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Abstract
A common and costly challenge in the nascent biorefinery industry is the consistent handling and conveyance of biomass
feedstock materials, which can vary widely in their chemical, physical, and mechanical properties. Solutions to cope with varying
feedstock qualities will be required, including advanced process controls to adjust equipment and reject feedstocks that do not
meet a quality standard. In this work, we present and evaluate methods to autonomously assess corn stover feedstock quality in
real time and provide data to process controls with low-cost camera hardware. We explore the use of neural networks to classify
feedstocks based on actual processing behavior and pixel matrix feature parameterization to further assess particle attributes that
may explain the variable processing behavior. We used the pretrained ResNet neural network coupled with a gated recurrent unit
(GRU) time-series classifier trained on our image data, resulting in binary classification of feedstock anomalies with favorable
performance. The textural aspects of the image data were statistically analyzed to determine if the textural features were
predictive of operational disruptions. The significant textural features were angular second moment, prominence, mean height
of surface profile, mean resultant vector, shade, skewness, variation of the polar facet orientation, and direction of azimuthal
facets. Expansion of these models is recommended across a wider variety of labeled feedstock images of different qualities and
species to develop a more robust tool that may be deployed using low-cost cameras within biorefineries.
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1 Introduction

In the evolving bioenergy industry, pioneer lignocellulosic
biomass processing plants have experienced difficulties
achieving their design capacities and meeting their expected
revenue generation [1]. One of the common challenges is the

consistent handling and conveyance of feedstock materials,
which can vary widely in their particle size, particle shape,
chemical composition, and other physical and mechanical at-
tributes. Specifically, the size and shape of material can play a
major role in the flow properties that make gravity-fed and
even force-fed hoppers and conveyors function inconsistently
or fail altogether [2]. Universal equipment that works on more
conventional materials such as cereal grains can experience
bridging, jamming, and motor load spikes when trying to cov-
ey lignocellulosic feedstocks such as corn stover [3]. New
equipment designs specific to the feedstock properties may
be necessary to alleviate some of these challenges, and addi-
tional solutions to cope with varying feedstock qualities may
include the application of advanced process controls to adjust
equipment and even reject some feedstocks that do not meet a
quality standard—both of which require online instrumenta-
tion for real-time measurement [4].

A tool that is portable, scalable, and cost-effective for the
determination of biomass particle quality is fundamental to the
implementation of advanced process controls and acceptance/
rejection of feedstock at the processing plant gate and even
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grading feedstock before it is transported to the biorefinery.
Online, real-time particle shape and sizing instruments are
currently available and in use in several product processing
industries [5, 6]. Although these solutions fill the need for
online instrumentation reasonably well, cost may be a limiting
factor in widespread adoption and at multiple locations in the
processing line for automation, and limits to portability and
hand-held use do not support in-field use. Another alternative
to the high-quality, high-cost optical analysis option is the use
of low-cost, bright-field imaging combined with image anal-
ysis and machine vision (MV) to assess feedstock variability.
MV is not a new concept, but the last several years have seen a
rapid increase in the development and maturation of this tech-
nology as computational power has evolved. Automated med-
ical imaging analysis is an example of this growing area,
where difficult-to-identify abnormalities can be detected more
efficiently using models such as deep neural networks (NNs)
to allow radiologists to better detect diseases [7, 8]. Simple
instruments such as digital photographic cameras offer a sim-
ilarly attractive option for assessing biomass particle quality in
our current application. In this paradigm, low-cost cameras are
placed over conveyor belts and hoppers and even employed as
hand-held units such as smartphones to capture photographs
of feedstocks, and aMVmodel assesses the images and output
data used for intelligent decision-making in real time. Due to
the low cost (< $1000) and ubiquitous nature of digital cam-
eras, this method may be easily scaled to many measurement
points throughout a processing plant for the cost of a single
installation of a formal commercial measurement hardware
(e.g., laser scanners). The versatility of digital cameras means
that additional features can be extracted from images, such as
textural feature and color data, for assessing additional attri-
butes. Finally, NN-based methods do not require absolute
measurements and behavioral models to predict performance
and make classifications (i.e., measured particle size distribu-
tion ported to a mechanistic model to determine if material
will flow). Instead, they can be developed with end-use data
to classify conditions (e.g., motor load spikes) to be opti-
mized. These reasons encourage the pursuit of MV as a de-
ployable online instrumentation technique for biorefinery
operations.

