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ABSTRACT 

Geothermal Operational Optimization with Machine Learning (GOOML) is a transferable and 
extensible component-based geothermal asset modeling framework that considers complex 
steamfield relationships and identifies optimization prospects using a data-driven approach. We 
have used this framework to develop digital twins that provide steamfield operators with an 
operational environment to analyze and understand historical and forecasted power production, 
explore new steamfield configuration possibilities, and seek optimal asset management for real 
world applications. 

The GOOML modeling software is built on a generic component-based systems framework that 
allows for both historical and forecast analysis. A GOOML model can perform historical data-
assimilation using first-principal thermodynamics to create a meaningful data model. Historical 
production data can then be coupled with a forecast framework to train machine-learning models 
of steamfield components to predict future outputs. This modeling environment enables digital 
exploration of steamfield design configurations and operational scenarios. 

GOOML digital twins have been developed for steamfields in New Zealand and the United States 
representing differing power generation and field conditions. These digital twins have been 
validated by comparing hindcast predictions against historical production data. Reinforcement 
learning experiments were conducted to demonstrate the ability to programmatically explore the 
operations space using machine learning agents. Our initial results are compelling; two to five 
percent increases in annual energy production were demonstrated by the GOOML models with no 
additional infrastructure build required. 

GOOML offers a new approach to geothermal operations by applying state-of-the-art machine 
learning algorithms, comprehensive data analytics, and interaction with digital twins. Through 
application of these tools, operators will realize greater availability and higher net generation 
which will increase the cost effectiveness of geothermal energy projects.  
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1. Introduction 
The development of geothermal fields for power production is a capital and resource intensive 
endeavor. Drilling, construction, and commissioning are all focused on bringing plants online and 
delivering power to the grid. Once this initial phase has passed asset issues begin to emerge. The 
surface infrastructure may need additional changes or redesign and additional wells may be needed 
to fuel stations. As a result, aged geothermal operations may be run at conditions that are far from 
the original design constraints. Operators are constantly searching for ways to optimize their 
infrastructure assets while minimizing additional capital or operational expenditure. For this 
reason, operators will look to their datasets for trends, inefficiencies, and opportunities to enact 
changes that may be beneficial to the operation of their fields. 

Geothermal power projects must maintain development flexibility to manage production and 
environmental requirements and limits over time, and due to their long-term nature, surface 
infrastructure becomes more complicated with an increasing mix of new and old technologies, 
maintenance needs, changes to management regimes and commercial priorities, as well as socio-
political contexts. Thus, managing data and information from geothermal assets, in a systematic 
and holistic way has always proven to be a challenge for operators. 

This need to interrogate and understand complex data from a variety of sources is what has yielded 
the GOOML project. By using a data-science approach coupled with significant knowledge of 
geothermal operations, an opportunity exists for a new tool to be developed that operators can use 
to test scenarios and challenge current paradigms. Through a multi-disciplinary approach, we can 
provide insight and scrutiny of data to minimize disruption from maintenance, both planned and 
unplanned, and provide a comprehensive view of the operation through interrogation of data at a 
single source. GOOML is a digital environment that we have developed that allows the 
interrogation and manipulation of geothermal operational data with the aim to minimize down-
time, identify anomalous events and provide a scenario-analysis tool all in a digital environment. 

This platform will enable geothermal operators to interrogate their historical performance and 
compare to optimal conditions to find gaps or target areas for optimization. Further, through the 
project we have developed several tools that could be used in building hypothetical scenarios, help 
guide integrated steamfield design and provide a platform to test for multiple operational scenarios. 
We will discuss the data sources, model architecture and machine learning approach, initial results 
of the digital steam field twins, model exploration, before finally providing conclusions and 
suggested future work. 

