
# 

Transforming ENERGY

### Measuring Critical Fuel Properties for Simulations to Accelerate Fuel Qualification

Robert L. McCormick, Gina Fioroni, Jon Luecke, Shashank Yellapantula August 12, 2022

# The SAF technology landscape





Fuel production: BETO



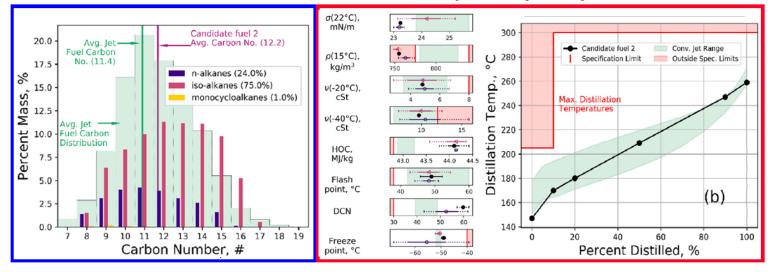
Fuel property characterization: BETO and VTO



Fuel property mapping to turbine performance: VTO



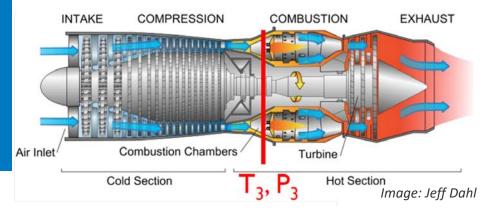
Expanding boundaries of ASTM certification: VTO

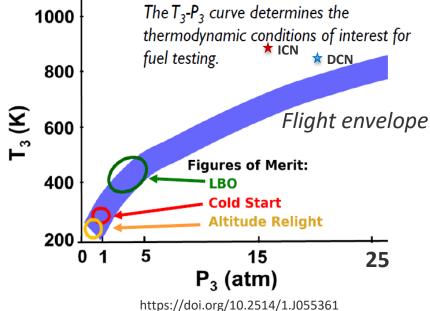



De-risking qualification of new fuels (drop-in and marginally drop in): VTO and BETO

#### NREL Capability: Fast Track Properties

#### **Compositional Comparison**


#### **Operability Comparison**



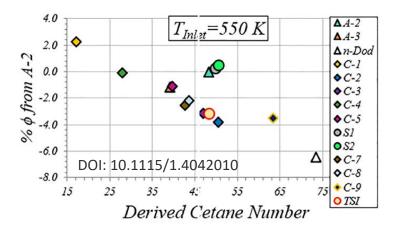

- NREL can (or will shortly) run entire list of Fast Track properties including simulated distillation and 2D GC (also true vapor pressure, heat of vaporization, ...)
- For "pre-qualification" research to support BETO SAF production projects

Figure from: Heyne, et al., 2021 https://doi.org/10.1016/j.fuel.2020.120004

## Actual T and P differ from those used in property measurements



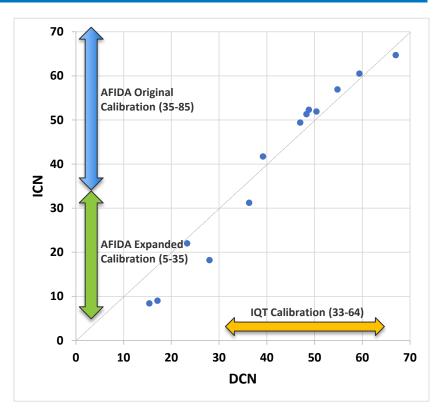



### Experiments to Expand T and P Range

| Property                    | Common Today                         | New Capability                | Sample Volume |
|-----------------------------|--------------------------------------|-------------------------------|---------------|
| Density                     | -40 to 80°C / 1 atm                  | -10 to 200°C / 1 to 500 atm   | 2 mL          |
| Viscosity                   | -40 to 40°C / 1 atm                  | -40C to 315°C / 1 to 1300 atm | 5 mL          |
| Surface tension             | -10 to 40°C / 1 atm                  | -35 to 400°C / 1 to 60 atm    | 2 mL          |
| Ignition delay –<br>DCN/ICN | 545°C / 21.4 atm<br>580°C / 17.5 atm | Up to 725°C / 2 to 50 atm     | 40 mL         |

