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Abstract—Virtual topologies in peer-to-peer networks can re-
duce the traffic consumed by altering the logical connectivity of
peers without altering the underlying network. However, such
sparsely connected virtual topologies do not focus on the needs
for smart grid applications, which is information dissemination
throughout the network, and in turn degrade the performance
of distributed control algorithms running on peer-to-peer net-
works. This paper provides a flexible solution for application
developers to prototype and deploy different virtual topologies
that balances these trade-offs. First, it introduces a configurable
virtual communication topology framework, TopLinkMgr, which
enables users to specify any chosen connectivity configuration and
deploy peer-to-peer applications using it. Second, it proposes a
novel fault-tolerant self-adaptive virtual topology management
algorithm, Bounded Path Dissemination, that can ensure the
dissemination of information to all peers within a specified
number of hops. Experiments show that the algorithm improves
on convergence speed and accuracy over state-of-the-art meth-
ods and is also robust against node failures while consuming
significantly less communication bandwidth.

I. INTRODUCTION

In peer-to-peer architectures deployed for the modern elec-
tric grid, a computational cyber component with commu-
nication capabilities is associated with the various physical
elements of the grid, such as distributed energy resources
(DERs), solar photovoltaic (PV), sensors, and relays. This
realizes the cyber-physical system, on top of which various
energy management schemes are applied. The integration of
intelligent algorithms into the electric grid has essentially
given rise to the concept of Smart Grid [1].

A peer-to-peer energy management system (EMS) for a
smart grid comprises a set of algorithms that achieve a com-
mon goal of the system or perform some action. It achieves
this through the exchange of information with every other
participant without going through a centralized controller.
Thus, each component combines its local measurements with
the information received from its peers at each iteration to
produce an output. The output is usually a type of optimization
cost or consensus value (which may be used as a control
signal). The output is improved iteratively as more and more
information is exchanged.

The traffic pattern for peer-to-peer EMS agents is always
any-to-any. In such cases, a fully connected peer-to-peer con-

figuration ensures the highest amount of information dissemi-
nation throughout the network, but it also generates the highest
network traffic at each round. To be precise, in a network of n
nodes, fully connected communication generates n× (n− 1)
messages per round. This becomes an issue once the size of
the system becomes larger as it might cause messages to be
delayed or dropped by the network. One way to overcome
this bottleneck is to establish a virtual topology on top of
the communication network that creates a sparsely connected
communication graph. A virtual topology can be defined as an
application-layer overlay that determines how each peer shares
information with the rest of the network. Using such virtual
topologies, peers can choose a subset of neighbors to share
information with instead of flooding the network. However,
in such a setup, since fewer information is exchanged at
each iteration, the convergence performance of distributed
algorithms might be affected both in terms of accuracy and
speed. Thus, there exists a trade-off between convergence
efficiency and the amount of network traffic generated that
must be considered by system designers for peer-to-peer EMS.
Application designers need to evaluate their algorithms for
different communication connectivity configurations before
deciding on the best approach.

To address this need, this paper introduces an integrated,
configurable framework, Topology Manager for Peer-to-Peer
Links, or TopLinkMgr, for implementing and deploying var-
ious topology configurations on remote edge devices for
evaluation as well as production deployments. It allows users
to specify any custom connectivity graph using a novel text-
based domain specific modeling language, TopLink.

However, while expert users can use TopLinkMgr to come
up with their own topology, manually altering a given topology
each time through trial and error is a tedious task for non-
expert users. The initial topology that is deployed can often
be improved by a few tweaks to the peer-to-peer connectivity
without going through a complete redesign. As discussed,
the key criteria for a peer-to-peer smart grid application is
the effective dissemination of information to all parts of the
network. Thus, the final chosen topology should be able to
improve on that characteristic.

