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Scalable Hybrid Classification-Regression Solution
for High-Frequency Nonintrusive Load Monitoring

Govind Saraswat1, Blake Lundstrom2, and Murti V Salapaka3

Abstract—Residential buildings with the ability to monitor
and control their net-load (sum of load and generation) can
provide valuable flexibility to power grid operators. We present a
novel multiclass nonintrusive load monitoring (NILM) approach
that enables effective net-load monitoring capabilities at high-
frequency with minimal additional equipment and cost. The
proposed machine learning based solution provides accurate
multiclass state predictions while operating at a faster timescale
(able to provide a prediction for each 60-Hz ac cycle used in
US power grid) without relying on event-detection techniques.
We also introduce an innovative hybrid classification-regression
method that allows for the prediction of not only load on/off
states but also individual load operating power levels. A test
bed with eight residential appliances is used for validating the
NILM approach. Results show that the overall method has high
accuracy, good scaling and generalization properties.

Index Terms—Nonintrusive load monitoring (NILM), multiclass
classification, regression, power prediction, feature extraction,
smart buildings, grid-interactive, smart grid.

I. INTRODUCTION
With increasing adoption of distributed and renewable energy

resources, and reduction of traditional synchronous generation,
the electric grid is at a unique junction with both immense
opportunities as well as challenges. Further, the changes
in generation profiles, along with evolving load types and
capabilities, are making behind-the-meter (BTM) net load (i.e.,
net generation and load) an increasingly important component
of system operations. BTM visibility is integral to the emerging
concepts and operating platforms for power systems. Smart
buildings have the capability to regulate their net load in a
way that can provide extra flexibility to grid operators[1] as
well as maximize energy cost savings and preferences for
their customers. 38.5% of the total electrical energy produced
[2] in United States is consumed by residential buildings
which are predominantly not equipped with modern sensors
and controllers. Thus, if such residential buildings can be
transformed into smart buildings, significant resilience can be
added to the distribution grid. The simplest approach to achieve
such visibility is having circuit-level net-load metering, but this
may not be economically viable nor practical due to limitations
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and cost of communication infrastructure as well as privacy
concerns. Nonintrusive load monitoring (NILM) provides a
cost effective solution to enable smart metering of residential
buildings. It uses a single current measurement at the building’s
point of common coupling (PCC) with the grid and extracts
power information of the individual BTM devices inside the
building. Such power information may include on/off status
and/or power consumption.

Existing work in NILM can be categorized into two cate-
gories based on the type of measurement inputs used. NILM
approaches belonging to the first category use steady-state
measurement quantities, such as active and reactive power
or root mean square (RMS) current, on a macro timescale
(generally > 1 minute). Steady-state power measurements have
been used with a variety of contemporary machine learning
methods, including multilabel k-nearest neighbor [3], binary
relevance [3], hidden Markov models [3], [4], and long short-
term memory neural networks [5]. In the second category,
transient features derived from micro-timescale data (generally
< 1 second) are used. Here, micro-timescale data is employed
to infer features based on a frequency-domain transformation
[6], instantaneous wave shape [7], or wavelet transformations
[8]. Some approaches [9] fit into both categories, using micro-
timescale data to detect events and macro-timescale data to
capture steady-state data throughout the event and build a
library of events that can be used later for prediction.

NILM methods that use steady-state measurements can easily
misclassify two different combination of loads which have near
identical steady-state measurements but differing instantaneous
waveforms as shown in [10]. Most of the existing NILM
approaches do not provide state predictions faster than 1 s,
which is too slow to enable a residential building to provide
grid services (e.g., fast frequency response using building net
load [11]). In contrast, the approach developed in this article
can accurately identify changes in on/off state and operating
power level for each individual load on a fast timescale (e.g.,
each AC line cycle), throughout a transient event, and without
reliance on event detection techniques.

The majority of NILM literature has focused on predicting
the on/off state of connected loads via classification. Some
existing work (e.g., [12], [5]) also considered regression-based
approaches, but they rely on availability of long sequence
(i.e., multiple hours) of power data. To the best of our
knowledge, there is no method currently capable of load power
disaggregation at the timescale of <1-s grid ancillary services.

