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Linearizing Bilinear Products of Shadow Prices and
Dispatch Variables in Bilevel Problems for Optimal

Power System Planning and Operations
Nicholas D. Laws , Student Member, IEEE, and Grani A. Hanasusanto

Abstract—This work presents a method for linearizing bilinear
terms in the upper level of bilevel optimization problems when the
bilinear terms are products of the primal and dual variables of
the lower level. Bilinear terms of this form often appear in energy
market optimization models where the dual variable represents
the market price of energy and the primal variable represents
a generator dispatch decision. Prior works have linearized such
bilinear terms for specific problems. This work is the first to
demonstrate how to linearize these terms in the most general case
and the conditions required to perform the linearization for bilevel
problems with integer or continuous variable in the upper level.
The method is provided in an open source Julia module that allows
researchers to write their bilevel programs in an intuitive fashion.

Index Terms—Duality, optimization methods, power system
economics, power system planning.

I. INTRODUCTION AND BACKGROUND

S INCE the restructuring of electricity markets began in the
early 1980’s [1] and the introduction of locational marginal

pricing into large scale power markets in the 1990’s researchers
have been investigating electricity market design optimization
problems. From a market participant point-of-view one of the
most critical terms in a problem is the price signal (typically
in $/MWh) from the market operator multiplied by the energy
delivered (MWh) by the participant, which together represent
the participant’s income. When both the price signal and energy
delivered are decision variables in a mathematical program then
the problem becomes bilinear.

In many electricity markets the price signal to market par-
ticipants (or generators) is determined as the marginal price
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of the load balance constraint at any given network node at
any given time step. The objective of the market model is to
minimize the total cost of energy, or as it is commonly known:
maximizing the social welfare. The constraints of the model
typically represent an approximation to the power flow equations
and take participant cost functions as input.

Equilibrium models allow modeling both the electricity mar-
ket and participant behavior by including the power flow con-
straints and multiple, competing objective functions. Bilevel
or Stackelberg Game formulations are common in electricity
market models that include participant objectives, which are
typically to maximize profits.

Ruiz et al. 2009 [2] is the earliest known example to demon-
strate that bilinear terms for market price and participant dispatch
can be linearized. Their model places the market participant
in the upper level, which chooses its offer curve for energy
generation, while the lower level models the electricity market
given the other participants’ offer curves. Fernandez-Blanco
et al. 2016 [3] is the first to find a linearization for the same
bilinear terms (products of lower level primal and dual variables)
in the upper level of a bilevel program for revenue adequacy
constraints. More recently, Naebi et al. 2020 [4] forms a bilevel
problem to optimize the bidding strategy of a microgrid owner
in a day ahead market. The upper level minimizes operating
costs from the microgrid owner’s perspective with the product
of its exported power and the dual variable of the lower level,
linear power flow load balance in its objective. (In other words,
the microgrid operator knows its impact on the market price).
The lower level minimizes the system operator’s cost, including
the payment to the microgrid owner, subject to linear power flow
constraints. Xu et al. 2020 [5] proposes a bilevel model in which
the upper level represents a coalition of PV system owners that
can sell excess power to the grid or to other consumers. The
upper level objective contains a bilinear product of the price to
charge consumers and the level of excess PV production to be
sold. The lower level objective is the sum of the PV owners’
cost functions, which contain the benefit of selling excess PV
and the cost of consuming grid power. The bilinear product of
price and dispatch variables is linearized by setting the lower
level primal objective equal to the dual objective. Additional
problem specific examples of the linearization technique can be
found in [6] and [7].

Each of the aforementioned examples presents problem-
specific examples of how the bilinear products of shadow prices
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and dual variables can be linearized in bilevel problems using
Strong Duality Theorem [8]. This paper presents a general
algorithm for linearizing the bilinear terms of interest and de-
termines the exact conditions under which the bilinear terms
can be linearized in general bilevel problems. The algorithm is
implemented in an open source Julia module for mathemati-
cal programming that allows researchers to write their bilevel
problems in an intuitive fashion ([9], which extends [10]). After
showing the linearization algorithm we present some simple
and complex use-case examples to demonstrate the value of
the linearization method for power system planning research
questions. In the complex use-case, with a power flow model, we
show that the linearization method makes otherwise intractable
problems solvable in a matter of minutes. Using the open source
module other researchers can take advantage of the linearization
method for any bilevel problem with bilinear products of shadow
prices and dispatch variables of interest.

II. LINEARIZATION METHOD WITH INTEGER UPPER LEVEL

VARIABLES

We begin by assuming that the upper level variables x are
integer such that any product of integer x and the continuous
variablesy or λ can be made linear using binary expansion [11].1

The bilevel problem with bilinear terms in the upper level
objective and a linear lower level is

min
x∈ZM ,y∈RN

f(x,y) + λᵀAy (1a)

s.t. g(x,y) ≤ 0 (1b)

y ∈ arg miny∈RN cᵀy + xᵀBy (1c)

s.t. y ≤ y ≤ y (µ,µ) (1d)

Ux+ V y = w (λ). (1e)

Table I summarizes the terms in (1). Note that the method
is also valid for bilinear terms of λ and y in the upper level
constraints, but they are not shown for clarity.

The linearization algorithm is applicable when the upper level
and/or the lower level problems are non-linear in constraints or
objectives. However, the lower level constraints that include the
lower level variables from the upper level bilinear terms must
be linear to get an exact linearization of the upper level bilinear
terms. Futhermore, we assume that the lower level problem is
linear in its decision variables (given the upper level decisions)
so that we can replace the lower level with its Karush Kuhn
Tucker conditions to show single level problem equivalents to
the non-linear bilevel problems of interest.

To linearize any λjyn term one must combine the lower level
primal and dual constraints. The dual formulation of the lower
level problem is shown below for reference.

max
µ,µ∈RN

+ ,λ∈RJ
yTµ− yTµ+ (w −Ux)T λ (2a)

s.t.V Tλ = c+ µ− µ+BTx (2b)

1It is important to note that in some cases good bounds, which are necessary
for the “big M” constraints used to linearize the product of integer and continuous
variables, cannot be found [12].