This brings about a second challenge - how to devise a
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strategy that can automatically adapt and improve the dissem-
ination of information to all peers in the case of a sparsely
connected peer-to-peer communication topology, especially for
non-expert users? In terms of graph theory, the problem can be
formally defined as, given a set of peers and V , determining a
set of virtual connections E : V × V , such that there exists a
virtual path Pij{e : e ∈ E} between any two nodes vi and vj
and the minimum path length satisfies 1 ≤ min(n(pij)) ≤ th.
Here, n() denotes the cardinal number of a set and th denotes
a maximum threshold.

We introduce a novel group-based topology management
and peer selection algorithm Bounded Path Dissemination
(BPD). It dynamically adapts a given virtual communication
topology to limit the minimum path length within an adjustable
threshold. For a safety-critical field such as smart grids, fault-
tolerance also becomes an important factor. The system must
still be able to maintain its operational goal under multiple
node failures. Thus, the proposed algorithm has dedicated
fault-tolerance protocols that can prevent partitioning of the
virtual network if one or more nodes drop out, thus ensuring
information dissemination.

There has been considerable work on the topic of peer
to peer network overlays for distributed applications such as
large-scale file sharing and look up, load balancing and so on
[2]. The aim of this work is to develop a light-weight virtual
topology creation algorithm that ensures reliable delivery of
application messages for an any to any traffic pattern.

In summary, the main contributions of this paper are as
follows:
• TopLinkMgr, a configurable framework for implement-

ing and deploying various topology configurations over
RIAPS platform that allows the deployment of different
peer to peer connectivity configurations.

• Bounded Path Dissemination (BPD), a topology man-
agement algorithm that improves the speed of informa-
tion dissemination without flooding the network and is
resistant to node failures.

The rest of the paper is organized as follows: Section
II describes existing works found in literature. Section III
explains the architecture and process flow of the TopLinkMgr
framework, section IV explains the different steps of the BPD
algorithm and section V shows the experimental results of
applying the algorithm and its effect on peer-to-peer algorithm
convergence and fault-tolerance in comparison with some of
the alternative methods. Concluding remarks and possible
future work are mentioned in Section VI.

II. RELATED WORK

There is a substantial amount of literature available in the
field of distributed cloud and fog computing on the topic
of overlay networks. An overlay is a virtual network built
on top of the network layer, supported by its infrastructure
that is capable of selectively forwarding packets to peers
in the network, in an application-specific way [3]. Various
types of overlay topologies exist in the literature, and they
can be categorized into two categories, namely structured

Fig. 1: TopLinkMgr Architecture

and unstructured. Structured overlays are static in nature,
where the connections are predefined and remain unchanged
throughout the operation lifecycle [4], [5], [6]. On the other
hand, in unstructured peer-to-peer overlays, connections are
determined at run-time and can change at each round [7]
, [8], [9]. Among them, gossip-based protocols have found
widespread adoption in industrial distributed systems use cases
such as [10], [11]. In a gossip-style communication, at each
iteration a peer randomly selects a subset of peers to send
its updates to. Although the ideas and concepts used in these
approaches can be generalized and have influenced our design,
all are focused mainly on the efficient organization of nodes
to optimize parameters such as latency [12], for file storage
and look up [13], [14]. In [15], a peer selection strategy
is introduced which is built by improving the randomized
shuffling protocol. Using this protocol, an efficient topology
management scheme was developed in [16] for a distributed
file sharing application. Other algorithms seek to minimize
proximity to centralized cloud data centers [17] or dynamic
clustering in the case of moving nodes, such as vehicles [18].
Although the general principles and solution techniques used
in these works have inspired this paper, all of them focus on
factors important for large-scale dynamic distributed systems
where better load balancing and faster response times are
desired. For a peer-to-peer smart grid application, the key
factor is the distribution of information generated from all
peers to all other peers throughout the network efficiently and
quickly.

Overlay solutions that have been implemented recently for
smart grid platforms [19], [20], [21]. These approaches mainly
look at using some heuristics to optimize the routing efficiency
of messages based on information about the power network.
However, the experiments performed always assume a network
model that has a few hops to any node, which is the problem
that we are trying to solve.