Our initial contributions related to high-speed classification
for NILM appear in [10]. That work presented a method for
accurate, high-speed (>60-Hz) prediction of the multiload on/off
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state of a four-load residential building experiment configu-
ration. In this work, we extend this high-speed classification
method to improve scalability, and we apply the improved
classification method to a larger eight-load residential configu-
ration. In addition, we introduce a novel hybrid classification-
regression model that allows for the prediction of load RMS
current consumption levels via regression in addition to the
load on/off states via classification while still operating at a
high-speed timescale with predictions for each 60-Hz cycle.
The hybrid classification-regression approach is validated using
an experiment configuration including eight residential building
appliances, and it is shown to give high-accuracy RMS current
and multiload on/off state predictions while allowing for good
generalization. A detailed version of this paper is provided in
[13]

II. EXPERIMENTAL SETUP AND APPROACH

A. Problem Formulation

A total of NL loads are connected to the main load
center panel of a residential building, and each consumes an
instantaneous current Ii(t) = qi(t)Īi(t), where Īi(t) is the load
signature, qi = {0, 1} is the on/off status (where qi = 1 denotes
that the load is on), and Ii is the resulting current consumption
of the ith load. The total current consumption of the residential
building is ITOT (t) =

∑NL

i=1 qi(t)Īi(t). System load on/off
state for the building is yc = [q1, q2, . . . , qi, . . . , qNL

]. With
NL loads, there are 2NL possible combinations of yc. The first
objective is to train a classifier that uses an input vector, X ,
of features calculated for each 60-Hz ac cycle observation of
ITOT (t) to predict yc, representing the building’s complete load
on/off state. The second objective is to build a regression model
that takes an input feature vector Xr (potentially including
the result from the classifier) and predicts the RMS current
consumption of each load, Yreg = [Ĩ1, Ĩ2, . . . , Ĩi, . . . , ĨNL

].
Both the classifier and the regression model should provide
a prediction for every 60-Hz ac cycle of ITOT (t). For
the application of fast-frequency smart building control, the
classifier and regression model should predict the state and
operating level of all constituent loads within 10 AC cycles or
τ = 10/60 = 0.167 s. To this end, a two-step hybrid approach
(see Fig. 1) is adopted. The first step uses a classifier block to
predict the on/off state of each load. The second step applies
Deep Neural Network (DNN) models as a regression block
to predict the current consumption of each load i using the
output of the classifier block as well as the subset of feature
inputs given to the classifier block.

...
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(Training
only)

Fig. 1. Hybrid classification-regression modeling approach. It can be seen
that output of the classifiers are used by the regressors to predict individual
load RMS current.

B. Experiment Configuration
A residential-scale demonstration using eight household

appliances in the Energy Systems Integration Facility at the
National Renewable Energy Laboratory was completed. The
full experimental configuration, shown in Fig. 2, includes eight
residential appliances (details in [13]). One voltage sensor and
nine current sensors (as depicted in Fig. 2) are used to sample
instantaneous measurements with a 200kHz bandwidth. Seven
independent 200-s data sets are collected. Loads were randomly
perturbed while collecting these data sets. For example, fridge
door was opened and closed, oven door was opened and closed,
and so on. The operating conditions of all loads for different
data sets are described in [13]. Thus, a variety of operating
conditions of the loads were captured.

Fig. 2. Experimental configuration with eight residential appliance loads.
ITOT measures the total current flowing through the eight loads.

C. Input Data Processing
High-speed instantaneous voltage and current waveforms

are the input to this approach (see Fig.4 in [13]). The current
waveforms are divided at each 60-Hz ac cycle using zero-
crossing detection, then each cycle of the aggregate current
measurement (ITOT ) becomes an observation. Feature vector
X is derived from each observation. Voltage measurement data
are not strictly required, but if available, they can be used
to provide more accurate detection of zero crossings. Current
measurements from each load are used to create the label for
each observation. For further increasing the richness of training
data, we employ a novel strategy for creating a synthetic data
set from the original data that expands each observation into
multiple observations by using the superposition principle of
electric current. We then employ a reduction strategy to remove
samples that are very similar to each other. These two strategies
are described in detail as follows:

Synthetic data set: Each observation, j, in the original
data set has a total current measurement, ITOT , based on
1 ≤ NL,j ≤ 8 superimposed currents. NL,j is determined by
thresholding all Ii and counting the number of nonzero Ii.
Then, the NL,j nonzero currents can be used to generate 2NL,j

unique observations by superimposing the corresponding Ii
for each combination together and calculating the features.