2. Data Sources 
We obtained data sourced from real-world geothermal operations from Contact Energy’s (Contact) 
Wairakei Field, Ngati Tuwharetoa Geothermal Assets’ (NTGA) Kawerau Field and Ormat 
Technologies’ (Ormat) McGinness Hills Field.  These data span multiple years and cover nearly 
all relevant operating conditions for modern geothermal fields.  The timespans and operating 
conditions covered by these data, as well as the complexity of the steamfields selected, were 
critical to the development of GOOML.  Comprehensive datasets incorporating as many real-world 
operating conditions and steamfield configurations as possible were necessary to properly inform 
machine learning (ML) experiments and reduce potential training biases. Datapoints are sourced 
from several steamfield components, including but not limited to wells, pipelines, flash plants 
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(separators), and turbine-generators (T/Gs). The breakdown of this data by component type is 
shown in Figure 1.  

To properly build a digital twin using the GOOML framework the operational data was curated 
into a consistent time-series format. Data curation was a recursive process that consisted of the 
following steps: 1) acquiring data from power plant operators, 2) digesting data to get a basic 
understanding  of what is included, 3) transforming data into a machine-readable format so that it 
may be visualized, quality checked, and eventually used in the GOOML models, 4) simple data 
cleaning to resolve issues that may not be solved with additional data, 5) identifying significant 
data gaps and apparent anomalies, and 6) discussion with modelers to identify additional data 
needs and to resolve any data gaps or anomalies. 

 

Figure 1: Initial snapshot of the type of data used in development of GOOML models with a heavy focus on wells and steam-
water separators (flash plants). 

3. Model Architecture and Machine Learning Approaches 
GOOML is a modular, component-based model that allows for the creation of a digital twin for 
any steamfield through the configuration of easily customizable digital components that function 
as extensible building blocks for replicating real-world steamfield components such as flash plants, 
join junctions, and generators. These generic building blocks are encoded with the basic data 
streams required to describe their respective components. For example, a flash plant component is 
defined by its two-phase input stream, its separated output flows and enthalpies, and its physical 
design and dimensions. Best practice object-oriented software design is used to create abstract 
building blocks on which historical data assimilation models or future forecast regression models 
can be built. Continuing the example, our flash plant forecast model is a machine-learning based 
regression model that is based on an abstract flash plant component template, which is in turn 
based on a generic split junction component. Various component models can then be connected 
into a component-based systems model as shown in Figure 2. This generic component-based 
systems framework is what makes GOOML a powerfully generic and extensible tool. 
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Figure 2: An overview of how the GOOML component models are connected within a simplified steamfield system 
network. 

3.1 Historical Data Model 

The historical data model is a data assimilation framework built on the generic GOOML 
component-based systems modeling ecosystem. Using this model is the first step an analyst would 
take to build a GOOML model for a steamfield.  

First, a system configuration is developed to organize the general topology of the steamfield 
network as shown in Figure 2. Input time-series data is automatically assigned to each component 
object within the system (e.g., a well gets assigned its respective pressure, mass flow, and enthalpy 
data streams). The historical data model attempts to enforce conservation of mass and energy 
equations by manipulating two-phase flow estimates while preserving trusted and accurate single-
phase flow measurements. The model also fills in any “gaps” using first principal thermodynamics. 
For example, the two-phase properties at the inlet of a flash plant are often not directly measured. 
The historical data model automatically calculates these properties based on the upstream mass 
and energy flow coupled with a calculation of the pressure drop across the flash plant. The result 
is a cleaned and standardized dataset in a relational structure from which algorithms can be 
developed and trained.  