Thus, the existing approaches do not solve the performance
network usage trade-offs that are important for peer-to-peer
smart grid applications, nor do they provide the flexibility
for application developers to implement and customize the
communication topology for their algorithms.

III. TOPOLOGY MANAGER FOR PEER-TO-PEER LINKS

This section describes our configurable virtual communica-
tion topology framework, Topology Manager for Peer-to-Peer
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Links (TopLinkMgr). It acts agnostic to the overlying appli-
cation logic and can be leveraged by application developers
readily without worrying about the implementation details.
The main goal of TopLinkMgr is to allow application users
to deploy distributed peer-to-peer applications using different
communication structures to evaluate and determine the best
option depending on the application needs. In order to facilitate
that, the manager also comes with a library of topologies
which are commonly employed, along with providing flexi-
bility to users to design a completely custom topology from
scratch. All these options can be provided through the use
of a simple text-based user specification language that has
been developed for the utility, called TopLink. Using TopLink,
users can specify the names of participating nodes, the type
of communication topology, as well as define the individual
links for a custom topology in a .tl file, which is then fed
to a TopologyParser tool that uses the information to translate
the user specifications into the appropriate network graph.
RIAPS Overview: To develop and deploy the smart grid
applications for this article, we use an integrated, decentralized
software framework Resilient Information Architecture Plat-
form for Smart Grids (RIAPS) [22]. RIAPS uses a distributed
component-based application model with communicating in-
terfaces called ports, using which application developers can
realize any peer-to-peer algorithm. It also comes with sev-
eral platform-level services, such as remote deployment and
control, network discovery, time synchronization and fault-
tolerance [23]. These platform features make RIAPS highly
suitable as our chosen implementation platform.

The TopLinkMgr framework utilizes one of the features pro-
vided by the RIAPS platform called groups, that enables the
user-specified virtual topology to be realized into a working
RIAPS application. A group defines a dynamic grouping of
components at the application level. A group is defined as
a group name in the application model which can then have
multiple instances defined during deployment. RIAPS groups
provide several functions that include:
Group communication: Members of groups can send and
receive private messages that are only circulated within that
group. Sometimes it also might be required to share informa-
tion across groups. This can be achieved by forming a separate
group comprising all leaders as a cross-group communication
channel.
Membership management: Components can dynamically join
or leave a group at any time. RIAPS also provides API-s for
detecting and handling membership changes.
Leader election: RIAPS groups can also perform leader elec-
tion using a RAFT-based algorithm [24]. Members can also
communicate directly with the group leader using special
methods.
Voting and consensus: Group members also have the ability
to start a voting process on values or actions and gather the
final result based on the votes of all other members.
Process Flow: A virtual topology can be constructed by
assigning peers to groups based on how one peer is log-
ically connected to another. This is done by the module

Fig. 2: Group formation. The rectangular outlines represent
the groups. The send and receive groups as perceived by the
two left-most nodes respectively are illustrated.

TopologyParser, which takes as input a RIAPS model file
containing the actor, component and message definitions and
a topology specification file written using TopLink. For each
set of communicating links that connect a source peer to any
number of destination peers, a group needs to be created.
In this context, a group can be defined as a means of
establishing the information flow relation between nodes. In
TopLinkMgr, there are two categories of groups, a send group
for outward communication, and a receive group for inward
communication. The number of groups is determined by the
defined virtual topology, and then each node is assigned to be
part of these groups based on the virtual connections. Group
categories are relative to each node.

For example, consider the graph of Figure 2 with four nodes,
represented as blue rectangles that are logically connected
according to the solid arrows. The direction of the arrows
specifies whether the node can send messages to the other
node or receive messages from it. The dotted lines represent
unused communication links that are not part of the virtual
topology. In order to implement this configuration, it would
require the formation of two groups, Grp 1 comprising the left
two nodes and Grp 2 comprising the right three nodes. Since
the left most node acts as the sender, TopLinkMgr will assign
Grp 1 as its send group. Similarly, the node second from the
left receives from the other nodes of both Grp 1 and Grp 2.
Thus, ToplInkMgr will assign both groups as its receive group.