TABLE I
SETS, INDICES, PARAMETERS, AND DECISION VARIABLES

The first step is to multiply the lower level primal constraints
(1e) by λ component-wise:

V y ◦ λ = w ◦ λ −Ux ◦ λ (3)

where ◦ denotes the Hadamard product. 2

Second, the dual constraints (2b) are multiplied with y as
follows:

(V ᵀλ) ◦ y = c ◦ y + µ ◦ y − µ ◦ y + (Bᵀx) ◦ y. (4)

2Note that one can also multiply each of the primal constraints by each of the
components of λ to get J2 equations. However, in practice the bilinear terms
that appear in the upper level problem are bilinear in yn and λj , where λj is the
Lagrange multiplier of the constraint that involves yn.
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Set Eq Li

Note that any μnyn can be linearized because of the upper
bound

yn ≤ yn. (5)

The complementary slackness condition for (5) allows one to
linearize μnyn:

μnyn = μnyn. (6)

A similar result follows for any μ
n
yn. Combining the last

result with the complementary slackness conditions gives:

(V ᵀλ) ◦ y = c ◦ y + µ ◦ y − µ ◦ y + (Bᵀx) ◦ y. (7)

Equations (3) and (7) are then combined to produce a system
of equations with the bilinear products of λ and y as the un-
knowns. In the following we show how to solve for a specific
λjVjnyn.

Let the ith row of (3) be defined as (Pi), which can be written:

(Pi) : λiVinyn = wiλi − λi

∑
Vikyk

k∈N\{n}
− λi

∑
m∈M

Uimxm (8)

And, let the kth row of (7) be defined as (Dk), which can be
written:

(Dk) : yk
∑
i∈J

Vikλi = ckyk + μkyk − μ
k
y
k
+ yk

∑
m∈M

Bmkxm

(9)
Note that the choice of P for (Pi) and D for (Dk) are inten-

tional: P is for primal constraints and D is for dual constraints.
Algorithm 1 outlines the procedure for determining the min-

imum set of the (Pi) and (Dk) equations needed to linearize a
given λjyn term. Note that the algorithm refers to the indices of
(Pi) as rows and (Dk) as columns because the sums over Vjk

in (8) and (9) are over the rows and columns of V respectively.
The first step of Algorithm 1 is to check if Vjn is the

only non-zero value in the nth column of V : in this case
(Dn) provides the exact linearization of λjyn (and (Pi)

is unnecessary):

ynλj =
1

Vjn

(
cnyn + μnyn − μ

n
y
n
+ yn

∑
m∈M

Bmnxm

)

(10)
Note that (10) only applies under the condition that yn is in

a single lower level primal constraint. Additionally, the bilinear
products of yn and xm in (10) can be linearized since we are
assuming that x is integer in this section.

In the second step of Algorithm 1 the first primal equation
(Pj) is added to the set of row indices that will be returned at the
end of the algorithm (where j is an input). Additionally, for all
the non-zero values in the jth row of V , except Vjn, the indices
of the dual equations (Dk) are added to the set of column indices.
In mathematical terms, this step is taking (Pj):

λjVjnyn = wjλj − λj

∑
Vjkyk

k∈N\{n}
− λj

∑
m∈M

Ujmxm (11)

and all of the (Dk) equations for k ∈ N \ {n} in order to replace
the bilinear terms of λj and yk on the right-hand-side of (11).
Each (Dk) equation can add more bilinear terms of λ and y
and so step three of Algorithm 1 adds additional equations if
necessary.

In the third and final step of Algorithm 1 a recursive func-
tion, Algorithm 2, is used to search the array V for non-zero,
“connected” values. We use the term “connected” to indicate
that one could draw horizontal and vertical paths through V to
connect non-zero entries to the first entry of interestVjn, starting
with a horizontal line each time. A horizontal line adds a (Pi)
equation and a vertical line adds a (Dk) equation. The indices
of the rows and columns are collected until a sufficient amount
of equations are obtained to linearize the λjyn term in the upper
level objective.

Note that Algorithm 2 is similar to — but not the same as —
finding the blocks of a block-diagonal matrix. The difference is
that Algorithm 2 does not necessarily find all of the non-zero
values in a block. In other words, one does not need all of the
(Pi) and (Dk) equations that may be available; one only needs as
many equations as unknowns (where the unknowns are products
of λ and y entries).

Algorithm 2 has some conditions under which it returns as
error: these errors occur when the search has indicated that
redundant row or column indices should be appended to the
final vectors. Mathematically, these errors indicate that there are
more unknowns than equations and thus the system of equations
is underdetermined.

Let the indices of (Pi) and (Dk) returned from Algorithm 1
for a given (j, n) ∈ A pair be defined asJj andNn respectively.
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The exact linearization of λjyn is:

λjyn =
1

Vjn

⎡
⎣∑
j′∈Jj

(
wj′λj′ − λj′

∑
m∈M

Uj′mxm

)

−
∑

n′∈Nn

(
cn′yn′ + μn′yn′ − μ

n′yn′

+yn′
∑
m∈M

Bmn′xm

)]
,

(12)

which is simply a combination of (8) and (9) for all of the non-
zero values of V connected to λjyn, as demonstrated with the
examples in Appendix A.

Finally, using the result (12) the mixed integer linear form of
(1) is:

min
x,y,λ,µ,µ

f(x,y)

+
∑

(j,n)∈A

Ajn

Vjn

⎡
⎣∑
j′∈Jj

(
wj′λj′ − λj′

∑
m∈M

Uj′mxm

)
(13a)

−
∑

n′∈Nn

(
cn′yn′ + μn′yn′ − μ

n′yn′

+yn′
∑
m∈M

Bmn′xm

)]

s.t. g(x,y) ≤ 0, (13b)

c+Bᵀx+ V ᵀλ + µ− µ = 0 (13c)

y ≤ y ≤ y (13d)

Ux+ V y = w (13e)

µ ⊥ (y − y) (13f)

µ ⊥ (y − y) (13g)

where the lower level problem has been replaced with the
Karush Kuhn Tucker (KKT) conditions and the complementary
constraints can be modeled as special order sets or using the “big
M” method from [13]. Note that this section assumes that the x
variables are integer and therefore the products of xm and yn or
λj can be linearized using binary expansion [11].