3.2 Regression Modelling Approaches for Forecasting and Hindcasting 

Using the historical data model as a foundation, regression models can be trained to predict how 
each component interacts with steam, liquid, or two-phase flow. A forecast system model can 
utilize several regressions specific to individual steamfield components or use a generic model that 
represents a whole class of components. Once the models are trained, the forecast system can be 
run to predict future operations or to hindcast historic operations for validation purposes. It is 
important to note that the GOOML forecast system cannot predict every parameter, and basic 
inputs are still needed, such as estimated well head pressures.  
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The GOOML forecast system typically starts with an estimate of the well head pressure that is 
used in conjunction with Tracer Flow Testing (TFT) equations to estimate a well’s two-phase mass 
and energy output. From there, the forecast system operates as a simple feed-forward network. The 
fluid flow is propagated throughout the system, and downstream component-based regression 
models perform thermodynamic operations on the fluid. Eventually, the fluid flow reaches the last 
components in the network, typically some sort of power-generating unit or steam end-user. The 
regression models for these components yield an estimate of power or steam production that serves 
as a metric for overall steamfield performance. Examples of this can be seen in subsequent 
sections. This method for calculating a forecast using this generic systems approach allows 
exploration of different component interactions, uncertainty ranges and hypothetical scenarios.  

3.2.1 Component-Specific Regression Modelling Approaches 

We have used several different approaches to build regression models for the respective steamfield 
components. In many cases, the same approach was not suitable for each component and so the 
methods used are elaborated below. 

Wells are forecasted using linear or exponential mass and enthalpy decline trends based on 
historical TFT measurements. Well head pressure is typically estimated from recent historical data 
during nominal operations or can be taken directly from the historical record for a pure validation 
of the other regression models. Using these field-derived datasets, the regressions are trained to 
give an accurate representation of how performance from wells decline over time within the 
forecast model.  

Flash plants (steam/water separators) are interesting components that utilize phase change and 
mechanical separation to convert a two-phase fluid flow into a high-quality saturated steam and 
saturated water outputs. The complex physical processes happening in a flash plant are difficult 
to model using simple regression methods. As a result, we found Deep Neural Networks (DNNs) 
to be a useful tool to model flash plants.  

The model architecture for the flash plants has three hidden layers each with 128 nodes. The layers 
are fully connected but trained with 50% dropout. All nodes use the rectified linear unit (RELU) 
activation which was chosen based on our attempt to linearize some of the training features. We 
originally performed a full gaussian hyperparameter search to optimize the model architecture but 
decided against the “optimized” model architecture because it resulted in saliency maps that were 
completely unexplainable, non-intuitive, and likely non-physical. This “final” architecture of 
5x128 with 50% dropout resulted in similar validation error compared to the “optimized” model 
but also produced explainable and highly intuitive saliency maps that we deemed to be more likely 
representations of the physical phenomena. 

The inputs to this model component are mass flow, enthalpy, pressure, theoretical pressure drop, 
theoretical flash fraction, the cyclone design number, and the input velocity. The DNN predicts a 
non-dimensional separation efficiency based on these inputs. For this work, we define the flash 
plant non-dimensional separation efficiency as the steam output mass flow divided by the total 
input mass flow. This non-dimensional number ranges from zero to one and can be used as a direct 
multiplier on the input flow to calculate the steam output flow.  
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Turbine Generators: Solving for T/G relationships proved to be an initially challenging problem 
as simple steam-flow-to-power relations (e.g. “Willans curves”, see Church 1928) typically used 
in turbine design did not accurately reflect the steam to power output relationships. We also 
attempted to fit a sigmoid relationship with little success. For GOOML, a multi-linear regression 
with input features being mass flow, enthalpy flow, heat sink temperature, and temperature 
differential yielded the most accurate fit to historical conditions.  

Binary units, like the T/G relationships proved not to be as simple as a mass flow and output 
relationship. To fit the historical model, we had to integrate another multi-linear regression that 
incorporated: enthalpy flow, temperature differential and mass flow contribution fractions from all 
upstream flash plants. The resultant relationships provided relatively good model accuracy to 
forecast the historical conditions.  

3.2.2 Model Assumptions 

It is important to discuss the assumptions that are made by simplifying a complex steamfield to 
the component-based system network shown in Figure 2. Because of the magnitude of the 
engineering complexity in a large steamfield, it is impractical (and likely nearly impossible) to get 
reliable data for the full system. Every pipe is not fully instrumented for all thermodynamic 
variables and every pipe does not have readily available design data (e.g. isometric drawings, 
dimensions, and hydraulic loss information).  