Finally, once the group assignments are calculated, a RIAPS
model deployment file is generated by the ModelGenerator
utility which also weaves the group configurations and nec-
essary commands into the model file. If a deployment file
already exists, the ModelGenerator modifies it by adding
group arguments, or else it generates a new file. It also
automatically generates the required component code to join
the appropriate groups. Thus, the output of the entire process
flow is a complete working application that implements the
specified communication topology among the specified peers.
The complete architecture and the process flow are depicted
in figure 1.
TopLink Specification Language TopLink is a text-based
domain-specific modeling language that can be used by appli-
cation developers to describe their chosen topology, either a
pre-configured or a completely custom one. It provides special
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// RIAPS Application Model
app GroupTestApp {

// message types
message SensorData;
message NodeData;

...
// Sensor component

component Sensor(value=1.0) {
timer clock 10000;
pub sensorReady : SensorData ; // Publish port

}
// Averager component

component Averager(Ts=1.0){
sub sensorReady : SensorData ; // Subscriber port
pub thisReady : NodeData; // Publish port
sub nodeReady : NodeData; // Subscriber port
...

}
...

// Averager actor
actor Averager(value=0.0,Ts=100.0){

local SensorData; // Local message types
{

sensor : Sensor(value=value);
averager : Averager(Ts=Ts);
}

}
...
}
}

(a) RIAPS application model
// topology configuration for RIAPS app
// Actor.Component
for Averager.Averager {
create topology custom; // topology name
over (bbb1, bbb2, bbb3, bbb4, bbb5, bbb6); // nodes
using (bbb1, bbb2), (bbb2, bbb3), (bbb2, bbb5), (bbb2, bbb6), (bbb3, bbb4), (

bbb3, bbb6), (bbb4, bbb5), (bbb5, bbb3), (bbb6, bbb1), (bbb6, bbb5) ;
// links

inter-group communication on; // turn on communication between group leaders
}

(b) TopLink input file (all features not shown)

Fig. 3: TopLinkMgr input files showing an example RIAPS
application model and a TopLink specification

keywords through which users can define different aspects
of the topology. Properties that can be defined using the file
include:

• The RIAPS application actor and component for which
the connectivity is being defined.

• The type of topology: either preset or custom. Currently,
the preset topologies that are supported are a ring type
and a fixed fan-out randomly generated graph, but in the
future we plan to add more.

• The node identifiers for the network (IP addresses and
host names).

• The individual communication links between the nodes
(if the topology is custom).

• Weights for individual links if the network links are not
uniform.

• If communication is desired among the leaders of the
formed group, it can also be enabled.

Figure 3 shows a RIAPS application model for a peer-
to-peer algorithm that defines the various components, their
communication ports and port message types, the actor that
encapsulates them, and a corresponding topology specification
file that describes a custom topology. Running TopLinkMgr
produces a modified model file, a RIAPS deployment file,
and the various components’ starter code as its output. The
modified model file contains the initialization of the TopLink
group and the associated group message type. The deployment

file contains the details of how the application actors will be
deployed to the various remote nodes (denoted by their IP
addresses or their hostnames) and the specific arguments for
each actor deployed, if required. The TopLinkMgr generated
deployment sets the send and receive group names (which
are instances of the TopLink group) as arguments for the
corresponding actors based on the topology. Although some
features of the language described are based on the RIAPS
modeling architecture, the language itself is not tied to RIAPS
and can be made to work with other platforms as well using
dedicated parsers.