In this work, we present and evaluate methods to autono-
mously assess corn stover feedstock quality in real time with
low-cost camera hardware. We explore two different MV ap-
proaches here that include the use of neural networks to clas-
sify feedstocks based on actual processing behavior and pixel
matrix feature parameterization (PMFP) to further assess par-
ticle attributes that may explain the processing behavior.
These two approaches are complementary; as presented here,
the NN-based approach has been applied to determine when
feedstock is present that causes hopper motor load upsets,
whereas the PMFP method offers a path to understand the
underlying reasons for the upsets.

2 Methods

2.1 Image set and labeling

We operated a 500 kg/d-rated pilot plant at the National
Renewable Energy Laboratory (NREL) Integrated
Bioenergy Research Facility over four 50-h experimental runs
to convert milled corn stover into fermentable sugars via a
dilute-acid chemical hydrolysis and to observe equipment op-
erability and performance [3]. Feeding equipment upstream
(colored orange in Fig. 1a) experienced motor load (torque)
upsets that were linked to varying feedstock quality fed from
the conical feed-hopper. This unit operated continuously but
was refilled approximately every 30 min by intermittent oper-
ation of upstream handling equipment. Equipment operators
described incoming feedstock variability and particle size and
morphology segregation within the conical feed-hopper be-
tween refill events, and these are hypothesized as causes for
equipment load variations, which pose a risk to equipment
reliability if not mitigated. Anomalous motor loads shown in
Fig. 1b occurred in sync with conical feed-hopper refill events
and lasted for several minutes each refill cycle.

Images of feedstock on a conveyor belt were captured by a
GoPro HERO6 cameramodifiedwith a rectilinear 5-mm f/1.4
lens set at f/8 at approximately 0.5-m focal distance above the
weigh belt. Two 500-W halogen lamps provided illumination,
and the camera automatically controlled exposure. Images
were taken every 30 s, which resulted in approximately
26,000 total images (examples shown in Fig. 2). Weigh-belt
edges were visible in the frames, with feedstock piled mostly
in the center of the belt. Images were cropped, leaving only the
center third of the frame where only feedstock was normally
visible for further analysis. Despite dust control measures,
most images taken during run 1 had a haze from lens dust
accumulation, whose implications are discussed further be-
low. Subsequent improvements sufficiently mitigated lens
dust for the other three runs.

Samples of feedstock were only available in 1-h incre-
ments, posing a challenge for quantifying feedstock quality
through particle size distribution, bulk density, or some other
attribute, so images could not be effectively labeled with this
information. Instead, actual equipment performance indicators
recorded by the process automation system (supervisory con-
trol and data acquisition, or SCADA) were used to label the
images. The cross-feeder (Fig. 1) is a simple live-bottom hop-
per that was operated at full speed as a conveyor. This unit
provided a low-noise motor load signal that varied significant-
ly with upstream conical feed-hopper segregation events. A
rolling-window quantile threshold of 70% was used to distin-
guish between normal and anomalous operation, and using a
calculated delay time between weight-belt and cross-feeder
behavior, associated images were labeled based on
timestamps as either TRUE (coincident with high cross-
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feeder torque) or FALSE (coincident with normal cross-feeder
torque), as depicted in Fig. 1b. Table 1 summarizes the labeled
images.

