## Self Assembled Monolayers for Passivated Contacts

<u>Bill Nemeth</u>, Steve Harvey, Matt Young, Matt Page, San Theingi, Ryan France, Caroline Lima Souza de Salles, Matt Hartenstein, Kejun Chen, Vincenzo LaSalvia, Markus Kaupa, Abigail Meyer, David Young, Paul Stradins



## **PVSEC-31** 13 - 15 December 2021

Available online, wherever you are

## Motivation to Improve Passivated Contact Solar Cells

- Poly-Si on SiO<sub>2</sub> Passivated Contacts
  - Blistering/Adhesion of Poly-Si
  - Engineer Interfaces to Tailor Doping
- Lithography is Expensive and Time Consuming
  - Photoresist Free Patterning
- Self Assembled Monolayers (SAM)
  - Inexpensive
  - Can be Applied in Batch Processes

## Self Assembled Monolayer (SAM): Background



Aswal, et al. An. Chim. Acta. 568, (2006) 84.

## Hexamethyldisilazane (HMDS) Functionalization



-Add carbon in this case

### HMDS vs Aminopropyldiethoxymethylsilane (APDMS) [(CH<sub>3</sub>)<sub>3</sub>Si]<sub>2</sub>NH vs CH<sub>3</sub>Si(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>(CH<sub>2</sub>)<sub>3</sub>NH<sub>2</sub>



# Hexamethyldisilazane (HMDS) Blister Mitigation [(CH<sub>3</sub>)<sub>3</sub>Si]<sub>2</sub>NH









- p/a-Si:H most likely to blister: Lower H effusion temperature
- C added to a-Si:H helps prevent blistering
  - Nogay, et al. IEEE J. Phot. 8.6 (2018): 1478-1485.

## Isolate p/poly-Si to SiO<sub>2</sub> Interface for Devices











Mitigate Boron:

- Defect in SiO<sub>2</sub>
  - (Peroxy Linkage Defect)
- High cSi B surface concentration
- B pile-up at SiO<sub>2</sub> interface



## Extended Crystallization Time Improves Fill Factor



| SAM  | 850°C      | iV <sub>oc</sub> | V <sub>oc</sub> | J <sub>sc</sub>       |      |       |
|------|------------|------------------|-----------------|-----------------------|------|-------|
|      | time (min) | (V)              | (mV)            | (mA/cm <sup>2</sup> ) | FF   | η (%) |
| PEIE | 30         | 0.700            | 686             | 38.2                  | 66.7 | 17.5  |
|      | 30         | 0.704            | 685             | 38.3                  | 68.1 | 17.9  |
|      | 30         | 0.701            | 690             | 38.0                  | 75.4 | 19.8  |
|      | 160        | 0.698            | 690             | 38.0                  | 78.9 | 20.7  |
|      | 160        | 0.702            | 690             | 38.7                  | 76.1 | 20.3  |
|      | 160        | 0.702            | 691             | 38.0                  | 76.9 | 20.2  |
| HMDS | 30         | 0.701            | 700             | 38.0                  | 76.4 | 20.3  |
|      | 30         | 0.700            | 695             | 38.1                  | 75.3 | 19.9  |
|      | 30         | 0.700            | 701             | 38.4                  | 77.2 | 20.8  |
|      | 160        | 0.698            | 691             | 37.8                  | 79.5 | 20.8  |
|      | 160        | 0.701            | 695             | 38.0                  | 78.6 | 20.8  |
|      | 160        | 0.699            | 696             | 38.2                  | 80.4 | 21.4  |



HMDS

[(CH<sub>3</sub>)<sub>3</sub>Si]<sub>2</sub>NH

Longer 850°C Anneal

- Carrier collection improved
- Maintain passivation
- Increased dopant diffusion
- SAM dielectric thickness decreased



### Metallization on HMDS: Allows Transport SAM Removal Unnecessary



#### Different Application for SAM Application Patterning Solar Cell Layers – Photoresist Free Lithography



## Patterning with HMDS Background – Selective ALD



#### SEM



### HMDS Pattern with UV – Water Adheres to Oxidized Pattern



## HMDS Patterned Selective Etching cSi



### HMDS Reversed Patterned Etching a-Si:H – No HF



## Inverse SAM Patterned Etching a-Si:H on SiO<sub>2</sub>



## Conclusions

SAMs offer multiple prospective applications

- Engineered interfaces
- Selective doping
- Metallization schemes
- Poly-Si removal between grid fingers

#### Acknowledgement

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.



# Thank you Questions?



NREL/PR-5900-81309