All operational or planned to be operational in Q1 FY23

### DCN vs ICN


- Derived cetane number (DCN), measured in IQT at nominally 21.4 atm / 545°C / φ=3
  - Requires 140 mL of sample
  - Correlated with  $\varphi$  for lean blow out at higher temperatures
  - Perhaps related to cold start and relight
- Indicated CN (ICN) measured in AFIDA at nominally 17.5 atm / 580°C /  $\varphi{=}3$ 
  - Requires 40 mL of sample
  - AFIDA easily programed to measure ignition delay at other T, P, and  $\varphi$
- DCN/ICN comparison in collaboration with Josh Heyne and Ed Corporan



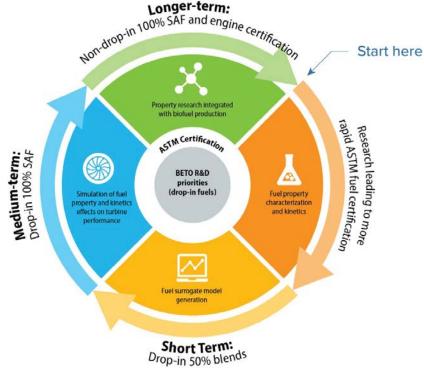
| Fuel                |  |  |  |  |  |
|---------------------|--|--|--|--|--|
| A-1 (10264)         |  |  |  |  |  |
| A-2 (10325)         |  |  |  |  |  |
| A-3 (10289)         |  |  |  |  |  |
| C-1 (13718)         |  |  |  |  |  |
| C-2 (12223)         |  |  |  |  |  |
| C-3 (12959)         |  |  |  |  |  |
| C-4 (13217)         |  |  |  |  |  |
| Commercial HEFA-SPK |  |  |  |  |  |
| Commercial HEFA-SPK |  |  |  |  |  |
| Commercial ATJ-SPK  |  |  |  |  |  |
| 50/50 A-2/HEFA-SPK  |  |  |  |  |  |
| 50/50 A-2/ATJ-SPK   |  |  |  |  |  |

# Jet fuel ICN / DCN comparisons

- Worked with AFIDA manufacturer to expand ICN calibration range down to 5 CN units
- Generally excellent agreement between ICN and DCN
  - ICN typically < DCN below 30</li>
- Obtaining data over range of T, P and φ for these fuels
- Perhaps ignition delay at other conditions will be more predictive of performance in a gas turbine than CN (developed for diesel combustion)



### Dimethyl cyclooctane – potential SAF blendstock


- Collaboration with Ben Harvey US Navy, NAWCWD
- Produced by sugar fermentation to isoprene, then catalytic conversion to DMCO doi: 10.1039/c9gc02404b
- Exhibits both high mass density and energy density
- Volumetric energy density 10% greater than Jet A
- Some evidence can swell elastomers like aromatics
- NREL to perform additional property measurements and soot precursor pathways study (flow reactor)
- Status: project just started



| Density, kg/m <sup>3</sup> | 827  |
|----------------------------|------|
| Energy density, MJ/kg      | 43.8 |
| Volumetric energy, MJ/L    | 36.2 |
| Freezing point, °C         | <-78 |
| DCN                        | 18   |

#### SAF Research Vision Summary

- Close support of BETO biofuel production
  - Property measurements for SAF ASTM qualification
  - Mapping molecular structure to fuel properties
- Connecting fuel properties to engine performance
  - Measuring properties at operating conditions
  - Apply exascale-ready combustion simulations leveraging extensive SC investments
- De-risking scale up of low-carbon fuel production
- Move SAF technologies to TRL level allowing hand off to industry



# Thank you!

#### www.nrel.gov

This work supported by U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy Vehicle Technologies Office