Data set reduction: Within each synthetic data set, all the
observations are first sorted with respect to features, the distance
(in terms of the L1-norm) between successive observations is
determined, and new observations are discarded if they are
not significantly different from the previous observation. With
this reduced data set, computational complexity and memory
requirements for training the models are significantly reduced.

D. Labeling (Training Phase)
For classification, observations are generally categorized

into multiple classes. When classifying between more than two
classes, multiclass classfication is used. Each observation cycle
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of ITOT is labeled by examining the instantaneous current data
at each circuit, using level detection to derive the on/off state
of that circuit, and finally building the multiclass label. This
multiclass label could be a multilabel vector or a single integer
label with the class encoded using a binary encoding scheme
(e.g., Label 12 corresponds to [0,0,0,0,1,1,0,0]), referred to as
the label power-set method. For regression, the RMS current
of each individual load is used as a label for the corresponding
regression model.

Two training methodologies are employed. The first training
strategy (strategy 1) follows the traditional approach of ran-
domly shuffling the full data set (all seven independent data sets
are used) and then splitting the data into a training set (80%)
and test set (20%). The second approach (strategy 2) is to use
six of the seven independent data sets for training and testing
on the remaining data set. This leads to seven distinct runs. The
second approach emphasizes the generalization capabilities of
the classifier. As detailed in [13], data sets are quite different
because they capture different running conditions of each load.

III. HIGH-FREQUENCY, MULTICLASS CLASSIFICATION AND
POWER PREDICTION OF RESIDENTIAL APPLIANCE LOADS

In this work, we use a random forest classifier (RFC) [14]
for classification. As any number and combination of loads can
be turned on/off at any given time, multiclass classification is
required for this problem. The ‘label power-set method’, which
takes each combination of possible load states as one class, was
initially used when considering the four-load test configuration
[10]. This method (Classifier 1) considers the correlation of
different labels and can provide accurate predictions when the
number of loads is small; however, the total number of classes
in this method increases exponentially with the number of
loads. Thus, when applying the approach to the larger eight-
load configuration, the label power-set method does not scale
well because the class size explodes to 255. This leads to
the resultant model to be extremely complex and requires
large memory (> 30 GB). To address this, we present a multi-
model approach (Classifier 2) wherein we train simple binary
classifiers to detect the on/off state of a single load. This
approach trains NL RFC models for NL loads (see left side of
Fig. 1). Here, model CL2i corresponds to load i. The set of all
NL models is termed as Classifier 2. The output of the classifier
is a vector comprising individual predictions of each model. Let
yci be the prediction of model i. Then the output of Classifier
2 is yc = [yc1, . . . , yci, . . . , ycNL

]. Here, the total memory
requirement is ≈ 1 GB for all 8 classifiers. This leads to much
better scaling capabilities and easier implementation for parallel
processing of multiple load classifications. Further, both the
classifiers take similar run time with serial implementation,
thus Classifier 2 has a clear advantage as it can be easily
implemented in parallel, significantly reducing the total run
time.

Deep neural networks (DNNs) are used in this work to
predict the RMS currents of each load. A detailed description
of DNNs can be found in [14]. We train a single neural network
for each load; thus, the number of neurons in the outer layer
is one.

A. Model Training and Tuning
Here, we use the reduced synthetic data from the eight-load

experiment configuration for training, as described in Section II.
To find the best classifier for each load, multiple RFCs using
different subsets of the features described in [13] are considered.
The final classifier model chosen is an RFC ensemble using
bootstrapping and including 200 decision tree classifiers, each
with a max depth of 35 and using entropy (information gain)
as the split criterion. Further details on RFCs hyperparameters
and testing methodologies can be found in [14]. Here, the RFC
was implemented in Python using the scikit-learn package [15].

