For Specific Applications



Maintaining Biomass’ Functionality to Target Engineering Plastics
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Heteroatom Containing Polymers Are Formulated For Specific Applications



Cé6 Dicarboxylic Acids are Natural Polymer Targets
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Analytical Development for BKA
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BKA Quantification is Not Straightforward

* BKA can decarboxylate abiotically to levulinic acid

* This will require care in polymerizations and separations

* In order to enable quantification, we forced BKA to levulinic acid and ensured that it did not overlap with other metabolites

11



BKA Production from Aromatic Compounds
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BKA Was Initially Demonstrated from Aromatic Compounds
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* Strains were initially engineered to produce BKA in Johnson et al. in which high yields, titers, and moderate productivities

were achieved

* However, there are advantages to demonstrating molecule production from sugars (e.g. single carbon source, higher TRL,

etc.)

12



BKA Production from Glucose
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BKA Metabolic Engineering Required Multiple Evolutions

* Initially, AsbF was intfroduced to convert 3-dehydoshikamate into protocatechuate to enable conversion into BKA (CJ390).
Further engineering applied previous learnings from muconic acid production to increase production (SN4)

* Two other strains, SN4 and CJ601, accumulate metabolic intermediates (e.g. 2-ketogluconate) and HexR, a transcriptional

repressor, was deleted to yield our final strain SN301 s



BKA Production from Glucose
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Bioreactor Feed Strategy Can Also Yield Improvements in Titer
* Multiple feed strategies were implemented to resemble industry relevant strategies
* C1 - Fed Batch, 1L Volume, C2 — Fed Batch, 1.5L Volume, C3 — Batch with Non-washed cells

* Optimum conditions resulted in a 26 g/L titer, 0.21 g/L/h productivity, a 36% yield, and near complete glucose

consumption 14



Scale up and Separation of BKA

Product Recovery
Simulated Moving Beds
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BKA was recovered from fermentations for all subsequent polymer work
* On a lab scale this was accomplished by acidification, liquid-liquid extraction, and rotovap

* This process will be modeled later in this presentations where the implemented separation method is simulated moving beds
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Performance-advantaged nylons enabled by B-keto diacids
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C6 dicarboxylic acids with B-ketone enable enhanced nylon performance

* Nylon 6,6, analogues were synthesized by multiple methods including an industry relevant salt polymerization,
the use of acyl chlorides, and other couplings to avoid decarboxylation

* NMR indicates no imine formation while DSC reveals blocky behavior in co-polymers

* The use of BKA reduced water permeability by 20% while simultaneously increasing the T, by 216% in the
homopolymer g



Performance-advantaged nylons enabled by B-keto diacids
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The B-ketone enables enhanced nylon performance over a-ketones
* We expanded our diacid suite to include other keto diacids to be used in polymerization

* [B-ketoglutaric acid demonstrates similar thermal trends to KA while a-ketoglutaric acid does not exhibit the
same trends

* These results indicate that the [3-ketone may induce further backbone rigidity

17



Performance-advantaged nylons enabled by B-keto diacids
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C6 dicarboxylic acids with B-ketones enforce backbone rigidity
* Nylon 6,6, forcefields were generated to ensure that the nylon crystal structure could be replicated

* To understand backbone rigidity, we examined the dihedrals along the polymer backbone centered on the

amide bond

* The B-ketone results in longer correlations times and fewer configurations that the polymer backbone can exist in,

confirming enhanced rigidity 18



Performance-advantaged nylons enabled by B-keto diacids
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C6 dicarboxylic acids with B-ketones enable enhanced nylon performance
* The enhanced rigidity explains the enhanced T, but does not fully explain the lower permeability
* Thus, we examined the intermolecular interactions between the polymers, namely hydrogen bonding

* The B-ketone does posses enhanced interactions across a wide thermal range while the O-ketone may
interfere with hydrogen bonding