2.2 Neural network classification

Image classification remains a machine vision and image-
processing challenge. Though there are classical image-
processing techniques that can be used for classification, re-
cent advancements in deep learning have resulted in several
novel and efficient image classification models [9, 10]. With
the advent of convolutional neural networks (CNNs), it has
become possible to develop robust image classification and

recognition models [11]. We present a CNN-based approach
for image classification to detect anomalous feedstock while it
is in view of a camera in process equipment, such as the weigh
belt in our process. There are several standard CNN architec-
tures like VGG-16, VGG-19, ResNet, Inception, LeNet, and
Xception, which demonstrated good feature-recognition per-
formance on standard image data sets like ImageNet, CIFAR-
10, and COCO [12–14].

We generated convolutional feature vectors for each image
in our data set using the abovementioned CNN architectures.
The convolutional feature maps can be considered as the com-
pressed form of the input image data set, which can help the
other learning algorithms to better understand the data set.

Fig. 2 Examples of feedstock
images: a typical, b coarse
particles, c feeding upset, and d
obscured by dust. The center one-
third of each image was retained
for analysis

Fig. 1 a Process flow diagram.
Orange-colored units experienced
variation in their performance
caused by feedstock variability.
Photographs of feedstock were
captured every 30 s at the weigh
belt. b Plot of cross-feeder torque
during operation as example of
anomaly labeling; times when
torque exceeds the quantile value
are highlighted in orange (CH,
chemical hydrolysis; EH,
enzymatic hydrolysis)
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These convolutional feature vectors are then fed to fully con-
nected NN layers to perform classification or regression oper-
ations, depending on the application. Several real-time appli-
cations, including Facebook’s face detection and pedestrian
detection [15], have demonstrated the usefulness of CNN
layers and convolutional feature vectors rather than feeding
raw pixel intensities to dense layers or fully connected layers
to classify images [16]. Many image-clustering and image-
classification challenges have been solved using feature vec-
tors generated by neural networks that are pretrained on stan-
dard data sets like ImageNet or CIFAR [14, 16]. We used a
similar approach in our application to identify anomalous
feedstocks that may be leading to high motor loads in the
cross-feeder. Figure 3 illustrates the basic process flow imple-
mented for our application.

Stage 1. Convolutional neural network (CNN) feature vector
generation. When we inspected the data set, we
found that most of the images have feedstock dis-
tributed vertically toward the center third of the im-
ages. The leftmost and rightmost thirds of the im-
ages are dominated by the underlying weigh belt
and shadows of the feedstock pile. The images were
cropped to the central one-third as input for the
CNN.We extracted feature vectors by passing these
cropped input images to the CNN. We tried using
several CNN architectures but obtained the best per-
formance using ResNet (pretrained on the
ImageNet data set) rather than using other, more
standard, CNNs like VGG, LeNet, mobilenet, or
Xception.

Stage 2. Principal component analysis (PCA). We faced a
challenge of high dimensionality while handling
feature vectors obtained from CNN. PCA was used
to remove redundant features in the input data set
and thereby enhance the training process [17].
Dimensionality was reduced while retaining 70%

of the variance of the input feature vectors. Table 2
illustrates the reduction in dimensionality using
PCA for the tested CNN architectures.

Stage 3. Classification model. We needed to develop a
classification model that could efficiently classi-
fy the PCA output obtained from stage 2. We
initially tried classifying these feature vectors
using several binary classification techniques
like random forest classifier, logistic regression,
and support vector machine (SVM). We also
developed a time-series classifier using gated
recurrent unit (GRU) neural networks [18].
These are recurrent neural networks whose ar-
chitectures are very similar to long short-term
memory (LSTM) networks. GRUs and LSTMs
are advanced recurrent units that can perform
better than traditional tanh units. Although
GRUs and LSTMs generally give the same per-
formance in most of the real-time applications,
we chose a GRU network because the behavior
of the gradient descent performance curves dur-
ing the training process was more consistent
(without any sudden fluctuations).

2.3 Pixel matrix feature parameterization

Individual images that contained objects other than biomass
(i.e., air hose or operator hands) or were extensively obscured
by dust or shadows were identified by visual inspection.
Because these images did not lend themselves to image seg-
mentation and analysis and would skew the results, they were
removed from the data set for the subsequent analysis. In total,
878 images were removed based on multiple criteria
(Table S1).