Similar to the tuning of RFCs, multiple DNNs are considered
in a search for a model that can accurately predict the RMS
current. Details of hyperparameters of the selected DNN can
be found in [13]. In contrast with RFCs, neural networks are
very susceptible to the scaling of inputs and outputs. Thus,
we apply a ‘power transformation’ to the feature matrix X
to make the input data more Gaussian. Specifically, we use a
‘Yeo-Johnson’ transform [16], which supports both positive or
negative data. For scaling the output y, we employ standard
scaling, which removes the mean and scales the data to unit
variance. The above methodology is implemented in Python
using the keras package [17].

IV. RESULTS
Here, we present the results for both classification and

regression along with the hybrid model where results from the
classifier are used by the regression model.
A. Classification

As mentioned in Section III, we implemented two classifiers.
We present prediction accuracy of both the classifiers when
using strategy 1 (80-20 split) for training in Fig. 3(a). Accuracy
is defined as the ratio of correctly predicted observations to the
total number of observations. The median prediction accuracy
(across 7 runs, each run has random selection of 80% training
and 20% test data) for each load with the 1st and 3rd quantiles
as error bars is plotted in Fig. 3(a). It can be clearly seen that
the accuracy of both classifiers is within ±0.75% for each load.
Overall average accuracy of Classifier 1 (power set) is 98.95%
and Classifier 2 (binary) is 98.84%.

(a)

(b)
Fig. 3. Test accuracy (a) and total size (b) of Classifier 1 (power set) and
Classifier 2 (binary) with number of load when using strategy 1. (b)

The total memory requirement for each classifier as a
function of the number of loads is plotted in Fig. 3(b) on
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a log scale. As the number of loads increases, the difference
in the size of the two classifiers also increases. For an 8
load configuration, there is more than an order of magnitude
difference between the memory requirements for two classifiers.
Thus, as described in Section III, Classifier 2 (binary) provides
similar performance in accuracy when compared to Classifier
1, while being far less memory intensive and more conducive
to parallel implementation.

We next present the results for these classifiers when strategy
2 (testing on independent unseen dataset) for training is used.
Here, for each run, six of the seven independent data sets are
used for training and testing is completed using the remaining
data set. The median prediction accuracy (across 7 runs) for
each load with the 1st and 3rd quantiles as error bars is
plotted in Fig. 4. Here, clearly Classifier 2 (binary) outperforms
Classifier for almost all loads. The overall average test accuracy
for Classifier 1 (power set) is 92.54% and Classifier 2 (binary)
is 93.07%. Both of these classifiers show good generalization
capabilities as they have good overall accuracy ( 93%) when
testing is performed on an independent (not seen during the
training phase) data set .

Fig. 4. Test accuracy of Classifier 1 (power set) and Classifier 2 (binary) by
load when using strategy 2

B. Transient Performance
Fig. 5 (a) shows ITOT for the entire length of data set

3; it can be seen that significant aggregate variation occurs
throughout as the eight loads turn ON and OFF. Fig. 5 (b), (c),
(d) and (e) present the classifier (trained using strategy 2 with
only 6 of the 7 dataset used) predictions for load 3, 4, 5 and
6, respectively, at multiple demonstrative time periods within
data set 3.

The NILM method presented here is able to accurately
predict the true state of the loads throughout most transient
periods. Fig. 5 (c) shows an example of one such transient
period (near t=37 s) where the load 4 (compact fluorescent
lights) turn-on event transient lasts nearly 15 ac cycles. During
this event, the classifier correctly predicts most cycles, despite
the cycles having a variety of wave shapes and magnitudes.
This demonstrates the high-accuracy and high-frequency per-
formance of the approach and its advantage over many existing
NILM approaches based on event detection, which would not
predict a state change until after the entire 15 ac cycle event
signature was detected.

