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Low Level Jets
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What atmospheric conditions lead to mid-Atlantic LLJS?

NREL | 3



LLJ Mechanisms — Inertial Oscillation
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Inertial Oscillation

U(z,t) = Upq(2) + (V0 (2) = Vg (z)) sin ft + (U0 (2) = Ueq (z)) cos ft
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LLJ Mechanisms — Inertial Oscillation
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[Fig 8] Wiel et al, Journal of Atmospheric Sciences 67(8), 2010

Inertial Oscillation
U(z,t) = Upq(2) + (V0 (2) = Vg (z)) sin ft + (U0 (2) = Ueq (z)) cos ft

NREL | 5



LLJ) Mechanisms — Triggers

Frictional Decoupling — Blackadar 57 Differential Heating or Sloped Terrain
9
d,U,; = d,T
(U —Uy) z fT

* Nocturnal stability triggers decrease

in friction/vertical eddy diffusivity * Horizontal temperature gradients
(baroclinicity) lead to vertical

variations in geostrophic wind
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Which, if any, of these mechanisms are
responsible for US Atlantic LLJs?




Floating LiDAR Buoy

Data and Simulation Resources
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* Resolve turbulence &
microscale features of
the LLJ event

e Turbine impacts
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Mesoscale o<l
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Characteristics of the k- :
May 15, 2020 LLJ i

* Persistent LLJ at 1600 UTC ; | | | | .
* Consistent SSW wind direction g; -
* Rising jet nose, winds > 25 m/s . L
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Mesoscale Characteristics of the May 15, 2020 LLJ

~140m horizontal temperature gradients for May 15, 2020 event at EO6 NYSE—— dTfdx
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Geaostrophic velocities for May 15, 2020 event at EO6 NYSERDA buoy
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Temperature Map at ~140m Altitude
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L~# friction velocity (m/s)

Mesoscale Characteristics of the May 15, 2020 LLJ
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All three mechanisms contribute to the formation
of mid-Atlantic LLJs...

But what are the necessary and sufficient conditions?

e Too complex for the simple 1-D system of equations to capture LLJ formation
and dissipation.



Ongoing Work:
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e Single-Column Model

— Simplify horizontal gradients

— More realistic stability and
forcing than analytic models

* Microscale LES

— Resolve turbulent structures and
ABL

— Drive turbine simulations
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e LLJs impact turbines

 Mid-Atlantic LLJs correlate
with:
* |nertial Oscillation
e Baroclinicity
* Frictional Decoupling

 Ongoing work to disentangle
competing effects

Questions?
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