For example, by using basic thermodynamics, we have attempted to solve for missing 
thermodynamic variables that would ideally be measured directly. Some data gaps inevitably exist 
in operational data (e.g. sensor failure, data loss, erroneous readings, etc.) and we have used 
empirical solutions to fill these gaps; the results using this approach are encouraging and are what 
we would consider as complete as possible.  

Pressure is an important parameter that is often not measured throughout the full steamfield. For 
example, when working with a forecast model, the well head pressure is often simply assumed to 
be a nominal operating discharge pressure, unless the well is fitted with a control valve. 
Immediately downstream, calculating two-phase pressure drop between well and a flash-plant inlet 
would require significant information on both the quality of the two-phase fluid and the physical 
design of the piping system. Even then, calculations of two-phase pressure drops are often 
estimations at best. Instead, we have made the simplifying assumption that operators will be able 
to maintain a setpoint pressure at the turbine inlet. That pressure should be close to the steam 
output pressure at the flash plant (based on estimates of single-phase flow pressure drop from the 
flash plant to the turbines). We then iteratively solve for the pressure drop across the flash plant to 
get the inlet pressure. Combined with the enthalpy estimates delivered by the wells, this fully 
defines the thermodynamic state at the flash plant inlet. 

4. Initial Results by Steam Field Component 
The results presented here use the GOOML forecast model with historical well pressures, turbine 
pressures, and operator actions to validate the accuracy of the forecast models against historical 
data. This practice of “hindcast” validation shows how accurate the GOOML models can be with 
nominal data inputs.  
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Through an iterative process, we have been able to achieve a close match with our forecasts to that 
of the actual field performance. Overall, we can match system outputs in the model with relatively 
good agreement with the original datasets; c.a. 6.5% mean absolute error (MAE) for a two-year 
mass-take measurement.  Table 1 elaborates the MAE and the mean bias error (MBE) for the 
significant field components of the Wairakei Steamfield.  

It should be noted that the GOOML forecast model can accept bias correction terms to better match 
a trained regression model to historical data. However, in the interest of a truthful evaluation of 
model performance, no manual bias correction was performed here. 

 

Component MAE MAE (%) MBE MBE (%) 
Total Mass-Take 774 tonnes/hour 7.95 -367 tonnes/hour -3.77 
Total Separated Steam Flow 130 tonnes/hour 5.11 -79.73 tonnes/hour -3.11 
Steam Turbine Power 
Generation 

17.16 MWe 5.35 -13.98 MWe -4.36 

Binary Generation 1.29 MWe 11.55 1.11 MWe 9.93 
 

Table 1: Mean Error Measurements of the Forecast Model for the Wairakei Steamfield Major Components over a 3-year 
period. Negative bias errors imply that the GOOML forecast model is under-predicting. 

4.1 Wells 

Production wells comprise the most upstream portion of the GOOML environment. Wells can be 
either single phase liquid, two-phase or dry steam wells. The wells are forecasted using linear or 
exponential mass and enthalpy decline trends based on historical TFT measurements. Well head 
pressure is typically estimated from recent historical data during nominal operations. (Figure 3). 

 
Figure 3: Forecast matching from the historical model operational data for a well and the future forecast decline. 

By enforcing conservation of mass and enthalpy in the system, we have been able to create models 
of wells that match historical operations. This tool allows us to model well outputs and fluid flows 
to downstream components in the forecast space. This is seen in Figure 4 where a total field mass 
extraction is shown. There is relatively good agreement between actual (historical model) and 
forecast (forecast mean) models to represent the geothermal operation of the wells we have 
interrogated. By achieving good historical matching from the wells, we can then look to optimize 
components further downstream, specifically flash plants and generators.  
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Figure 4: Results of mass take from 3 years of historical data coupled with the forecast model mean results. Overall a 
good agreement with the historical model shows a mean absolute error (MAE) of 7.9%. 