C. Regression and Hybrid model

Similar to the classification, we present the results of the
regression model on both the training strategies. To evaluate
the regression model, we present two sets of results. For the
first set of results, we assume feature set X has an accurate
load on/off state input, to independently test the accuracy of the
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Fig. 5. (a) ITOT for the entirety of data set 3, showing significant variation
in aggregate current). Magnified views for load 3, 4, 5 and 6 switching ON
events are shown in (b), (c), (d), and (e), respectively. The yellow traces in
each plot show ITOT (available to the model), while cyan traces show the
individual load current (not available to the model). Red circles denote the
true ON/OFF state while blue crosses are the predicted states.

regression (DNN) model, whereas the second set of results is
for the hybrid model, where X contains predicted state values
from the classifier. To quantify the accuracy of the regression
model, a test sample is deemed predicted true if the predicted
RMS value from the DNN model is within ±10% of the true
RMS value. In the case when a load is OFF, a test sample is
deemed predicted true if the predicted RMS value is within
±0.2A.

The overall test accuracy of the DNN and hybrid models
for strategy 1 (80-20 split) is 98.4% and 97.8%, respectively,
when taken as an average over 10 runs across all loads. The
median accuracy for each load is shown in Fig. 6 (a), with
the first and third quantiles plotted as error bars. Similar to
Classifier 2 (binary), both the DNN and hybrid models do very
well when tested on data for which similar samples have been
seen before. With the second approach, when a completely
new data set is used for testing, the overall test accuracy of
the DNN and hybrid model decreases to 94.8% and 91.8%,
respectively, when averaged over 7 separate runs across all
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Fig. 6. Median test accuracy with error bars for Classifier 2 (binary), DNN,
and the hybrid model evaluated using the (a) first (80/20 splits) and (b) second
(independent data set for testing) testing approaches. The hybrid model and
DNN curves are shifted slightly left and right, respectively, for visibility.

loads. The median accuracy for each load is shown in Fig. 6
(b), with the first and third quantiles plotted as error bars. Thus,
even for the case when regression model does not have the
knowledge of exact operating state of loads, accuracy is above
90%.

0 20 40 60 80 100

3

4

5

6

RM
S 

cu
rre

nt
 (A

)

true value
predicted value

(a)

0 20 40 60 80 100
Samples

2

3

4

5

6

RM
S 

cu
rre

nt
 (A

)

true value
predicted value

(b)

Fig. 7. True and predicted RMS current values for load 8 from the Regression
model when using (a) 80/20 training split and (b) Data Set 3 for testing

Fig. 7 (a) shows the true and predicted RMS currents from
the hybrid model for load 8 when using strategy 1 (80-20
split). These are 100 random test samples (sorted by RMS)
from the test data set. Here, we can see the model predicting
the RMS current very accurately across different operating
regimes (different power consumption) of this load. Fig. 7
(b) shows the true and predicted RMS current (by the hybrid
model) of load 8 using Data Set 3 and strategy 2 (testing on
independent unseen dataset) for testing. These are 100 random
test samples (sorted by RMS) from the test data set. When
compared to Fig. 7 (a), it is clear that for this strategy, the
model performs very well when predicting the RMS current for
the main operating conditions while being fairly accurate even
for the intermediate operating conditions. Similar to classifiers,
the DNN model generalizes reasonably well when tested on
completely independent data sets.

For this proof-of-concept study, the NILM approach is not im-
plemented in real time, but the total processing time—including
zero-crossing detection, feature extraction, and classifier and
regression prediction—is measured (averaged over 80,000+
cycles) to be 10.42 ms, which is fast enough to support
high-frequency load disaggregation and certainly well within
the desired τ = 167 ms response time. This time includes
10.37 ms for feature extraction, 0.016 ms for classification,
and 0.036 ms for DNN model prediction. This is measured
on a laptop with an Intel i7 processor and Nvidia GeForce
GTX 1050 Ti GPU and does not consider any delays in data
acquisition. With a response time more than 10 times faster

than the desired response time, however, there is sufficient
room for data acquisition delays and/or decreased performance
if implemented on a slower computational platform (like a
RaspberryPi) while still meeting the response time requirement.

V. CONCLUSION
This paper presented a novel NILM approach which com-

bined classification and regression to predict power consump-
tion along with on/off state of BTM loads thus providing full
visibility. The approach was shown to have high accuracy, good
scaling and generalization properties, when tested on a test bed
consisting of eight residential appliances. Even on a generic PC,
approach was fast enough to support building grid-interactive
control at fast timescales (e.g., within 10 ac cycles) relevant
to the provision of grid frequency support services.
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