

Process Intensification for Direct Conversion of Biomass-Based Syngas to High Octane Gasoline

Claire Nimlos, Connor Nash, Anh To, Dan Dupuis, Daniel Ruddy*

Catalytic Carbon Transformation & Scale-up Center, National Renewable Energy Laboratory

2021 AIChE Annual Meeting Breakthroughs in C1 to Chemicals and Processing Engineering November 16, 2021

Traditional syngas to fuels have known drawbacks, with reduction in process complexity and separations while producing **higher value** products necessary

E. Tan, et al., Biofuel Bioprod. Bioref. 2017, 11, 41.

D. A. Ruddy et al. Nat. Catal., 2019, 2, 632

D. A. Ruddy et al. Nat. Catal., 2019, 2, 632

D. A. Ruddy et al. *Nat. Catal.*, **2019**, 2, 632

Development of a biorefinery process to convert renewable C1 intermediates into a suite of fuel products to meet market demand

D. A. Ruddy et al. *Nat. Catal.*, **2019**, 2, 632

Development of a biorefinery process to convert renewable C1 intermediates into a suite of fuel products to meet market demand

DME homologation on acid zeolites

Ahn et al., *Angew. Chem.*, **2009**, 48, 3814 Simonetti et al., *J. Catal.*, **2011**, 277, 173 Simonetti et al., *Chem. Cat. Chem*, **2011**, 3, 704

DME homologation on acid zeolites

DME homologation on acid zeolites ...

Beta zeolite higher selectivity to C_7 due to stabilization of the bulky transition state in larger cage/intersections

Ahn et al., *Angew. Chem.*, **2009**, 48, 3814 Simonetti et al., *J. Catal.*, **2011**, 277, 173 Simonetti et al., *Chem. Cat. Chem*, **2011**, 3, 704

DME homologation on acid zeolites and the limitations

Hydrogen Deficiency

 $CH_3OCH_3 \rightarrow 2 "CH_2" + H_2O$

Need an additional 2H per alkane produced

DME homologation on acid zeolites and the limitations

Hydrogen Deficiency

 $CH_3OCH_3 \rightarrow 2 "CH_2" + H_2O$

Need an additional 2H per alkane produced

Yield Loss – aromatics and C_{Λ}

 $33 \text{ CH}_3\text{OCH}_3 \longrightarrow 6 \text{ C}_7\text{H}_{16} + 33 \text{ H}_2\text{O} + 2 \text{ C}_6(\text{CH}_3)_6$

H/BEA leads to formation of heavy unsaturated hydrocarbons or terminal products like isobutane

Mechanism

J. A. Schaidle et al. ACS Catal., 2015, 5, 1794

US Pat # 9,803,142 B1 US Pat App 62/482,315 US Pat App 62/515,087

J. A. Schaidle et al. ACS Catal., 2015, 5, 1794

- Maintains high selectivity to branched C₄ and C₇ hydrocarbons
- High yield for HOG range products

J. A. Schaidle et al. ACS Catal., 2015, 5, 1794

- Maintains high selectivity to branched C₄ and C₇ hydrocarbons
- High yield for HOG range products

J. A. Schaidle et al. ACS Catal., 2015, 5, 1794

- Maintains high selectivity to branched C₄ and C₇ hydrocarbons
- High yield for HOG range products

J. A. Schaidle et al. ACS Catal., 2015, 5, 1794

- Maintains high selectivity to branched C₄ and C₇ hydrocarbons
- High yield for HOG range products

Cu/BEA had improved hydrocarbon yields over H/BEA while minimizing aromatic formation and increased catalyst lifetime

US Pat # 9,803,142 B1 US Pat App 62/482,315 US Pat App 62/515,087

Utilizing zeolites in a single reactor for syngas conversion

J. A. Schaidle et al. ACS Catal., 2015, 5, 1794

Utilizing zeolites in a single reactor for syngas conversion

J. A. Schaidle et al. ACS Catal., 2015, 5, 1794

- Nano-sized ZSM-5 downstream of commercial methanol and DME synthesis catalysts
- High selectivity to gasoline
 range hydrocarbon products

hydrocarbon yields and overall performance

Utilize commercially available catalysts for the syngas to DME reactions

- "CZA" Cu/ZnO/Al₂O₃, Megamax 800, Clariant
- "A" γ-Al₂O₃, NorPro® SA6173, St. Gobain-Norpro