It is important to note that finding valid values for the “big
M” can be difficult [14]. The open source package in which
the linearization method presented in this paper is implemented
includes the options to use big M (Fortuny-McCarl) constraints,
special order sets, or indicator constraints to linearize the com-
plementary conditions used to integrate the lower level problem
into the upper level. The latter two methods do not require
defining bounds for the dual variables, but may be more difficult
to solve than the “big M” method.

III. LINEARIZATION METHOD WITH CONTINUOUS UPPER

LEVEL VARIABLES

In Section II we assumed that x are integer such that all
of the products of xm and yn or products of xm and λj can
be linearized using binary expansion [11]. Here we show the
conditions under which a λjyn term can be linearized when the
upper level variables x are continuous.

The conditions are divided into two groups with one group
less restrictive than the other. The first group of conditions is
less restrictive but does not allow lower level variables y to be
bilinear in both the upper level problem with λ and the lower
objective with x. In mathematical terms this is when AB = Ø,
where AB � {(j, n) ∈ A : ∃m ∈ M such that Bmn �= 0}.

The second group of conditions allows a problem to be
linearized when bilinear products of λjyn are in the upper level
and bilinear products ofxmyn are in the lower level objective for
a given n. These types of problems are particularly relevant to
energy system market models, in which the upper and lower
level bilinear products together represent a zero-sum game.
Demonstrative examples are provided in Section IV, in which the
upper level products of λjyn represent payments to distributed
generator owners and the lower level products ofxmyn represent
generator owner income.

A. Conditions When AB = Ø

Recall that the Algorithms 1 and 2 provide the sets Jj for
each λj in the upper level objective. Let J∪ �

⋃
j∈AJ

Jj , which
includes the indices of all the lower level constraints that are
connected (via non-zero values ofV ) to the λj terms in the upper
level objective. Therefore, in order to eliminate all bilinear terms
of the form λjUjmxm in (13a) the following condition must be
met:

Condition 1: Ujm = 0 ∀j ∈ J∪, ∀m ∈ M
Similar to Condition 1, let N∪ �

⋃
n∈AN

Nn, then one could
assume that

Condition 2: Bmn = 0 ∀m ∈ M, ∀n ∈ N∪
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to eliminate all bilinear terms of the form xmBmnyn from (13a).
Under Conditions 1 and 2 the mixed integer result for (1) is

min
x,y,λ,µ,µ

f(x,y) +
∑

(j,n)∈A

Ajn

Vjn

⎡
⎣∑
j′∈Jj

(wj′λj′)

−
∑

n′∈Nn

(
cn′yn′ + μn′yn′ − μ

n′yn′

)]
(14a)

s.t. g(x,y) ≤ 0, (14b)

c+Bᵀx+ V ᵀλ + µ− µ = 0 (14c)

y ≤ y ≤ y (14d)

Ux+ V y = w (14e)

µ ⊥ (y − y) (14f)

µ ⊥ (y − y) (14g)

B. Conditions When AB �= Ø

The case when Condition 2 is violated and Problem (1) has
bilinear terms in the upper and lower level objectives of the form
λjAjnyn and xmBmnyn, (where Ajn �= 0 and Bmn �= 0), for
some n is particularly relevant to energy system market models.
For example, take the case where Ajn = 1 and Bmn = −1 for
some particular m, j, and n. Let yn represent a lower level
generator dispatch decision. Then λj represents the marginal
cost of the dispatch decision yn as well as the upper level’s
cost of purchasing power from the lower level. And −xmyn
in the lower level objective is the lower level’s income for the
generation yn using the price signal xm. Section IV provides an
example of such a scenario. Thus it is useful to investigate the
linearization of problems when AB �= Ø (i.e. when Condition 2
is violated).

The problem of interest has the following structure:

min
x,y

f(x,y) +
∑

(j,n)∈A
λjAjnyn (15a)

s.t. g(x,y) ≤ 0 (15b)

y ∈ arg miny cᵀy +
∑

m∈M

∑
n∈AN

xmBmnyn

+
∑

m∈M

∑
xmBmnyn

n∈N\(AN∪N∪)

(15c)

s.t. y ≤ y (µ) (15d)

y ≤ y (µ) (15e)∑
n∈N

Vjnyn = wj (λj), ∀j ∈ J∪ (15f)

∑
m∈M

Ujmxm +
∑
n∈N

Vjnyn = wj (λj),

∀j ∈ J \ J∪. (15g)

Note that the products of x and y in the lower level objective
(15c) are linearized when the lower level problem is replaced

with the KKT conditions. And the set of yn for all n ∈ N \
(AN ∪N∪) in the last sum of (15c) are the values of y that are
not in the upper level objective nor connected to the yn, n ∈ AN ,
in the upper level objective. Recall that the connected indices
are provided by Algorithm 1 and captured in N∪. We will show
shortly that the connectedyn values must not be in the lower level
objective with x terms to prevent ynxm terms from showing up
in the (Dk) equations needed to linearize the λjyn in the upper
level objective. Also, Condition 1 is reflected in (15f).

Now, applying Condition 1 to (12) gives

λjyn =
1

Vjn

⎡
⎣∑
j′∈Jj

wj′λj′ −
∑

n′∈Nn

(cn′yn′ + μn′yn′

−μ
n′yn′ + yn′

∑
m∈M

Bmn′xm

)]
, ∀(j, n) ∈ A. (16)

We wish to eliminate the yn′Bmn′xm terms when AB �= Ø.
Recall that the yn′Bmn′xm terms in (12) and (16) come from
the (Dk) equations with Bmk �= 0, and that the (Dk) equations
for all k ∈ N∪ are necessary to linearize the upper level λjAjkyk
terms.