Individual images from all four pretreatment runs were
analyzed using FIJI (ImageJ) [19]. The percent of the image
covered in biomass was calculated for each image before it
was cropped using thresholding that segmented the biomass
from the background of the conveyor belt (Fig. 2). Textural
features of cropped images were quantified using the plugins
SurfCharJ 1q [20] and GLCM Texture Too [21]. The
SurfCharJ 1q package calculated the root mean square devia-
tion (Rq), arithmetical mean deviation (Ra), skewness (Rsk),
kurtosis (Rku), lowest valley (Rv), highest peak (Rp), total
profile height (Rt), mean height of surface profile (Rc), mean

Fig. 3 Classification model
workflow (PCA, principal
component analysis)

Table 1 Labeled image
set True images 7519

False images 18,604

Avg. true/false cycle period 28.0 min

Avg. anomaly (true) length 7.0 min
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polar facet orientation (FPO), variation of the polar facet ori-
entation (MFOV), direction of azimuthal facets (FAD), mean
resultant vector (MRV), and surface area (SA). The GLCM
Texture Too calculated angular second moment, contrast, cor-
relation, inverse difference moment, entropy, inertia, homoge-
neity, prominence, variance, and shade.

Some images still contained varying amounts of belt in the
background even when cropped to a third of their original
width, depending on the biomass distribution pattern. These
distribution patterns were classified for each image into three
types (based on the cropped images). The particle distribution
patterns observed were (1) when the entire middle of the belt
was covered in biomass because of its even distribution, re-
ferred to as “covered”; (2) when part of the middle third of the
belt showed on either of both sides and/or corners, which
occurred when the biomass bunched together, referred to as
“clumped”; and (3) when gaps between the biomass occurred
so that the belt was visible across the entire belt, including
images that contained no biomass, referred to as “gaps”.

Labeling each image according to these distribution pat-
terns was of interest for two reasons. First, it enabled us to
determine whether these distribution patterns were significant
predictors of the TRUE/FALSE image labels. Second, these
labels were included as dummy variables when analyzing the
relationship of the textural features to the TRUE/FALSE var-
iables to control for how these distribution patterns would
affect the calculations of the textural features.

The textural data was analyzed using R statistical program-
ming to determine if the textural features, percent area cover-
age, and/or distribution patterns were predictive of the TRUE/
FALSE labels. Due to high multicollinearity found within the
textural data, only angular second moment (ASM), promi-
nence, shade, skewness (Rsk), mean height of the surface
profile (Rc), MFOV, FAD, and MRV were analyzed, as they
were sufficient to capture the variability of the rest of the data.
Descriptive statistics were calculated and are included in the
Supplemental Information (Table S2). The chi-squared test for
independence was used to determine if a significant relation-
ship between the biomass distribution types and TRUE/
FALSE images existed. It was also used to determine if a
significant relationship between the run number and the

TRUE/FALSE labels existed. Logistic regression analysis
was used to determine if the textural features, percent area
coverage, distribution patterns, and time were predictive of
the TRUE/FALSE labels. The textural features were standard-
ized to account for the range of their different magnitudes.
Forward stepwise regression based on Akaike information
criterion (AIC) values was used for variable selection to gen-
erate the best model when including the textural features. A
categorical variable of the run number was included in the
analysis to control for differences between data sets. A chi-
squared test confirmed that the model including this categor-
ical variable was statistically better than a model without it. A
Wald chi-squared test was used to test for the significance of
the variables in the logistic model generated by the stepwise
function. The odds ratios and confidence intervals were cal-
culated. The percent increase change in the odds for a one unit
increase of each independent variable was also calculated
based on standardized values. The level of statistical signifi-
cance used was p < 0.05.