IV. BOUNDED PATH DISSEMINATION ALGORITHM FOR
TOPOLOGY MANAGEMENT

Let us consider a fairly common peer-to-peer use case for
smart grids, the distributed optimal power flow (OPF) problem
[25] for a network of microgrids [26]. OPF is an optimization
problem that minimizes the total generation dispatch cost
while satisfying physical and technical constraints on the
network [25]. Using the primal-dual algorithm to solve the
given problem leads to equations 1 (primal update) and 2
(dual update). In both equations, k stands for the k-th node
and t for time instant t. x and λ̂t are the primal and dual
variables respectively. α, β, γ act as weights. In practice, each
microgrid control node keeps a local copy of the dual variable.
At each iteration, this dual variable is updated both by local
measurements as well as communication received from other
controllers. This is reflected in the dual update equation 2
where the first term is updated from measurement data and
the second term is updated from communication data. Of
course, the implementation of such an algorithm requires that
the nodes be synchronized (time- or event-based) to drive the
iterations. The performance of the algorithm compared to a
fully centralized system for sparse communication connectiv-
ity becomes worse than all-to-all connectivity.

xk,t+1 = Projχ[xk,t + αk,t(∇fk(xk,t) +Ak ˆλk,t)] (1)

ˆλt+1 = ProjR[λ̂t + βtM(y − b)]− γtLλ̂t (2)

As discussed previously, the convergence of peer-to-peer
smart grid algorithms such as the one discussed above, both
in terms of how close the final solution is to an optimal
one and how many iterations it takes to reach it, depends
on the proper dissemination of information. Thus, any virtual
topology deployed must achieve that balance between proper
distribution of messages and limiting network traffic. Another
important consideration for a safety-critical system such as
smart grids is its resilience to unexpected faults that cause
crashes of individual nodes and lead to partitioning of the
virtual topology.

In order to address these requirements, we introduce the
Bounded Path Dissemination algorithm. This algorithm im-
proves the dissemination of information to all peers in the
network by reducing the hop length of the path from one
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node to all the other nodes within a threshold, which can
be specified as an input parameter. Threshold of 1 implies
a fully connected graph. BPD limits the minimum number of
iterations required for the message generated by a particular
node in the network to reach all its peers. This results
in speeding up of the information coverage throughout the
network which effectively improves the performance of a peer-
to-peer application algorithm over the unmodified scenario.
Additionally, BPD also has dedicated self-healing capabilities
that can ensure that peers remain connected even if one or
more drop out due to faults.

The following notations and definitions will be used
throughout the rest of this section.

• nodei = (id, send grpi, recv grpi) denotes a partici-
pating node in the network. It acts as the endpoint for
peer-to-peer communication. It consists of an identifier
id, a sending group object send grpi and a receiving
group object recv grpi that realizes the topology.

• id is a unique identifier for a node. In the case of RIAPS,
it is a generated universally unique identifier string (uuid).

• grpm = (id, size, send(), recv()) denotes a group ob-
ject. It consists of an identifier for the group, the attribute
size that stores the number of members currently present
in the group and two methods send() and recv() for
sending and receiving messages to and from that group.

• send grpi = {grpm.id, weightsend()} refers to the
sending group object of nodei. It contains the id of the
group that nodei has joined as a send grp. The weight
attribute represents the cost incurred for the outgoing
links of nodei. The default value is 1. The send and
receive operation here refers to invoking them on all
groups with ids present in send grp.

• recv grpi = {grpm.id, recv()} refers to the receiving
group object of nodei. It contains the ids of the groups
that nodei has joined as a recv grp. The send and receive
operation here refers to invoking them on all groups with
ids present in send grp.

The algorithm comprises two stages, namely Discover Peers
and Group Update. The first stage dynamically gathers in-
formation about the various node-to-node paths within the
topology and their lengths, while the second stage then uses
that information to alter some of the paths to ensure that
they all lie within the defined threshold. For our setup, an
external agent called TopologyManager was responsible for
sending commands to each peer to initiate the algorithm
stages. However, the same can be triggered by using an internal
clock. For smart grids, the number of nodes is determined by
the elements of the grid. The network is closed and private
for security. Thus, there is no node churn (unlike cloud-
distributed systems [27]). Therefore, the algorithm starts with
an initial configuration of the nodes generated by the topology
framework. However, the discovery phase still ensures gener-
alizability since the path lengths are calculated dynamically
without any knowledge of the initial configuration.