Let us assume that a less restrictive version of Condition 2
holds:

condition′. Bmn = 0 ∀m ∈ M, ∀n ∈ N∪ \ AN
Condition 2′ implies that none of the lower level variables

connected to the λjAjnyn terms (provided by Algorithm 1) are
in the lower level objective with ynBmnxm terms, except the
lower level variables in the upper level objective (yn ∀n ∈ AN ).
Applying Condition 2′ to (16) gives:

λjyn=
1

Vjn

⎡
⎣∑
j′∈Jj

wj′λj′ −
∑

n′∈Nn\AN

(
cn′yn′ + μn′yn′ −μ

n′yn′

)

−
∑

n′∈Nn∩AN

(
cn′yn′ + μn′yn′ − μ

n′yn′

+yn′
∑
m∈M

Bmn′xm

)]
, ∀(j, n) ∈ A. (17)

Let us also assume that Condition 3 holds:
Condition 3: AN \ {n} ⊆ Nn ∀n ∈ AN

⇒ Nn ∩ AN = AN \ {n} ∀n ∈ AN

Condition 3 implies that the yn ∀n ∈ AN variables of interest
are connected to each other via non-zero values ofV . Section IV-
B provides an example problem, in which the yn ∀n ∈ AN are
indexed on time and connected to each other via another time-
indexed variable in each equality constraint that is restricted to
be no more than a certain value across all time.

Condition 3 allow us to rewrite (17) as

λjyn=
1

Vjn

⎡
⎣∑
j′∈Jj

wj′λj′ −
∑

n′∈Nn\AN

(
cn′yn′ + μn′yn′ −μ

n′yn′

)

−
∑

n′∈AN \{n}

(
cn′yn′ + μn′yn′ − μ

n′yn′
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+yn′
∑
m∈M

Bmn′xm

)]
, ∀(j, n) ∈ A. (18)

Applying (9) to the last summation in (18) gives:

λjyn=
1

Vjn

⎡
⎣∑
j′∈Jj

wj′λj′ −
∑

n′∈Nn\AN

(
cn′yn′ + μn′yn′ −μ

n′yn′

)

−
∑

n′∈AN \{n}

⎛
⎝yn′

∑
j′∈J

Vj′n′λj′

⎞
⎠
⎤
⎦ , ∀(j, n) ∈ A, (19)

This step is key to eliminating the bilinear yn′Bmn′xm terms
when AB �= Ø. The next steps are to impose conditions that
allow us to move the last summation in (19) to the left hand side
to get a single sum of terms over the set A.

Let us assume that Condition 4 holds:
Condition 4: Vj′n = 0 ∀j ′ ∈ J \ {j}, ∀(j, n) ∈ A.
Condition 4 is equivalent to each yn for all n ∈ AN being in

only one lower level constraint. Condition 4 implies that

yk
∑
j′∈J

Vj′kλj′ = λjVjkyk, ∀(j, k) ∈ A (20)

Note that Condition 4 requires that Step 1 of the Algorithm be
skipped. The revised algorithm for Conditions 1, 2′, 3, and 4 is
shown in Algorithm 3.

Condition 4 allows us to write (19) as

λjyn =
1

Vjn

⎡
⎣∑
j′∈Jj

wj′λj′

−
∑

n′∈Nn\AN

(
cn′yn′ + μn′yn′ − μ

n′yn′

)

−
∑

(j,′n′)∈A\{(j,n)}
(yn′Vj′n′λj′)

⎤
⎦ , ∀(j, n) ∈ A, (21)

Rearranging (21) gives:∑
(j,′n′)∈A

λj′Vj′n′yn′ =
∑
j′∈Jj

wj′λj′

−
∑

n′∈Nn\AN

(
cn′yn′ + μn′yn′ − μ

n′yn′

)
, ∀(j, n) ∈ A. (22)

Note that since (22) is valid for all (j, n) ∈ A it implies that Nn

are equal for all n ∈ AN and that Jj are equal for all j ∈ AJ .
Lastly, we see that to replace

∑
(j,n)∈A λjAjnyn with the last

result for
∑

(j,n)∈A λjVjnyn we must require that the two sums
are equal to a proportionality constant p:

Condition 5: Ajn = pVjn ∀(j, n) ∈ A

⇒
∑

(j,n)∈A
λjAjnyn = p

∑
(j,n)∈A

λjVjnyn.

With Condition 5 we can write (22) as:

∑
(j,n)∈A

λjAjnyn = p

⎡
⎣∑
j′∈Jj

wj′λj′

−
∑

n′∈Nn\AN

(
cn′yn′ + μn′yn′ − μ

n′yn′

)⎤⎦ ∀(j, n) ∈ A. (23)

Substituting (23) into (1) and replacing the lower level with the
KKT conditions, under Conditions 1, 2′, 3, 4 and 5 the mixed
integer result is shown in (24). Note that any (j, n) ∈ A can be
used in (24a) to define the sets Jj and Nn.

min
x,y,λ,µ,µ

f(x,y) + p

⎡
⎣∑
j′∈Jj

(wj′λj′)

−
∑

n′∈Nn\AN

(
cn′yn′ + μn′yn′ − μ

n′yn′

)⎤⎦ (24a)

s.t. g(x,y) ≤ 0, (24b)

c+Bᵀx+ V ᵀλ + µ− µ = 0 (24c)

y ≤ y (24d)

y ≤ y (24e)

Ux+ V y = w (24f)

µ ⊥ (y − y) (24g)

µ ⊥ (y − y) (24h)

To summarize all of the conditions under which (24) is valid:
� Condition 1: Ujm = 0 ∀j ∈ J∪, ∀m ∈ M

� None of the connected constraints contain x terms.
Condition 2′: Bmn = 0 ∀m ∈ M, ∀n ∈ N∪ \ AN
� None of the connected variables are multiplied with x

in the lower level objective, except the y in the upper
level objective that are multiplied with λ.

Condition 3: AN \ {n} ⊆ Nn ∀n ∈ AN
� Each of the yn in the upper level objective are connected

to each other via non-zero values of V .
Condition 4: Vj′n = 0 ∀j ′ ∈ J \ {j}, ∀j ∈ AJ
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� Each of the yn in the upper level objective are in only
one lower level equality constraint.