4.2 Flash Plants 

Deconvoluting a geothermal flash plant process required significant effort to develop models that 
can accurately represent the conditions seen at the Wairakei and Kawerau Fields. As described in 
Section 3.2.1, a deep neural network was used to predict each flash plant’s separation efficiency. 
This in turn can be used to compute the output steam flow from the flash plant based on the input 
values. 

Along with accurately predicting flash plant operation, (discussed below), another advantage of 
using a deep neural network to model the flash plants is the ability to model the full operational 
range of each flash plant. This allows for the visualization of flash plant separation efficiency based 
on massflow and enthalpy, indicated in the multi-dimensional plots in Figure 5. The resulting 
prediciton surface then yields a separation efficiency that operators can target to attempt to achieve 
an optimal output from each flash plant. 
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Figure 5: Flash plant prediction surfaces for three various sized flash plants developed in the GOOML environment. 
Each plant has a unique optimal separation efficiency driven by upstream thermodynamic conditions and the mechanical 
design of the flash plant itself. 

For the Wairakei and Kawerau steamfields, the matching of flash plant outputs can be 
benchmarked by the steam-flow in pipelines downstream of the flash plants themselves. By 
comparing our forecast efficiency and thus, steam output, we can assess how well we have matched 
the true operating conditions of the plants. Figure 6 shows the error and matching of the historical 
operating conditons and the predicted outputs from our model. Using these outputs, operators may 
be able to predict where operational efficiency could be gained and finding the ideal conditions 
based on changes within a field.   

  
Figure 6: Flash plant historical vs. hindcast results showing a good match for stable periods of operation. 
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4.3 Power Generation 

One of the aims of the GOOML project is to provide operators interrogation of field configurations 
that would lead to optimal power output from their systems. Through accurate and interconnected 
modeling of wells, pipelines, and separators, we were able to create a forecast model for system-
wide power generation.  For this forecast, we modeled nine separate steam-fed turbine-generator 
units and two binary bottoming units. The results of the historical model and the hindcast are 
shown in Figure 7.  

This combined power-output modeling gives a tangible measure of how accurate the GOOML 
model is in representing the full production system. For the full system power, we have achieved 
an MAE of 5.3% across three years of production history. We do see that the GOOML hindcast 
model does somewhat underpredicts the power generation compared to the historical model but 
are comfortable that we have achieved a good match. We expect that the systematic bias error is 
due to operator action that is not well captured in the historical numerical data. While this could 
be easily corrected in the GOOML modeling framework through the application of a bias 
correction factor, Figure 7 does not include such corrections to demonstrate a truthful evaluation 
of the trained regression models. 

 

 

Figure 7: Forecast and historical matching of power production for nine generation units. Overall good agreement is 
achieved within the GOOML environment. 
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5. Model Exploration 
Once we established that our model represents real-world conditions from initial modeling, we 
wanted to explore what could be further developed using this framework. Additionally, we needed 
to ensure that the model is extensible to other fields and conditions and can be used to test various 
scenarios. 

5.1 Reinforcement Learning 

Artificial intelligence via reinforcement learning was applied to the GOOML environment to 
explore if an autonomous decision-making tool might provide insight to geothermal operations 
and test long-standing paradigms. This is, to our knowledge, the first foray into geothermal 
operations that has used reinforcement learning to make steamfield predictions and operational 
suggestions. Using the GOOML forecast model as a Reinforcement Learning (RL) environment, 
we have setup a recommendation engine that can be used to suggest changes to operational 
paradigms that could result in greater real-world efficiency of operations.  

In these RL experiments, we allowed an autonomous agent to make a change within the baseline 
GOOML forecast model, observe the change, and receive a reward if the change resulted in 
increased power generation. A generalization of this process is illustrated in Figure 8. The agent 
was permitted to only enact changes to wells (representing wellhead pressure and resultant mass 
flow changes) and pipeline pressures.  