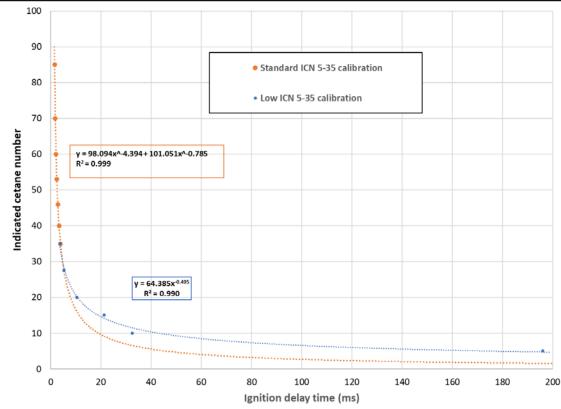


NREL/PR-5400-83897

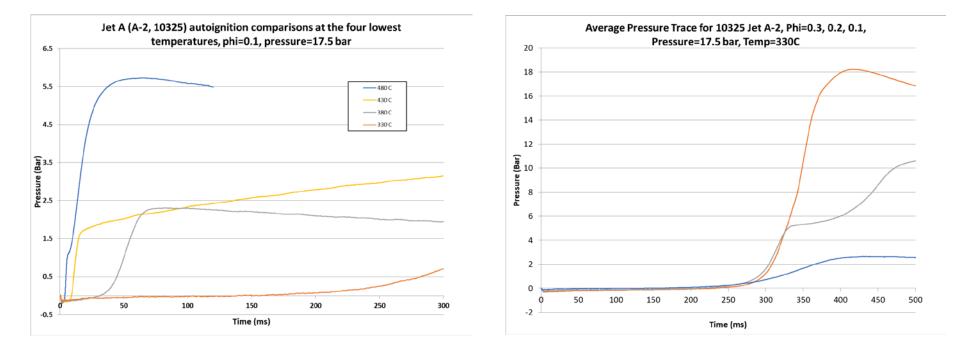
# **Backup Slides**

#### ICN/DCN Results of Fuels from National Jet Fuel Combustion Program

| NJFCP ID            | DCN     | DCN  | ICN  | Description                                       |
|---------------------|---------|------|------|---------------------------------------------------|
|                     | Edwards | NREL | NREL |                                                   |
| A-1 (10264)         | 48.8    |      | 52.3 | JP-8                                              |
| A-2 (10325)         | 48.3    |      | 51.3 | Jet A                                             |
| A-3 (10289)         | 39.2    |      | 41.7 | JP-5                                              |
| C-1 (13718)         | 17.1    |      | 9.0  | ATJ from Gevo                                     |
| C-2 (12223)         | 50.4    |      | 51.9 | 84% C14 iso-paraffins/16% 1,3,5 trimethyl benzene |
| C-3 (12959)         | 47.0    |      | 49.4 | 64% A-3/36% Amyris farnesane                      |
| C-4 (13217)         | 28.0    |      | 18.2 | FT:ATJ Blend 60% Sasol IPK (FT-SPK)/40% C-1       |
| Commercial HEFA-SPK |         | 59.4 | 60.5 | HEFA-SPK#1                                        |
| Commercial HEFA-SPK |         | 67.0 | 64.7 | HEFA-SPK#2                                        |
| Commercial ATJ-SPK  |         | 15.4 | 8.4  |                                                   |
| NREL Blend          |         | 54.8 | 56.9 | 50/50 blend of A-2/HEFA-SPK#1                     |
| NREL Blend          |         | 36.3 | 31.2 | 50/50 blend of A-2/ATJ-SPK                        |
| Low CN fuel         |         | 23.3 | 22   | Methylcyclohexane                                 |


#### Extended range indicated cetane number (ICN)

- ASTM D8183 Indicated Cetane Number (ICN) covers the range of (35-85)
  - Primary reference standard calibration using purified nhexadecane/1methlynaphthalene
  - Standard calibration PRFs
    (85, 70, 60, 53, 46, 40, 35)


 $- R^2 = 0.999$ 

- Low cetane calibration prepared from same quality standards
  - Low calibration PRFs (35, 27.5, 20, 15, 10, 5)

 $- R^2 = 0.990$ 



#### Ignition Delay for Jet A (A-2) at Different Conditions