"mixed-bed" catalyst#1+catalysts #2
"stacked-bed" top-catalyst|bottom-catalyst

Utilize commercially available catalysts for the syngas to DME reactions

- "CZA" Cu/ZnO/Al₂O₃, Megamax 800, Clariant
- "A" γ-Al₂O₃, NorPro® SA6173, St. Gobain-Norpro

"mixed-bed" catalyst#1+catalysts #2
"stacked-bed" top-catalyst|bottom-catalyst

Utilize commercially available catalysts for the syngas to DME reactions

- "CZA" Cu/ZnO/Al₂O₃, Megamax 800, Clariant
- "A" γ-Al₂O₃, NorPro® SA6173, St. Gobain-Norpro

Reactor configuration influence on syngas conversion

Reactor configuration influence on syngas conversion

Reactor configuration influence on syngas conversion

H₂:CO 2:1 220 °C, 750 kPa, WHSV_{co} 0.3 h⁻¹

Measured at same time on stream (~12h)

H₂:CO 2:1 220 °C, 750 kPa, WHSV_{CO} 0.3 h⁻¹

Measured at same time on stream (~12h)

H₂:CO 2:1 220 °C, 750 kPa, WHSV_{co} 0.3 h⁻¹

Measured at same time on stream (~12h)

H₂:CO 2:1 220 °C, 750 kPa, WHSV_{CO} 0.3 h⁻¹

Measured at same time on stream (~12h)

Improved hydrocarbon production achieved when considering the efficient utilization of in-situ formed of DME

Syngas conversion compared to DME conversion

Syngas: H₂:CO 2:1 220 °C, 750 kPa, WHSV_{CO} 0.3 h⁻¹

Syngas conversion compared to DME conversion

Syngas conversion compared to DME conversion

Direct syngas to hydrocarbon performance improved over DME homologation while maintaining high selectivities to HOG range products

Assess syngas conversion in the single reactor with co-fed CO₂

- Molar ratios of H₂:CO:CO₂
 2:1:0.8
- CZA+A|Cu/BEA bed composition 3:1|3

Assess syngas conversion in the single reactor with co-fed CO₂

- Molar ratios of H₂:CO:CO₂
 2:1:0.8
- CZA+A|Cu/BEA bed composition 3:1|3

CZA+A|Cu/BEA 3:1|3

With CO.

Without CO.

	Manout 002	
CO+CO ₂ Conversion %	77.3	27.0
C ₄₊ Product Yield %	40.8	23.8
CO ₂ Selectivity %	38.3	28.4
Hydrocarbon Productivity (g g _{Cu/BEA} ⁻¹ h ⁻¹)	0.098	0.054

Assess syngas conversion in the single reactor with co-fed CO_2

- Molar ratios of H₂:CO:CO₂
 2:1:0.8
- CZA+A|Cu/BEA bed composition 3:1|3

Monitored by Mass

Spectroscopy

Hydrocarbons

NREL | 44

Conversion of CO_2 - rich syngas in a single reactor system

Direct syngas to hydrocarbon performance improved over DME homologation while maintaining high selectivities to HOG range products

Incorporation of CO_2 into hydrocarbon products, demonstrating viability of process to convert CO_2 rich syngas with improved carbon efficiency

Energy Materials Network

Bioenergy Technologies Office

ChemCatBio Chemical Catalysis for Bioenergy

U.S. Department of Energy

Thank you, questions?

www.nrel.gov

NREL/PR-5100-81468

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Transforming ENERGY

Supplementary Information

Process Intensification for Direct Conversion of Biomass-Based Syngas to High Octane Gasoline

Claire Nimlos, Connor Nash, Anh To, Dan Dupuis, Daniel Ruddy*

Catalytic Carbon Transformation & Scale-up Center, National Renewable Energy Laboratory

2021 AIChE Annual Meeting Breakthroughs in C1 to Chemicals and Processing Engineering November 16, 2021

hydrocarbon species monitored