 
Figure 8: Reinforcement Learning in the GOOML Environment. The agent can take an action in the GOOML 
environment- here represented by the spaghetti ball- (increase a well flow, throttle a control valve, etc.) and the result 
yields a reward or a penalty that affects total system power output.  



12 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 

Figure 9: Results of Reinforcement Learning Experiments. Experiment 1 was not successful and was unable to achieve a 
greater overall output as the reward was set too low. Experiments 2 and 3 improved system output through a reward that 
was centered at 100% of the total baseline output. By aiming to achieve a higher than baseline, the agent was able to 
successfully achieve an overall higher production from the system.  

In our first experiments, we did not set the rewards high enough and the agent was never able to 
exceed the baseline and the experiment was deemed a failure (Figure 9-1). Through setting a proper 
reward (higher output) the agent actively sought a better solution to the baseline and yielded our 
first successful experiment (Figure 9- 2A & 2B) where the agent was able to add up to 20 MWe 
on average over the period interrogated. 
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Subsequently, we sought a scenario for the agent controls (Figure 9 – 3A & 3B) that was 
representative of real-world conditions utilizing small pressure control changes and true to real-
world field constraints.  This scenario still resulted in an increase to the overall power generation 
for the field investigated whilst maintaining the comparative mass extraction constraints, as seen 
in Figure 10. 

 

Figure 10: A comparison of our baseline (forecast) model and the RL agent results showing an average increase in power 
by 1.8 MWe, this resulted in a bit higher mass extraction by 153 tonnes/hour. 

The RL experiments have many limitations and should be interpreted with caution. The RL agent 
has only an understanding of the steamfield as it exists in the GOOML system model. This includes 
all the assumptions in the system model, but also any modeling gaps that we have not yet captured. 
There are also risks of the RL agent taking the system model and component models to operating 
regimes for which we do not have training data. For example, by lowering the pressure of the 
steamfield system overall, the agent can extract additional steam mass, but in doing so it is 
potentially operating the flash plants and turbines at pressures that do not occur in the actual 
steamfield. One solution is to model the components using simplified theoretical models, such as 
modeling the flash plant separation process using only the thermodynamic steam quality at the 
separation pressure. This might allow for the model to be more accurate under a wider variety of 
out-of-sample test conditions.  

More cross validation will need to be performed before the results of the RL experiments can be 
utilized directly in real-world operations. Despite the limitations of these explorations, the 
important takeaway is that the GOOML framework provides a testing ground with which operators 
and RL agents alike can explore the digital environment in ways that were not previously possible. 
The ability to run millions or even billions of steamfield analysis permutations is a powerful 
capability that should help improve operational efficiency in a large number of steamfields around 
the world.  

  



14 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

6. Conclusions and Future Work 
The GOOML digital environment allows a programmatic and machine-learning-driven approach 
to geothermal operational decision making. We have built a historical modeling framework that 
assimilates and ensures that clean datasets are available for training algorithms. We have also built 
a forecast modeling framework that can use trained models and simple seed data to predict future 
operations. By establishing these frameworks, we have built a series of tools that are useful for 
interrogating current and future geothermal operational decisions.  

Our RL experiments demonstrate that the developed GOOML digital space is a powerful platform 
to investigate scenarios of operational conditions and system optimization. Future work now 
includes incorporating injection controls into our models, which will allow us to fully constrain 
the system both upstream and downstream. We intend to incorporate these constraints into the 
system which will allow a full system model to test operational scenarios. The power of this 
complete system will be found in both matching historical models and building system forecasts 
through a digital twin environment where scenarios can be rapidly changed and analyzed. Further, 
we intend to understand the power of reinforcement learning applications to geothermal 
operations. By understanding if our model can suggest true and realistic operating conditions, we 
may yet be able to unlock additional operational efficiency in real-world geothermal fields.  
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