19



Production of BKA — Base Case
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BKA analysis is affected by titer, yield, feedstock and production plant size
* BKA production has baselined relative to adipic acid production
* Most analysis was compared to a base case, which also corresponds to a titer of 1 g/L/h

* Capital expenditures are driven by fermentations which is the result of the size of the fermenters needed

20



Production of BKA — Minimum Selling Price
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BKA costs more than adipic acid and more from cellulosic sugars
* Feedstock is the largest contributor to cost
* The use of acid and base contribute to multiple other factors

* Different diacids from biological conversion have similar MSPs despite processing alternative separation

strategies )



Performance-advantaged nylons — advantages in manufacturing
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The use of BKA can reduce supply chain energies and GHG emissions

Supply chain energies and GHG emissions depend on feedstock: in all cases, they are lower for bio-based
monomers

* Trends are similar for the produced polymers

Significant potential to target N-containing monomers in future work (HMDA)
22



Engineering plastics — An ideal first market
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Extend analysis reveals further benefits

* Nylons are often heavily formulated and can demand a price premium

* BKA could sell for less than sebacic acid currently demands on the market. Sebacic acid has already experienced
market penetration in nylon-6,10

* When CO, credits for biomass cultivation are accounted for there is a great GHG reduction potential s



On-Going Efforts - Leveraging the [3-Ketone in Polyesters
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B-Ketones Can Maintain Polyester Properties, Yet Enable
Degradation

*  When Adipic Acid is placed into PET, the polymer is extremely
plasticized.

* Designing polymers for degradability is a balancing act between
performance and degradation

*  When BKA is put in place of adipic acid in PET, it can maintain
properties while enabling facile degradation

*  Can we further leverage chemically recycled PET to decarbonize the
manufacture of this new polymer in the second plus life?
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e  Akin to the behavior we saw in nylons, BKA can raise the glass transition temperature relative to adipic acid. This in turn maintains the

thermomechanical properties of PET up to a 50% BKA replacement

* The presence of BKA can enable faster acid and base degradation (relevant to chemical recycling) of the polymer overall due to its aliphatic

nature
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B-Ketones Can Maintain Polyester Properties, Yet Enable Degradation

*  Akin to the behavior we saw in nylons, BKA can raise the glass transition temperature relative to adipic acid. This in turn maintains the

thermomechanical properties of PET up to a 50% BKA replacement

* The presence of BKA can enable faster acid and base degradation (relevant to chemical recycling) of the polymer overall due to its aliphatic
nature

* Initial Data indicates that biodegradation can also occur in ambient conditions and is once again relative to the amount of BKA



On-Going - Leveraging the [3-Ketone in Polyesters

Closed Loop PBKAT Recycling

Reuse in virgin PET Applications

Chemical
Recycling

Landfill or
~ Compost

PET Based --"
Material

. Depolymerized
: Material

L n

Mech‘hnica!
Recycling

\

Reuse in Carpets/Textiles

PET Replacements MUST Not Ruin Existing Infrastructure

An ideal PET replacement needs to not be designed to be thrown away, but to work with existing infrastructure meaning it must be
suitable to mechanical recycling

- Thus, not only does the thermomechanical performance have to be on par, but so does its recycling performance 27



Conclusions — Leveraging New Platform Chemicals

5.00

Petro. Bio-derived

Bka can enable robust properties for engineering
plastics

4.00

* An integrated approach to performance 200

advantaged materials elucidates key challenges

in new platform chemicals 2.00

Average Selling Price, $/kg

* [3-ketones provide rigidity across multiple
backbone carbons and further interactions across
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|
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|
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|
|
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|
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|
|
|
|
|
|
|

polymer chains 0.00

Nylon HMDA AA SA  BKA (glu)
6,6

* [3-ketone diacids may be used in other

P. putida derived,
performance-
advantaged
nylon

applications to enhance T relative to adipic acid
(e.g. PBAT)

* Designing new plastics must balance not only
performance properties but

* Engineering Plastics are an ideal market for
performance advantaged bioproducts from both
economic and emissions perspectives

28



Thank You!
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