Condition 5: Ajn = pVjn ∀(j, n) ∈ A
� All of the coefficients of the upper level λjyn terms

are proportional to the corresponding coefficients in the
lower level constraints to the same constant p.

The examples in Section IV meet the Conditions 1, 2′, 3, 4
and 5. The theme in both problems is an energy market model
with a load balance constraint in the lower level, bilinear prod-
ucts in the upper level objective of lower level dispatch variables
and the load balance dual variables, and bilinear products in the
lower level objective of upper level price signal variables and
the same lower level dispatch variables as in the upper level
objective.

C. A Note on Separable Lower Level Problems

It is important to note that the conditions required to linearize
the bilinear products of shadow prices and primal variables can
be applied to sub-matrices when the lower level problem is
separable. For example, in a multi-follower Stackelberg game
the lower level is likely to be separable, such as when mod-
eling multiple distributed energy reosource (DER) owners or
grid customers. In these cases Conditions 3 and 5 should be
checked against the blocks of A and V corresponding to each
sub-problem. An example of a separable lower level problem is
provided in Section IV

IV. USE-CASE EXAMPLES

It is important to note that the use of the linearization al-
gorithm is not limited to the problem types shown in these
examples. Indeed, the conditions required for the linearization
algorithm are met in each of the references mentioned in Sec-
tion I. For example, other use cases include:
� optimizing generator offer curves in an energy market [2];
� applying generator revenue constraints in a market clearing

process [3];
� and optimal profit sharing in a community microgrid [6].

A. Simple Examples Without Time Indices

The first use-case example shows a step-by-step lineariza-
tion process for a scenario in which the upper level model
minimizes the total cost of power with the option to purchase
power from the bulk system or from customer owned DER.
The lower level can choose to meet its demand from the
grid at some retail rate or invest in DER to lower its total
cost.

min
x,y

cLMPx0 + λye (25a)

s.t. x0 + ye − yi − d2 = 0 (25b)

xλ ≥ 0 (25c)

0 ≤ ye ⊥ yi ≥ 0 (25d)

y ∈ arg miny cDERyDER + ciyi − xλye (25e)

s.t. yi − ye + yDER = d1 (λ) (25f)

yDER ≥ yDER ≥ 0, (μDER, μDER
) (25g)

ye ≥ ye ≥ 0 (μe, μe
) (25h)

yi ≥ yi ≥ 0 (μi, μi
). (25i)

In example (25) the upper level (UL) can purchase power
x0 at the feeder head at the wholesale price cLMP and/or from
the lower level (LL) at a price of the UL’s choosing. The UL
chooses xλ to set the LL’s marginal cost of power λ when
the LL chooses to export power ye (”e” for export). The LL
considers buying power yi from grid at the retail rate ci (”i”
for import) and/or purchasing the DER capacity yDER at the
cost cDER to meet its demand d1. Constraint (25b) is the system
load balance, which includes an uncontrollable demand d2 (in
practice this constraint is replaced with a power flow model).
Constraint (25d) is the UL enforcement of no simultaneous
export and import.3 Constraint (25f) is the LL’s load balance.
The lower level dual variables, μDER, μe, and μi, are show in
parentheses.

Let y � [ye, yi, yDER]
ᵀ. The lower level has one equal-

ity constraint, making V = [−1 1 1]. In this case we wish
to linearize the product λye, making the indices of inter-
est j = 1 for the first and only equality constraint in the
lower level, and n = 1 because we put ye in the first index
of y.

First, let us check the linearization conditions for this problem.
Note that the set AB is not empty because we have a bilinear
term in the upper and lower level objectives of the form λjAjnyn
and xmBmnyn. Thus, we must check the Conditions 1, 2′, 3, 4,
and 5. To check the conditions we need the sets J∪, N∪, A
and their sub-sets Jj , Nn, AN . With N = {1, 2, 3} for the
three LL variables and J = {1} for the single LL constraint,
we get:
� A = {(j, n) ∈ J ×N : Ajn �= 0} = {(1, 1)}
� AN = {n ∈ N : ∃j ∈ J such that Ajn �= 0} = {1}
With only one pair of (j, n) in A we only need to call

Algorithm 3 once with the values forV , j = 1, andn = 1. Algo-
rithm 3 first initializes J1 = {1} and defines the cols_to_check
as {2, 3} because V1,2 and V1,3 are non-zero. The cols_to_check
is copied to start the set N1 and then the recursive search
is started. The recursive search loops over the values in
cols_to_check and calls Algorithm 2, appending the results to
the sets J1 and N1. In this case no new non-zero values are
found (there is only one row in V ) and so Algorithm 2 returns
the values that it was provided. Finally, Algorithm 3 returns the
sets J1 = {1} and N1 = {2, 3}.

Now, since we only have one pair of (j, n) in A the union
sets J∪ and N∪ are equal to the sets J1 and N1 respectively.
With the necessary sets defined we can use (23) to linearize the
product of λ and ye in the UL objective:

λe(−1)ye = d1λ − (cgyDER + yDERμDER + ciyi + yiμi)

⇒ λye = cDERyDER + yDERμDER + ciyi + yiμi − d1λ.
(26)

3Allowing simultaneous power import and export would require two isolated
meters: one measuring demand and one measuring DER production.
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With this last result, we replace the lower level problem in (25)
with its KKT conditions to get the mixed integer linear program:

min
x,y

cLMPx0 + cDERyDER + yDERμDER + ciyi + yiμi − d1λ

(27a)

s.t. x0 + ye − yi − d2 = 0 (27b)

xλ ≥ 0 (27c)

0 ≤ ye ⊥ yi ≥ 0 (27d)

yi − ye + yDER = d1 (λ) (27e)

yDER ≥ 0, ye ≥ 0, yi ≥ 0 (27f)

− xλ + λ − μe = 0 (27g)

ci − λ − μi = 0 (27h)

cDER − λ − μDER = 0 (27i)

0 ≤ yDER ⊥ μ
DER

≥ 0 (27j)

0 ≤ ye ⊥ μ
e
≥ 0 (27k)