3 Results and discussion

3.1 Neural network models

After applying PCA on convolutional feature vectors obtained
from the pretrained CNN, the next task was to develop a
classification model that can pick anomalous feedstock from
the given data set. We initially developed several binary clas-
sification models using random forests, logistic regression,
and SVM. The confusion matrix of the model with random
forest classifier in stage 3 of the workflow is shown in Fig. 3.
Random forest classifier is an ensemble learning technique
that takes advantage of a large number of individual decision
trees [22]. Each individual tree in the random forest spits out a
class prediction, and the class with the most votes becomes
our model’s prediction.

Because of the range and length of high motor torque time
periods, up to 6 min instead of a short consistent interval of
maybe 45 s, a simple binary classification method did not give
reliable classification performance (Fig. 4a). We therefore mi-
grated to using time-series classifiers using recurrent neural
networks, namely, LSTM and GRU (Fig. 4b).

Quantile value used for automated image TRUE/FALSE
labeling was also assessed to explore the sensitivity of the
model performance. We initially used 70% quantile as a
threshold value to pick instances of anomalous feedstock.
We examined the model performance by labeling the data
set using different quantile values (e.g., 60%, 65%, 75%,
80%). When the model is trained using 60% or 70%
quantile-labeled images and tested using the same set, perfor-
mance was the same in terms of model accuracy, precision,
and recall (Fig. 5). Interestingly, if a model is trained using a

Table 2 Output dimensions of several CNNs

CNN architecture Shape of output
feature vector

Feature vector
size after PCA

VGG-16 (7,7,512) (1,2555)

ResNet (7,7,2048) (1,3168)

Inception v3 (5,5,1536) (1,488)

DenseNet (7,7,1024) (1,2238)

Xception (7,7,2048) (1,839)
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data set labeled with 60% quantile value and then tested on a
data set labeled with 70% or 80% quantile, we observe a
marked increase in model performance (Fig. 5).

A large number (approximately 1/8) of the total images
were obscured from dust accumulation on the camera lens,
which occurred during the latter half of the first of four runs
before proper dust mitigation. In order to check the model
sensitivity to the dusty images in our data set, we manually
identified and removed dusty images and retrained the model
from the edited subset. We observed no significant change in
the model performance when the dusty images were removed,
which suggests that the model is relatively insensitive to dust.
This is likely because PCA applied in stage 2 discards con-
stant features like the presence of dust in the input data set.

In real-time applications, it is important to alarm the oper-
ator or control system when anomalous feedstock has been
detected. It should be acceptable to raise an alarm with a
certain delay, depending on the application. Eventually, the
important element is that the model should go to alarm state in
the presence of anomalous feedstock with enough advance
warning to avoid jamming process equipment such as the
pug mill, cross-feeder, or plug-screw feeder, as in our appli-
cation. This suggests that a negotiable delay in raising an
alarm is likely acceptable, depending on the application.
With this idea in mind, we evaluated model performance by
considering false negatives as true positives for a certain

interval of time before and after the predicted alarm state. To
explore this further, we employed thresholds as indicated in
Fig. 6. A “left threshold” applies a negotiable amount of time
before the alarm state in which false negatives can be consid-
ered as true positives. A “right threshold” applies a negotiable
amount of time after the end of a predicted alarm state in
which false negatives can be considered as true positives.
Figure 6 illustrates how applying this technique greatly re-
duced false-negative results. The cyclical nature demonstrated
in the motor loads plotted in Fig. 1b is a probable reason for
this enhanced performance when a threshold is applied. The
process we observed inherently occurs in a cycle with variable
period and pulse width instead of a purely stochastic process.
Therefore, this applied filter allows for higher discretion in
model prediction and greater performance if the user of the
results can handle a small delay on the order of a couple
minutes.

3.2 Pixel matrix feature parameterization

Plots of textural features and percent area coverage of
each image versus the time that the image was taken—
with TRUE-labeled images shown in red and FALSE-
labeled images show in gray—display the trends in im-
age analysis-based features over the course of the bio-
mass processing run (Fig. 7).