A. Stage 1: Discover Peers

In this stage, all peers share information regarding them-
selves which is propagated through the topology. This informa-
tion is used by each node to ascertain and store the minimum
paths to all other peers in the network in an internal table. It
begins when TopologyManager sends a discoverPeers message
to all peers in the network. On receiving the message, each
node creates a new message containing its own id, a depth
variable initialized to 0, and sends it to each of the groups in
its recv grp. It also puts its recv grp id into the message.

On receiving the message, the recipient checks if the group
id matches with its send grp id. If the depth field is lower than
the previously recorded depth of the same node, then it updates
the table entry. Next, it increases the depth by the weight
associated with that send grp and forwards it to its recv grp.
At the end of this round, each node will have a complete
table containing the node ids and the depth corresponding to
that node, indicating the path cost. The steps are shown in
Algorithm 1.

Algorithm 1 BPD Stage 1: DiscoverPeers

Input: Initial send grpi and recv grpi for nodei
Output: pathi.nodej ← ({nodej : depthij}∀nodej) for

nodei, i 6= j
1: on event DiscoverPeers do
2: msgi ← { id : nodei.id, depth: 0, ‘grp’ : recv grpi,

‘order’ : 0, ‘weight’: recv grpi.weight }
3: recv grpi.send(msgi)
4: on event send grpi.recv(msgj) do
5: if msgj .grp = send grpi.id then
6: msgj .depth← msgj .depth + msgj .weight
7: if msgj .depth < pathi.nodej .depth then
8: pathi.nodej ← msgj
9: recv grpi.send(msgj)

10: end if
11: end if

B. Stage 2: Group Update

This stage uses the fully fleshed-out table entries from Stage
1 to limit the minimum path cost from all nodes of the network
to every other node based on a threshold. This threshold
is a parameter that can be decided by the user using the
connectivity and the desired information dissemination rate.
For the experiments performed in this paper, a threshold was
selected using the formula thresh = (N − 1)/2, where N is
the number of nodes in the network, which is half the number
of edges required to form a spanning tree, the minimal fully
connected graph comprising N nodes. Application designers
can select a threshold based on how much they want to
compromise convergence performance while trying to reduce
bandwidth consumption. It begins when TopologyManager
sends a groupUpdate message to all peers in the network. On
receiving the message, all nodes look at the paths that they
have stored locally. If for any path depth > threshold, then
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that node sends a message containing its id, new depth = 0
and weight to its send grp.

On receiving the message, the recipient node increases the
depth by the weight of its send grp and forwards the message
to it. When the message reaches a node for which depth =
thresh − weight, it appends its send grp id to the message
and forwards it. When the message reaches the target node,
the node reads the group id from the field and joins that group.
This effectively means that a new link is added to the network
graph linking the target node to an intermediate node between
it and the source such that the total path depth from the source
does not exceed thresh. It terminates when there are no new
messages to forward. The steps are shown in Algorithm 2.

Algorithm 2 BPD Stage 2: GroupUpdate

Input: pathi from Stage 1 for nodei, thresh
Output: pathi.nodej ← ({nodej : depthij | depthij ≤

thresh}∀nodej) for nodei, i 6= j
1: on event GroupUpdate do
2: for nodej , depthj in pathi do
3: if depthj > thresh then
4: msgi ← {‘req’: nodei.id, ‘id’ : nodej .id, ‘length’

: 0, ‘grp’: ””, ‘send grp’ : send grpi.id }
5:
6: end if
7: end for
8: on event recvgrpi.recv(msgj) do
9: if msgj .req! = nodei.id then

10: if msgj .depth <= thresh − weightk and
msgj .grp == “” then

11: msgj .depth← msgj .length+ weightk
12: if msgj .depth == thresh− weightk then
13: msgj .grp← send grpi.id
14: end if
15: end if
16: send grpi.send(msgj)
17: else
18: joinGroup(msgj .grp)
19: sendgrpi.id← msgj .grp
20: end if