0 ≤ yi ⊥ μ
i
≥ 0 (27l)

yDER − yDER ⊥ μDER ≥ 0 (27m)

ye − ye ⊥ μe ≥ 0 (27n)

yi − yi ⊥ μi ≥ 0 (27o)

Example (25) (and its mixed-integer linear version (27)) is
useful for showing how DER can benefit system operators.
First, let us assume that the DER system has a relatively high

min
P ,Q,w,x,y,λ

pwf
∑
t∈T

(
cLMP,tx0,t +

∑
n∈NPV

[λn,tye,n,t]

)
+
∑
n∈NB

(cBkWxBkW,n + cBkWhxBkWh,n) (28a)

s.t. x0,t ≥ 0, xe,t ≥ 0, xi,t ≥ 0, ∀t ∈ T (28b)

P0,t = P01,t ∀t ∈ T (28c)

Q0,t = Q01,t, ∀t ∈ T (28d)

Pij,t + Pj,t −
∑

k:j→k

Pjk = 0, ∀j ∈ N+, ∀t ∈ T (28e)

Qij,t +Qj,t −
∑

k:j→k

Qjk = 0, ∀j ∈ N+, ∀t ∈ T (28f)

wj,t = wi,t − 2 (rijPij,t + xijQij,t) , ∀j ∈ N+, ∀t ∈ T (28g)

(vmax
j )2 ≥ wj,t ≥ (vmin

j )2, ∀j ∈ N , ∀t ∈ T (28h)

Pj,t = xB−,j,t − xB+,j,t, ∀j ∈ NB, ∀t ∈ T (28i)

Qj,t = fpf,j,t
(
xB−,j,t − xB+,j,t

)
, ∀j ∈ NB, ∀t ∈ T (28j)

Pj,t = ye,j,t − yi,j,t, ∀j ∈ NPV, ∀t ∈ T (28k)

Qj,t = fpf,j,t (ye,j,t − yi,j,t) , ∀j ∈ NPV, ∀t ∈ T (28l)

Pj,t = −yi,j,t, ∀j ∈ NW , ∀t ∈ T (28m)

Qj,t = −fpf,j,tyi,j,t, ∀j ∈ NW , ∀t ∈ T (28n)

Pj,t = −dj,t, ∀j ∈ NU , ∀t ∈ T (28o)

Qj,t = −fpf,j,tdj,t, ∀j ∈ NU , ∀t ∈ T (28p)

ye,j,t ⊥ yi,j,t, ∀j ∈ NPV, ∀t ∈ T (28q)

xSOC,j,t = xSOC,j,t−1 + fhr
(
xB+,j,tη − xB−,j,t/η

)
∀j ∈ NB, ∀t ∈ T (28r)

xBkW,j ≥ xB+,j,t + xB−,j,t ∀j ∈ NB, ∀t ∈ T (28s)

xBkWh,j ≥ xSOC,j,t ∀j ∈ NB, ∀t ∈ T (28t)

xSOC,j,0 = 0.5xBkWh,j ∀j ∈ NB (28u)

xSOC,j,Nt
= 0.5xBkWh,j ∀j ∈ NB (28v)

y = y�(x) (28w)



676 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 38, NO. 1, JANUARY 2023

TABLE II
RESULTS FOR THE USE-CASE EXAMPLE IN SECTION IV-B

Energy purchased and throughput values are per year. The cost multiplier is applied to the bulk energy costs only. PV capacities are listed in order of
nodes [9, 22, 31, 34, 17]. Battery capacities are listed in order of nodes [2, 7, 24].

cost of 10 $/MW when compared to the other cost values,
which are cLMP = 1 $/MW, ci = 1 $/MW, d1 = 1 MW, and
d2 = 2 MW. In this case it is not in the LL’s interest to
buy DER and so yDER = 0 and the LL purchases all of its
power d1 = 1 from the grid. Also, the UL purchases all power
from the bulk system at cLMP = 1 to meet the total demand
d1 + d2 = 3MW. Therefore, the UL’s cost is$3 and the LL’s cost
is $1.

Now, let us assume that the DER system cost is equivalent
to the other cost values at 1 $/MW. The LL can now meet its
demand for equivalent costs from either the grid or from a DER
system. However, it is in the UL’s best interest for demand to
be met by the LL’s DER system because the UL can lower its
total cost from $3 to $2 by paying the LL $2 for exporting
excess DER power in to the grid to meet demand d2 instead
of meeting the total demand d1 + d2 from the bulk system.
Therefore, the UL choosesxλ = 1$/MW, which incentivizes the
LL to purchase yDER = 3MW. The LL meets its demand d1 = 1
MW behind-the-meter and exports 2 MW, which meets demand
d2 = 2 MW (and x0 = 0 MW). The LL’s cost is $1 (the same as
in the high DER cost scenario), but the UL reduces its cost from
$3 to $2.

In summary, in this simple demonstration, only when the
marginal cost of power from DER for the LL is less than
(or equal to) retail rate will the LL purchase DER, which
allows the UL to purchase excess power. When the LL can
export excess power, and the UL can lower its total cost by
purchasing DER exports, the UL will set the LL’s marginal
cost of power by choosing the minimum compensation rate
to incentivize the LL to export the optimal amount of power
that minimizes the total system cost of power. Note that in
practice the decision variables are indexed on time; and, with
solar PV as a DER option, there can be times when the LL has
a zero marginal cost of power. Therefore, determining the DER
solutions in practice are not as simple as comparing the cost
coefficients.