Fig. 5 Model performance sensitivity toward image true/false
labeling quantile value. All models were trained with image labels deter-
mined above/below a cross-feeder torque quantile value of 60% and then

tested with (a) images labeled using the same quantile value, (b) images
labeled using a 70% quantile value, and (c) images labeled using an 80%
quantile value

Fig. 4 Model performance
confusion matrices with random
forest binary classifier (a) and
with GRU network time series
classifier (b)
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Chi-squared tests were first used to analyze if the dis-
tribution patterns and run numbers held significant rela-
tionships with the TRUE/FALSE labels to determine if

these variables needed to be included in the logistic re-
gression analysis. The distribution patterns of either the
middle third of the belt being completely covered,

Fig. 7 Plots of textural features and percent area coverage of each image versus the time that the image was taken, with TRUE-labeled images shown in
red and FALSE-labeled images shown in gray

Fig. 6 Model performance when the occurrence of anomalous feedstock
is generalized. (a) Native model prediction, (b) false-negatives consid-
ered true-positives before/after limited time step threshold range, (c) false-

negatives considered true-positives across infinite time steps. Each time
step is approximately 30 s
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showing clumps of biomass, or having gaps showing were
found to have a significant relationship with the TRUE/
FALSE label (χ2 = 228, df = 2, p = 2.2e−16) (Table S3). A
marginally significant relationship existed between the
TRUE/FALSE label and the run number (χ2 = 6.73, df =
3, p = 0.081) (Table S3). The run number was still includ-
ed in the logistic regression analysis based on the obser-
vation that plots of the textural features versus time varied
between runs (Fig. S1–S9).

Forward stepwise regression was used on the textural fea-
tures of interest (angular second moment, shade, prominence,
Rsk, Rc, MFOV, MRV, and FAD), time, the percent area
covered by biomass, the distribution pattern categories, and
run numbers. All these variables were included as significant
in the model generated by the stepwise regression. The model
coefficients for all variables except for time and run #2 were
found to be significant (Table 3). Inclusion of categorical var-
iables requires that one be used as a reference. The completely
covered distribution pattern was used as a reference as well as
run #4. Experimental run #4 was chosen as the reference after
examining scatterplots of the textural features versus time for
each run (Fig. S1–S9). A Wald chi-squared test determined
that all explanatory variables except time were significant
(Table S4). The model coefficients indicate that ASM, prom-
inence, Rc, MRV, and percent area covered in biomass are
negative predictors for the TRUE labels, while shade, Rsk,
MFOV, and FAD are positive predictors. This means that
increases in ASM, prominence, Rc, MRV, and percent area

are associated with a decrease in the odds of an issue in con-
veyance, while increases in shade, Rsk, MFOV, and FAD are
associated with an increase in the odds of an issue in convey-
ance arising. It is worth noting that these relationships only
hold true when all other variables are held constant.

The percent change in the odds of a TRUE label occurring per
a change of one standardized unit was calculated based on the
odds ratios that the regression model coefficients generated
(Table 4). These results show that relative to when the belt is
completely covered in biomass, the clumping distribution is
about 26% less likely to be associated with causing an issue in
conveyance, and the distribution pattern consisting of gaps is
about 82% less likely. When examining the odds ratios based
on the standardized textural features, the odds ratios indicate that
increases of one standardized unit of angular second moment,
prominence, Rc, and MRV are associated with about a 23%,
18%, 32%, and 26% decrease in odds of causing a TRUE label,
respectively. The odds ratios indicate that shade, Rsk, MFOV,
and FAD are associated with a 40%, 38%, 93%, and 10% in-
crease in odds of causing a TRUE label, respectively. Every
standardized unit increase of percent area coverage corresponds
to a 41% decrease in odds of an issue in conveyance being
caused. Example images of biomass on the weigh belt when
these textural features were at the median of these textural pa-
rameters for their respective TRUE or FALSE labeled groups are
shown in Fig. 8. While the images look similar overall, the
TRUE examples display more stringy, high aspect ratio particles
and more clumping, as evidenced by the shadowed pockets.

