Modeling heat transfer and reaction kinetics of biomass in pyrolysis feeding systems

Joseph Samaniuk Jonathan Stickel Tim Dunning Daniel Carpenter **Jessie Troxler**

November 10th, 2021

APUP

Motivation: Energy & Transportation

- Transportation accounted for 26% of energy use in the US
- Biofuels are a renewable, carbon neutral source of combustible fuel

Processing Challenges

- Bio-oil immiscible with current transportation fuels
- Low output of fuel products
- Difficulty handling biomass
- Blockages in biomass feeders

Auger Feeders

- Most common in industry
- Used with other feeder types
- Wide range of feed rates

Problem Statement

Problem Statement: During the feeding of pyrolysis reactors, particle agglomeration and plugging of the screw auger has been observed.

 $z = 0$ $z = L$

Modeling Methods

Heat Transfer

- Runge-Kutta
- Bulk scale

$$
\frac{\partial \rho C_p T}{\partial t} = -\nabla \cdot (\rho C_p T v) - (\nabla \cdot q) + (-\Delta H) \left(\frac{\partial \rho}{\partial t}\right)
$$

Kinetics

- Multiscale problem
- Debiagi, et al. 2018
	- Speciated
	- Multistage

1D Heat Transfer Equations

System of equations Screw rod: $0 = |\alpha_r|$ d^2T_r $\frac{d^{2}}{dz^{2}}\Big|^{2} \gamma_{rb} A_{r}(T_b-T_r)$ Biomass: $0 = |\alpha|$ d^2T $\frac{1}{dz^2}$ + dT \overline{dz} $+ \gamma_{br} A_{br} (T_r - T_b) + \gamma_{bc} A_b (T_c - T_b)$ Inner cooling loop: $0 = |\alpha|$ d^2T_q $\frac{1}{dz^2}$ + $dT_{\rm d}$ \overline{dz} $+ \gamma_{cb} \tilde{A}_{cb} (T_b - T_c) + \gamma_{cd} \tilde{A}_c (T_d - T_c)$ Outer cooling loop: $0 = |\alpha|$ d^2T $\left. \frac{d^2}{dz^2} \right|$ $dT_{\rm g}$ $\frac{dz}{\sqrt{z}}$ $+\gamma_d A_{dc} (T_c - T_d) + \gamma_{da} A_d (T_0 - T_d)$

1D Temperature Profiles

Comparison with Experimental

11

- **Base Case**—normal operating parameters
- **Double Vb**—doubled biomass velocity
- **Water coolant**—water instead of air in the cooling loop
- **Opposite cooling direction** switching the entrance from the inner to the outer layer

Biomass Temperatures and Kinetics

Kinetics with Biomass Temperatures

Conclusions

- Developed 1D temperature profiles
- Changing operating parameters has little effect
- Reactions occurring in the auger feeder

Next Steps

- 2D temperature profiles
- Experimental validation
- Rheology and tribology

Thank you!

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE -AC36 -08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid -up, irrevocable, worldwide license to publish or reproduce the published form of this work, or

Biomass Feedstocks

• Woody biomass

- Even size distribution
- Regular particle shape

• Sludge

- High moisture content
- High contaminant concentration

Dai, 2012

Biomass Rheology

- Shear thinning, viscoelastic solid
- Difficult to model
- DEM, FEM, MPM

COLORADOSCHOOLOFMINES

Heat Transfer Models

- Modeling
	- Runge-Kutta
	- Matrix methods
	- Finite difference

• Particle scale

$$
\frac{\partial \rho C_p T}{\partial t} = -(\nabla \cdot q) + (-\Delta H) \left(\frac{\partial \rho}{\partial t}\right) \tag{1}
$$

• Bulk scale

$$
\frac{\partial \rho C_p T}{\partial t} = -\nabla \cdot (\rho C_p T v) - (\nabla \cdot q) + (-\Delta H) \left(\frac{\partial \rho}{\partial t}\right)
$$
 (2)

1. Babu. Biofuels, Bioproducts and Biorefining, 2: 393-414 (2008)

Pyrolysis Kinetics

- Multiscale problem
- Models
	- Global or speciated
	- Single or multistage
	- Phase changes
- Debiagi Model

Perkins, et al. Renewable and Sustainable Energy Review, **COLORADOSCHOOLOFMINES** Volatiles + Gas Biomass **| Activated Biomass** Char + Water

Working Hypothesis

Heat from the reactor is raising the temperature of the biomass in the feeder, resulting in preliminary decomposition reactions, changing the rheology of the biomass, making it less compliant.

Accomplishments to Date

Kinetic Modeling

- Model developed by Debiagi, et al, 2018
- Medium pyrolysis
- Tested at constant temperature

Species of Interest

Diterpenoid Resin Acid **Abietic Acid** Neoabietic Acid Palustric Acid **Pimaric Acid** Dehydroabietic Acid Levopimaric Acid Isopimaric Acid

1. Harman-Ware, et al. Journal of Analytical and Applied Pyrolysis, 124: 343-348 (2017)

2. Debiagi, et al. Journal of Analytical and Applied Pyrolysis, 134: 326-335 (2018)

Proposed Research

2D Temperature Profiles

- Screw auger
- Finite difference method
- $\frac{1}{220}$ T°C • In agreement with 1D

 -470

- 420

- 370

 -320

 -270

- 170

- 120

- 70

 -20

Aim

Biomass Compositional Analysis

- High-Performance Liquid Chromatography (HPLC)
- Species of interest
- Verify kinetic models
- Verify temperature profile models

Rheology Models

- DEM
- Four scenarios:
	- 1. Control
	- 2. Temperature only
	- 3. Temperature and Kinetics
	- 4. Kinetics only

A v-shape hopper discharge simulation

Aim 3

Rheology Measurements

- DHR-3 rheometer
- Partially reacted biomass
- Unreacted biomass

Expected Outcomes

Timeline

Expected Outcomes

- Understand the dominant heat transfer mechanism.
- Determine the production of intermediates and products.
- Develop a relationship between kinetics and rheology.

Pyrolysis

Pyrolysis Reactors

- Retaining energy
- Feedstock considerations
- Operating conditions

TECHNOLOGY STRENGTH

Full Length of Auger

Original Doubled Biomass Velocity

Original Cooling Flow in Opposite Direction

Original Water as the Coolant

Species Analysis

DEM Info

Table 1. List of DEM Model Parameters Pertinent to Biomass Particles^a

Rheology Measurement Info

Rheology vs. Tribology

• Telling viscosity from friction