B. Complex Example with Separable Lower Level Problem

In this planning example we have a distribution system plan-
ner in the upper level that is considering purchasing battery
energy storage systems for installation at three different nodes
in a distribution system in order to reduce its operating cost
in a real-time energy market. The planner also accounts for
purchasing exported PV power from customers and sending a

time-of-use price signal to refrigerated warehouses with price-
responsive cooling systems. The upper level model is shown in
(28). Tables III and IV summarize the variables, parameters and
sets in (28). The objective (28a) includes three components to
minimize: (1) the cost of energy purchased on the bulk market
at the feeder head; (2) the cost of energy purchased from dis-
tributed, customer-owned photovoltaic (PV) systems; and (3) the
capital costs of battery systems. We assume an analysis period
of 20 years and a discount rate of 5%. For the bulk market price
cLMP,t we use the average hourly real-time market prices from
ERCOT over the year of 2019 [15]. A year of load is simulated
at an hourly resolution by randomly assigning different U.S.
Department of Energy Commercial Reference Building profiles
to the load nodes [16]. The load nodes are defined in [17], from
which we take the 38 node network model. Constraints (28c)
– (28g) define a linear power flow model, commonly known as
“LinDistFlow” [18]. Constraint (28h) limits the squared voltage
magnitude. Constraints (28i) and (28j) define the net power in-
jection from system operator owned battery systems. Constraints
(28k) and (28l) define the net power injection from customer
nodes with PV systems. Constraints (28m) and (28n) define the
net power injection from nodes with price-responsive refrig-
erated warehouses. Constraints (28o) and (28p) define the net
power injection from nodes with uncontrollable load. Constraint
(28q) is structural and prevents simultaneous export and import
rom nodes with PV systems. Constraints (28r) – (28v) define
the operational limits of the system operator’s battery systems.
Finally, constraint (28w) says that the lower level decisions y
must be optimal for the lower level problem (29) shown at the
top of next page.

Problem (29) shows the lower level problem, with the objec-
tive to minimize the total cost of energy for all customers in the
distribution system. Tables III and IV summarize the variables,
parameters and sets in (29). The first half of the lower level
objective (29a) represents the cost of energy for price responsive
refrigerated warehouses that have a known retail rate ci,n,t
and a time-varying price signal from the upper level problem
xi,n,t. The second half of (29a) represents the cost of energy
for customers that can install PV systems. These customers also
pay the retail rate ci,n,t for imported power but can also recieve
compensation for exported, excess PV power from the upper
level via xe,n,t. Constraints (29b) and (29c) are the load balance
constraints for the PV and warehouse customers respectively.
Constraint (29d) limits the PV power used to meet load to the
PV capacity times a known, normalized solar PV production
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y�(x) = arg miny pwf
∑
t∈T

∑
n∈NW

(yi,n,t [ci,n,t + xi,n,t]) + pwf
∑
t∈T

∑
n∈NPV

(ci,tyi,n,t − xe,n,tye,n,t)

+
∑

n∈NPV

cPVyPV,n (29a)

s.t. yi,n,t + ypvprod,n,t = dn,t + ye,n,t, (λn,t) ∀n ∈ NPV, ∀t ∈ T (29b)

yi,n,t = dn,t + yHVAC,n,t/COP ∀n ∈ NW , ∀t ∈ T (29c)

ypvprod,n,t ≤ yPV,nfPV,n,t ∀n ∈ NPV, ∀t ∈ T (29d)

yT,n,t = yT,n,t−1 + fhr

(
AyT,n,t−1 +B [yHVAC,n,t,un,t]

T
)

∀n ∈ NPV, ∀t ∈ T (29e)

yT,n,0 = Tn,t=0 ∀n ∈ NPV (29f)

Thi ≥ yT,n,t ≥ Tlo ∀n ∈ NPV, ∀t ∈ T (29g)

; ye,n,t ≥ 0, yi,n,t ≥ 0, ∀n ∈ NPV, ∀t ∈ T (29h)

factor from [19]. Constraints (29e) - (29g) define the refrigerated
warehouse temperature dynamics, starting condition, and tem-
perature limits. We assume that the warehouses are have freezing
units that can at most reach zero ◦C but can be cooled to as low as
−20 ◦C in order to lower their energy costs by coasting through
high price periods. We assume that the distribution system is
in Austin, Texas, which defines the PV production factor and
the ambient temperature used as an input to the refrigerated
warehouse models.

By inspection the lower level model (29) is separable between
the set of PV nodes NPV and the warehouse nodes NW . Because
we wish to linearize the bilinear product λn,tye,n,t in (28a),
which is only defined for the PV nodes, we only need to check
the linearization conditions for the components of the lower level
model (29) that are relevant to the PV nodes. A Julia module to
programatically check the linearization conditons, including for
separable problems like this example, is available in [20].4

The upper level is allowed to install battery systems at up
to three nodes (2, 7, and 24) in the network while the lower
level can install PV systems on up to five nodes (9, 17, 22, 31,
and 34). Using the baseline values the optimal solution is for
the lower level customers to install small PV systems to reduce
their utility bills and it is not economical for the upper level to
install storage systems. To produce more interesting results we
increase the bulk energy costs by integer values from the baseline
1× to 5×. Table II summarizes the results with increasing bulk
energy costs. In table II we can see some expected trends: as
the bulk energy costs increase less energy is purchased on the
bulk market and more PV energy is purchased from customers,
which encourages larger PV systems. However, there are not
clear trends in the battery sizes nor energy throughput. The lack
of trends in the battery results is not surprising: batteries can
serve many purposes including energy arbitrage, peak shaving,
and grid services. In fact, in the 5× bulk cost scenario so much
PV energy is exported that it is necessary to use the storage
systems to keep the voltage within limits.

4The module in [20] will be merged into [9] for ease-of-use. When debug
logging is enabled the module will report which conditions did not pass.

For more information regarding model results readers are
encouraged to see the code available online [21]. The examples
in this section are meant is demonstrative use-cases and only rep-
resent a fraction of the types of questions that might be answered
using the linearization technique for power system planning.
Furthermore, the price signal from the upper level to the lower
level can also be used in transactive control context by removing
capacity decisions, shortening the time horizon, increasing the
time resolution, and using forecasts for the uncontrolled demand
and PV production.

C. Solution Time Impact

Using the example from Section (IV-B) we compare solution
times with and without the upper level bilinear terms λtye,t
replaced with the linearization. In both cases the model is
reformulated as a single level problem. Both the mixed integer-
linear and the mixed integer-bilinear problems were solved using
Gurobi 9.1 on 16-core 3.4 GHz Linux PC with 32 GB of RAM
using “big M” constraints for the complementary constraints.
The mixed integer-bilinear problem is (28) combined with the
KKT conditions for (29). The mixed integer-linear problem is
not shown due to space constraints, but is available in the public
repository [21].