This study presents a novel finding that quantification and
statistical analysis of textural features of images of piled biomass
can offer insight into biorefinery operations such as the convey-
ance of biomass between units. The textural features measured
from the images were found to be significant predictors of the
TRUE and FALSE image labels, with angular second moment,
prominence, Rc, and MRV being negative predictors and shade,
Rsk, MFOV, and FAD all being positive predictors of anoma-
lous biomass.

ASM is one of the better understood and broadly used textural
characterization features. It is a measure of textural uniformity of
an image that measures the local uniformity of gray levels; the
more similar nearby pixels are, the larger ASM is. This indicates
that biomass with high local uniformity is less likely to cause
issues in conveyance. Shade and prominence each characterize
the tendency of clustering of pixels in a region of interest [23] and
are both measures of asymmetry, with higher values indicating
more asymmetry. They are also both less used and less under-
stood GLCM parameters [21, 24]. The asymmetric clustering
that shade describes was found to be positively related to issues
in conveyance, while that of prominence was found to be nega-
tively related. This inverse relationship has been observed in
previous studies [23].

Rc is the mean height of the surface profile elements, which
in a grayscale image ranges from 0 to 255, with 0 being black

Table 3 Summary of model generated using standardized independent
variables to account for their different orders of magnitude

Est. Standard error z value Pr9 > |z| Significance

Intercept − 0.68 0.048 − 14.3 < 2 × 10−16 ***

Hour 0.00 0.00 1.59 0.112 *

Clumped − 0.29 0.05 − 5.55 2.9 × 108 ***

Gaps − 1.71 0.10 − 17.1 < 2 × 10−16 ***

Run #3 − 0.47 0.05 − 10.3 < 2 × 10−16 ***

Run #2 − 0.03 0.05 − 0.53 0.594 *

Run #1 − 0.47 0.10 − 4.81 1.5 × 10−6 ***

ASM − 0.27 0.04 − 6.01 1.8 × 10−9 ***

Prominence − 0.20 0.04 − 4.47 7.7 × 10−6 ***

Shade 0.34 0.04 7.92 2.4 × 10−15 ***

Rsk 0.32 0.03 10.0 < 2 × 10−16 ***

Rc − 0.39 0.05 − 8.62 < 2 × 10−16 ***

MFOV 0.65 0.07 10.0 < 2 × 10−16 ***

FAD 0.09 0.02 5.62 1.9 × 10−8 ***

MRV − 0.30 0.02 − 14.4 < 2 × 10−16 ***

Area − 0.53 0.03 − 20.4 < 2 × 10−16 ***

***p = 0

*p = 1

All variables except time and run #2 have significant coefficients

5746 Biomass Conv. Bioref. (2022) 12:5739–5750



and 255 being white. The negative relationship that Rc has
with the TRUE labels indicates that darker images are more
likely to correlate with issues of poor conveyance. This same
trend is indicated by the positive relationship that Rsk has with
the TRUE labels, as positively skewed image matrixes result
from images that have more dark pixels than light pixels. This
association of darker images with issues in conveyance indi-
cates that images with more extensive shadows in them are
indicative of biomass loading patterns of concern. This makes
sense because the images with large shadows in them oc-
curred when larger clumps of biomass were present.

MFOV is a measurement of the variations in polar facet
orientation of an image, which is a measure of the amount of
variation in the z direction of the image as is indicated by the
variations in gray levels [25]. The relative heights within an
image are interpreted as a function of grayscale variation. The
positive relationship between MFOV and the TRUE labels
indicates that images with greater variation through the image
of relative heights of pixels are related to issues in convey-
ance. This indicates that biomass distributions that are less
uniform in the z plane but more disordered are more likely
to cause issues in conveyance. FAD is a measurement of the
direction of azimuthal facets, which represents the direction of
local facets in the plane of the image [25]. MRV is a measure
of the central tendency of the distribution of orientation direc-
tion, with values closer to zero indicating random distribution
of orientations and values closer to 1 indicating that orienta-
tions of vectors are similar [26]. The negative relationship of

MRV with issues in conveyance indicates that when biomass
is distributed randomly andwithout a more dominant gradient,
it is less likely to cause issues with conveyance.

