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Approach

e BOTTLE (Bio-Optimized Technologies to keep Thermoplastics
out of Landfills and the Environment) Consortium approach —
Techno-Economic Analysis (TEA), Life Cycle Assessment (LCA)
(Materials Flows through Industry) MFI tool, process,
environmentally extended input output (EEIO))

— Carbon, energy and economic targets
— Informing the research

 Technology performance
e Systems thinking tools for broader perspective
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Metrics for BOTTLE projects

The mission of BOTTLE is to:

a

[ ]

]
« Develop robust processes to upcycle existing waste plastics, and [ bOttIe
+ Develop new plastics and processes that are recyclable-by-design changing the way we recycle

BOTTLE projects will aim to meet 3 key metrics:

Energy:

+ 250% energy savings relative to virgin material production
» Closed-loop recycling estimated to save 40-90% energy’
Carbon:

» 275% carbon utilization from waste plastics

Economics:
e 22X economic incentive over reclaimed materials

[
» Estimated based on recycling of commodity thermoplastics ‘ :
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Analysis Approach

* Analysis helps guides polymer and process R&D
» Techno-economic analysis (TEA) using Aspen Plus
* Energy/GHG assessment via Materials Flows through Industry (MFI)

* Socio-economic and environmental assessment with the EEIO framework
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Case study: PET enzymatic hydrolysis

Product

Clarification Crystallization

Water Recycle

Goals:

* Determine key drivers for community to
enable enzymatic PET depolymerization

Cleaned Enzyme
PET Flakes
Distillation
column

Activated Salt
Crystallizer

* Provide base model to compare
enzyme-based approaches for PET i Coustic

(NaOH) — To waste

disposal

recycling to chemo-catalytic and
thermal methods

Ethylene

A] gr:?tallizer Glycol (EG)
. . . ; Sodium Sulf;
* Highlight areas for further impactful o ol Sufur satse)
. . Il .
development of biocatalysis-enabled 0 Ao T

plastics recycling

Methods:
* TEA, MFI, LCA, EEIO
* Process data from patent and peer-

reviewed |ite ratu re Economy-wide analysis (BEIOM)

° Experimental validation Figure: (A) Simplified process flow diagram of the PET enzymatic depolymerization process
(B) A representation of the bottom-up supply chain model (MFI tool) scope and top-down
environmentally-extended input-output (BEIOM model) scope

NREL 5
EEIO = environmentally-extended, input-output, rTPA = recycled terephthalic acid, PET=Polyethylene terephthalate !



Economics results for PET enzymatic hydrolysis

A MSP

35

rTPA Minimum Selling Price, $/kg
(Combined Process)

rTPA Minimum Selling Price, $/kg

A Singh et al. Joule 2021

- Feedstock - Enzyme - Electricity - Caustic
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Product and Co-Product Recovery

TPA = terephthalic acid

Virgin TPA price $0.50 — $1.50/kg

Recycled TPA from enzymatic recycling
predicted to be $1.93/kg from processed,
clean flake ($0.66/kg)

Cheaper feedstock enables cost parity
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Enzymatic PET recycling can reduce energy and GHG emissions

rPET Supply Chain System Boundary

Conventional PET Supply Chain System Boundary
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LCA results

TPA - 3-17x higher impacts for enzymatic hydrolysis than virgin
Major drivers include PET collection and flaking, NaOH for pH control, electricity
Expanded system boundary includes emissions, waste, PET collection

A Acidification (g SO, eq/kg) B M= PET flake
Carcinogenics (CTUh/kg) |x108 ||E | .SOdlu';n hy,deIde
N » Sulfuric acid
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Comparison between enzymatic recycling
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Research insights

Process steps

Enzymatic Product & co-product recovery
depolymerization

Feedstock pre-treatment Re-

polymerization

Water recycle

Flake preparation Further treatment

Extrusion

Postconsumer nzyme
PET bottles \;:\',ﬁt PET flakes Activated ——mmee FPET
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disposal I \ disposal ) : L Mix