Both the linearized and bilinear problems have 350,405 bi-
nary variables and 2,417,777 continuous variables. The bilinear
problem also has 43,800 bilinear objective terms. After 25
seconds in the presolve the linearized problem has 103,588
binary variables and 519,031 continuous variables. The linear
problem solves in 128 seconds with a gap of 0.01%. After 21
seconds in the presolve the bilinear problem has 83,143 binary
variables, 540,209 continuous variables, and 21,180 bilinear
constraints. The bilinear model takes 8,447 seconds to get to a
57% gap, which is not improved until the operating system kills
the problem at 16,032 seconds due to running out of memory. In
short, the linearization method makes the otherwise intractable
bilinear bilevel problem from Section (IV-B) solve in a few
minutes. Similar results are expected for other large planning
problems like the example in Section (IV-B).
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TABLE III
PARAMETERS, AND DECISION VARIABLES FOR PROBLEMS (28) AND (29)

Scalar parameter values are shown in square brackets and some vector
parameters include source references.

TABLE IV
SETS AND INDICES FOR PROBLEMS (28) AND (29)

V. CONCLUSION

This work presents a method for linearizing bilinear products
of lower level primal and dual variables in the upper level
of bilevel optimization problems, and the conditions required
for the linearization to be exact. The linearization method is
especially relevant for modeling large scale energy distribution
systems with many stakeholders and is therefore applicable to
a growing number of problems as energy markets expand and
adapt to new regulations such as FERC Order 2222 [22] and
the increasing adoption of distributed energy resources [23]. By
publishing this method we hope that more use cases will be
discovered for the linearization technique.

For future work we intend to leverage the method in an open
source mathematical programming package [9], [?]. for study-
ing compensation mechanisms of distributed energy resources
serving as power system upgrade deferrals (c.f. [17]). Another
future research direction involves using the optimal price signals
from one level to the other as a transactive control mechanism.
We will also explore more accurate and complex power flow
approximations such as the second-order cone approximation
for the Branch Flow Model.

APPENDIX A
EXAMPLES TO DEMONSTRATE THE ALGORITHMS

Example 1: The simplest case for linearizing a certain λjyn
term occurs when the yn in the upper level objective bilinear
term is in only one lower level constraint. In this case, step 1 of
Algorithm 1 returns and (10) provides the linearization of λjyn.
Note that (10) is a particular instance of (9). In this example we
present the next simplest case, which is when yn is in more than
one constraint but the other y variables in constraint j are in no
other lower level constraints.

In Step 2 of Algorithm 1 the indices of (Dk) in the set
{k ∈ N \ {n} : Vjk �= 0} are added to the set of column indices
to check using the recursive Algorithm 2. And the set Jj is
initialized with{j}. Algorithm 2 then checks for non-zero values
of V above and below each Vjk entry for each of the column
indices. If no non-zero values are found then Algorithm 2 returns
the same sets that were passed to it, meaning that no more
equation indices are needed to linearize the λjyn term.

Take one particular k′ in N \ {n} for example. The special
case that Vik′ = 0 ∀i ∈ J \ {j} is illustrated as follows:

V = j-th row

k′-th col.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

. . . Vjn . . . Vjk′ . . .
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(30)

When yk′ is only in constraint j then (Dk′) is:

λjVjk′yk′ = ck′yk′ + μk′yk′ − μ
k′yk′ + yk′

∑
m∈M

Bmk′xm.

(31)
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Equation (31) can then be substituted into (Pj), shown in (11),
to eliminate the bilinear term of λj and yk′ in the sum over
k ∈ N \ {n}. A similar result follows for eliminating all of the
λjyk terms on the right hand side of (11). �

Example 2: Continuing from our previous example, now let
us assume that the k′-th column of V has one other non-zero
entry. Now, additional combinations of the (Pi) and (Dk) equa-
tions are necessary to eliminate the λjyk′ term in (11). This is
where step three of Algorithm 1, which relies on Algorithm 2,
comes in.

For this example letVi′k′ �= 0 for a particular i′ inJ \ {j}, and
let Vik′ = 0 ∀i ∈ J \ {j, i′}. Also, let the i′-th row of V contain
one other non-zero value Vi′�, and let Vi� = 0 ∀i ∈ J \ {i′}.
This case is illustrated in (32).

V =
j-th row
i′-th row

�-th col. k′-th col.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
...

...
... 0

. . . Vjn 0 Vjk′ . . .
0 . . . 0 Vi′� Vi′k′ 0 . . . 0

0 0
...

...
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(32)

Algorithm 2 is passed row j and column k′ from step 3
of Algorithm 1. Algorithm 2 first finds all the row indices of
non-zero values of V in column k′ (except Vjk′) and checks
that those rows have not already been added to the set of rows.
(Recall that redundant rows or columns found by the Algorithms
indicate an underdetermined system of equations). The set of
rows in Algorithm 2 now contains i′ since Vi′k′ �= 0. Finally,
Algorithm 2 loops over each row found to check for non-zero
values of V . If any values are found they are added to the
columns set to search in another call to Algorithm 2 (hence
the name “recursive_array_search”). In this case column � is
appended to the empty set of columns and so Algorithm 2 calls
itself once with r = i,′ c = �, rows = {i′}, cols = {�}, which
finds no more non-zero entries in V . Thus Algorithm 2 returns
rows = {i′}, cols = {�} to Algorithm 1, which appends the
returned sets to Jj and Nn, making the final sets Jj = {j, i′}
and Nn = {k,′ �},

Now (Dk′) gives:

λjVjk′yk′ + λi′Vi′k′yk′ = ck′yk′ + μk′yk′ − μ
k′yk′

+ yk′
∑
m∈M

Bmk′xm. (33)

Since the i′-th row of V contains only one other non-zero
value Vi′�, and the other values in column � of V are zero as
illustrated in (32), then adding equations (Pi′ ) and (D�) allows
one to linearize the λi′Vi′k′yk′ term in (33) in a similar fashion
to the previous example. �
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