The discovery that percent area coverage of the belt has a
negative relationship with TRUE labels was unexpected. This
indicates that when the belt is completely covered, there is less
of a chance of an issue in conveyance arising. However, themass
being conveyed on the belt is kept constant, perhaps indicating
that either higher-density biomass distributions or biomass distri-
butions that stick together such that they pile up instead of side-
ways could be responsible for issues in conveyance. This finding
was contradicted by the fact that the one-third cropped images
that showed the belt (either because of a gap or because a side/
corner showed) were less likely to cause issues in conveyance
than images that were completely covered with biomass. This
possiblymay have occurred because the percent surface area was
calculated based on images that were not cropped; the reduction
in conveyance problems were likely due to a short-lived reduc-
tion in feed rate and associated reduced motor loads.

An unexpected challenge that arose when analyzing the rela-
tionship between the full set of 23 textural features and the
TRUE/FALSE images was a high degree of multicollinearity.
Variables were eliminated with the goal of retaining as many
as possible, and this presents its own challenge as several of
the textural features left were ones that are less broadly used
and less documented in the literature.

The lack of significance of the variable of time in predicting
issues in conveyance stands out as particularly informative

Table 4 Percent change in odds
of a TRUE label occurring per
change in independent variables

Percent change in odds of TRUE label per one standardized unit increase

Odds ratio 0.025% 0.975%

Intercept − 49.6 − 54.1 − 44.6
Hour 0.2 0.0 0.4

Clumped − 25.5 − 32.9 − 17.4
Gaps − 81.9 − 85.1 − 78.0
Run #3 − 37.7 − 43.1 − 31.9
Run #2 − 2.5 − 11.1 7.0

Run #1 − 37.8 − 48.8 − 24.5
ASM − 23.3 − 29.7 − 16.4
Prominence − 18.1 − 25.1 − 10.7
Shade 40.4 29.1 52.7

Rsk 38.0 29.6 47.1

Rc − 32.3 − 38.1 − 26.1
MFOV 92.5 69.4 118.8

FAD 9.5 6.1 13.1

MRV − 25.6 − 28.5 − 22.5
Area − 41.2 − 44.1 − 38.1

Distribution patterns of clumps and gaps are less likely to cause TRUE labels than if the center of the belt is
completely covered. Increases in ASM, prominence, Rc, MRV, and percent area coverage will cause a decreased
chance of a TRUE label, while increases in shade, Rsk, MFOV, and FAD are associated with an increased chance
of a TRUE label
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because this shows that the issues in conveyance have to do with
the nature of the biomass itself (the textural features, how much
of the belt it covers, and how evenly it is distributed on the belt).
This highlights the utility for lignocellulosic biorefineries to un-
derstand the nature of—andmeasure in real time—the variability
of the biomass material they handle.

4 Conclusions

Two methods of quantifying the handling quality of milled dry
biomass feedstock using photographic images were developed
and analyzed for performance. A neural network composed of
convolutional and recurrent networks coupled to a fully connect-
ed binary classifier yielded the most favorable performance de-
tecting anomalous feedstock, with accuracy reaching 63–97%
true positive prediction depending on secondary application of
a hysteresis filter. Pixel matrix feature parameterization using
statistical methods applied to the 2D image pixel value vectors

offers complementary insight into what features are important in
feedstock image classification. The textural features that were
significant predictors of image labels were angular second mo-
ment, prominence, mean height of surface profile (Rc), mean
resultant vector (MRV), shade, skewness (Rsk), variation of the
polar facet orientation (MFOV), and direction of azimuthal facets
(FAD). Expansion of these models is recommended across a
wider variety of labeled feedstock images of different qualities
and species to develop a more robust tool that may be deployed
using low-cost cameras within biorefineries.
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