Enzymes that are active Enzymes that Minimize waste Innovative process Recycle process  Selective membranes
Improved sorting on crystalline PET to promote >90%  and recycle back design to enable >90%  water to minimize  or other techniques
technologies to eliminate pre-treatment. ~depolymerization through reactors = rTPA recovery while  water use/emissions for low energy/steam
minimize PET losses Or use less energy- under high solids ~ when possible minimizing chemical and improve yield use and >65% EG
intensive treatments loadings to improve yield use for pH control of aqueous products recovery

Industry wide: utilize electricity from renewable sources and steam from non-fossil processes

Proposed interventions

Improvements across many of these process areas will likely be necessary for scale-up of enzymatic recycling
Tradeoffs: many inexpensive components (water, steam, waste, etc.) are costly from an environmental perspective

Uekert, et al., 20ﬁ%ccjep?ed



Multi-criteria decision analysis

Multi-criteria decision analysis (MCDA) — allows for the evaluation of conflicting criteria
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Some recycling
technologies already offer
better alternative than virgin

Many emerging
technologies perform worse
under environmental
weighting 2 need
streamlining

Does not necessarily mean
technologies with low scores
are “bad”
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Bio-based circular
carbon economy
Environmentally
extended Input-
Output Model
Analysis Results

BEIOM is a top-down,
macro-level model that
assesses the economy-
wide social and
environmental impacts of
emerging technologies

A Singh et al. Joule 2021

1.0

Impact Relative to vTPA

Impact Relative to vTPA

Impact Relative to vTPA (VTPA

Value-Added Jobs Water Consumption Land-Use
. ] T T T sof 7 T g 3of .
25+ 4 25 25 |- — 25 -
20 201 20 20
4 st 15| 15| ]
1.0 1.0 1.0 10

Ol
vTPA Base NMP NEG NCP

10
g
N
n
L os
5

e — |
TPA

Smog Formation

WTRA Base NMP MNEG NCP

L 1

TPA

Eutrophication

0.0
WTPA Base NMP NEG MNCP
e —

P&

Human Toxicity (Total)

1.0

vIPA Base NMFP NEG NCP
|
rTPA

0.0
+TPA Base NMP NEG MNCP

03

0.0
vIPA Base NMP NEG MCP
I —

| Il Il
0.0 " . . J

vTPA Base NMP MEG NCP

TRA fTPA
Acidification Ecotoxicity

rTRA

WTRA =1.0)

oo
vTPA Base NMP NEG NCP
_

TRA

Respiratory Effects

00
wTPA Base NMP MEG MCP
rTPA

0.5

Ozone Depletion

0o
wTPA Basze NMP NEG MNCP
e —

FTPA

0.5

0.0
~TRA Base NMP NEG MNCP
—_
TPA

" i TPA Remaining Supply Chain
Petrachemical

|:| TPA Production

I: Electricity Generation

7 rTPA Remaining Supply Chain
Materials Recycle Facility

B Focicled TRA Production



Other relevant tools

(Plastics Parallel Pathways Platform (4P) - 1D L A
+ Compare plastic end-of-life pathways that generate different products Cm
» Assess environmental and economic impacts over multiple lifetimes S I e e I
L Include circularity indicators B T S 8 I S S S S S A y
4 i ) =77 Howe ™~ A
Plastics Recycling Agent-based model (ABM) i o
* Map plastic recycling, landfilling, and “wishcycling” behavior in households e > g@;
+ Determine social interventions that increase recycling rates B ‘"‘mmn.@/,‘
4
LiAISON

» Python-based, prospective LCA to preempt trade-offs and unintended
and inform R&D prioritization of new technologies

\.
as i : =
Risk & impact assessment for technology adoption W -
» De-risk technology adoption by identifying routes from technology readiness to market gﬁ? S, e o "
and from market readiness to market share ;:} B

\ Social s )
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