

Mesoflow: An open-source reacting flow solver for catalysis at mesoscale

Hari Sitaraman, Peter N. Ciesielski, Meagan Crowley, Brennan Pecha and Nicholas Thornburg
Venue: ACS Fall meeting 2022
Date: 24th August 2022

Funding provided U.S Dept. of Energy, Laboratory Directed Research and Development and the Bioenergy Technologies Office

Introduction and Motivation

• Catalytic and thermochemical conversion are complex multiscale processes.

Mesoscale modeling enables:

- Connection between molecular and reactor scales
- Investigation of heterogenous transport phenomena
- Complex surface morphologies can significantly affect reactivity
- Extraction of transport-dependent reaction/deactivation kinetics

Ciesielski et al., Wiley Reviews: Energy and Environment, 2018

Current state-of-the-art and limitations

- Mesoscale models
 - Use of commercial software COMSOL, ANSYS
 - Several questions have been addressed
 - Effect of bulk particle morphology
 - Effect of species-specific transport
- Limitations
 - Scaling to higher resolutions and domains
 - Runs done on local high-end workstations
 - Most often accelerators (GPU) are unused
 - Meshing of complex geometries to get accurate solutions difficult and time consuming
 - geometries used are approximations
 - important features may be neglected

Ciesielski et al., Energy and Fuels, 2014

Mesoscale modeling challenges

Ciesielski et al., Wiley Reviews: Energy and Environment, 2018

- Complex morphology of particles
 - High resolutions at interfaces
 - Unstructured mesh generation
- Chemistry
 - Mechanisms from experimental data
- Coking and deactivation physics
 - Dynamic feature resolution
- HPC is required to answer these physics questions

Objectives

- Develop a Mesoscale modeling tool
 - Gas-solid flows
 - Catalytic upgrading
 - Flow through porous particles
 - Scalable on current and future HPC resources
 - use distributed and shared-memory parallelism
 - Acceleration hardware like GPUs
 - Automated meshing of complex geometries
 - Incorporate chemistry/transport coupling
 - Be able to simulate dynamic geometries
- Mesoflow: https://github.com/NREL/mesoflow

Summit Supercomputer at Oakridge National Laboratory*

Mesoflow: numerical methods

- Leverage open-source library AMReX*
 - developed at LBNL/NREL/ANL
 - Designed for upcoming Exascale machines
- AMReX is parallel adaptive-mesh refinement (AMR) library
 - Mainly provides block-structured AMR data structures and linear solvers
 - Partial Differential Equation solvers need to be developed using AMReX data structures
 - Code development in C++ with GPU kernels

Mesoflow: numerical methods

Compressible Navier-Stokes equations (gas phase)

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{U}) &= 0\\ \frac{\partial (\rho \mathbf{U})}{\partial t} + \nabla \cdot (\rho \mathbf{U} \mathbf{U}) &= -\nabla P + \nabla \cdot \bar{\bar{\tau}}\\ \frac{\partial (\rho E)}{\partial t} + \nabla \cdot (\rho E + P) &= \nabla \cdot (k \nabla T) + \nabla \cdot (\bar{\bar{\tau}} \cdot \mathbf{U}) \end{aligned}$$

Species transport and reaction (both gas and solid phase)

$$\frac{\partial c_i}{\partial t} + \nabla \cdot (c_i \mathbf{U}) = \nabla \cdot (D_i \nabla c_i) + \dot{W}_i$$

- AUSM+up* scheme for low-Mach flows
- Level-set immersed boundary method at the boundaries
- Temperature dependent transport and thermal properties

Reflection based boundary conditions for velocity at the interface

Mesoflow: chemistry modeling

Finite rate chemical mechanism evaluation

- Finite rate chemical mechanism evaluation
 - Implemented as matrix-product evaluations
- Example: 7 species chemistry for Zeolite catalyst
 - Gas phase primary vapors, products
 - Solid phase Coke and catalyst sites
- Operator splitting approach to couple with transport

No.	Reaction	k[m³/(mol.s)] @ T=500ºC
1	PV + S1 → HC + S1	2.573
2	$PV + S1 \rightarrow CK + S2$	0.456
3	PV + S2 → CK + S3	0.152
4	$PV + S2 \rightarrow FPN + S2$	2.904
5	HC + S1 → CK + S3	0.507
6	$FPN + S2 \rightarrow CK + S3$	0.006
7	FPN + S2 \rightarrow HC + S2	0.051

Bharadwaj et al. In preparation

Mesoflow: parallelization strategy

- Boxes (32³ or 64³ size) per rank run using either
 - Openmp threads on smaller tiles
 - multiple GPU streams
- Stencil operations executed through asynchronous GPU kernels
 - Inlined functions called from within C++ lambda
- Data movement managed through AMReX
 - Both Gpu managed and dedicated device memory
- Currently setup with 1 GPU per MPI rank configuration

Mesoflow: code verification and correctness

Blunt body flow

- Automated Regression testing
- Code changes tested using github actions
- Testing done on both CPU and GPU

Example case: Zeolite catalyst particle

Particle Reconstruction

- Directly reconstruct volume fraction field in an AMR mesh
 - X-ray tomography data in the form of MRC/TIFF files
 - Pixel data with a threshold is used to identify solid domain
 - Stereolithography (STL) surface files
 - Ray tracing/Plucker coordinates method to identify solid region

Catalyst particle simulations

Davison Circulating Riser* at NREL

- Setup is similar to experiments done at NREL
 - catalytic upgrading of biomass pyrolysis vapors in a DCR reactor
 - Primary vapors in helium background gas
 - 100 μ m size particle
 - Free stream conditions: P=1 atm., T = 700 K, V = 0.25 m/s

*Jarvis, Mark W., et al. "Catalytic upgrading of biomass pyrolysis oxygenates with vacuum gas oil using a Davison circulating riser reactor." *Energy & Fuels* 32.2 (2018): 1733-1743.

Catalyst particle simulations

- Coke formation in the outer porous regions
- Qualitatively matches coked catalyst images
- Hydrocarbon products are transported out of porous region
- Site concentration reduces as coking happens
- Deactivation time-scale ~ 10s of mins
 - Matches experimental data

Permeability of porous structures

Crowley et al., Frontiers in Enrg Res., 2022

Direction	Native Douglas fir Calculated (darcy)	Literature range for Douglas fir (darcy)	Pyrolyzed Douglas fir Calculated
Longitudinal (Z)	1.36	0.9 to 30	2.81
Radial (X)	0.0181	8e-5 to 0.002	0.229
Tangential (Y)	0.000346	1e-5 to 0.001	0.133

permeability volume flux $q = \frac{k}{\mu} \frac{dp}{dx}$

- Study permeability of porous catalyst/biomass structures
- Anisotropy in permeability
- Pressure gradient is imposed along each direction

Computational performance

- Strong scaling observed over 10000 MPI ranks
- A single GPU provides ~ 10X or more performance compared to a single CPU
- ORNL summit shows superior performance compared to Eagle GPUs
- Summit has 6 GPUs per node compared to 2 GPUs on eagle

Conclusions and future work

- Conclusions
 - Developed an open-source mesoscale modeling tool
 - Adaptive mesh refinement (through AMReX library)
 - Complex geometry representation through immersed boundary method
 - Hybrid parallelization on large scale computing resources
- Future work
 - Incorporate conjugate heat-transfer effects
 - Robust chemistry integration schemes
 - Code documentation

Questions/comments