Figures 4a and 4b illustrate the working of the two stages of
the algorithm for an example 6-node topology. The threshold
selected is 3. In Figure 4a, it can be seen that after running the
DiscoverPeers protocol to determine the relative path lengths
for all nodes, for node 4, nodes 1 and 2 are further than the
threshold. Thus, when the group update protocol is triggered,
nodes 1 and 2 join the send grp of node 3, which establishes
a path from node 4 to nodes 1 and 2 via node 3. Thus. it can
be seen that after completion of the round, the new (shortest)
path of nodes 1 and 2 from node 4 becomes 2, which is within
the set threshold. Thus, BPD ensures that any message sent
from node 4 would reach nodes 1 and 2 within 3 iterations,
provided that node 3 is intact. However, that might not always
be the case, as unexpected faults might cause nodes to drop
out of the network. How BPD can handle such scenarios is

(a) Node 4 after Stage 1

(b) Node 4 after Stage 2

Fig. 4: Bounded Path Dissemination Algorithm on a 6 node
topology

discussed in the next subsection. It must be noted that there can
be multiple solution topologies that satisfies the requirement.
BPD currently does not differentiate between them since
in terms of minimum path length they are all equivalent.
However, in future works, the algorithm can be optimized,
say for e,g., the solution time, or minimum number of edges
etc. The algorithm will converge, provided that the starting
topology is connected. The speed of convergence depends on
both the number of nodes and the threshold selected.

C. Fault Tolerance

The objective of the fault tolerance protocol is to ensure that
the information originating from healthy nodes is distributed
to all other peers when one or more nodes drop out due to
failure. When such faults happen, it can lead to two things,
either some of the path lengths can be altered and exceed the
threshold since an intermediate route is removed, or one or
more nodes can become isolated or partitioned from the rest
of the network. In the first case, the algorithm can self-repair
by running the two stages periodically. The period used for the
experiments in this paper was 2 min. For the second case, there
can be two scenarios. The fault-tolerance protocol utilizes the
leadership feature of the groups.

1) When a member of the send grp goes offline: Since for
each group, the source node joins it as a send grp itself and all
other nodes that receive from it join that group as a recv grp, if
a group has more than one member, it implies that there exists
a path from one peer to the other. If a peer is the only member
of its send grp, it implies that that node is partitioned from the
rest of the network. The algorithm then proceeds to connect
that node to the rest of the network by joining a new group. If
a peer is the lone member in a group, then it sends a join req
message containing its own id and ‘grp type’ as ‘send grp’
to the group leaders. The leaders respond with a join rep
message by adding to join req the group id and the group size
of the groups in their recv grp. On receiving the message, the
requesting peer chooses the entry with the minimum size and
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(a) Node 2 goes offline

(b) Node 1 is connected to Node 4

Fig. 5: Fault-tolerance protocol for the scenario when a mem-
ber of the send grp foes offline

joins that group as specified in the ‘grp type’ field, in this
case as a send grp. The steps are described in Algorithm 3

In Fig. 5, when node 2 goes offline, node 1 becomes the
lone member of its send grp, it then initiates the protocol and
joins the recv grp of node 4, thus reconnecting it.

Algorithm 3 BPD Fault-tolerance: If send grp member leaves

1: on event MemberLeft(group) for nodei do
2: if group.id in send grpi.id then
3: if group.size < 2 then
4: join reqi ← { ‘req’ : nodei.id, ‘grp type’ :

‘send grp’}
5: leader grp.send(join reqi)
6: end if
7: end if
8: if Memberof(leader grp) then
9: on event leader grp.recv(join reqj)do

10: mingrp← minSize(recv grpi)
11: join repj ← { ‘req’ : nodei.id, ‘grp type’ :

‘recv grp’, ‘grp’: mingrp.id, ‘size’ mingrp.size }
12: end if
13: on event leader grp.recv(join repi)
14: if count(join repi) = leader grp.size− 1 then
15: mingrp← minSize(join repi.grp)
16: joinGroup(mingrp)
17: sendgrpi.id← mingrp.id
18: end if

2) When a member of the recv grp goes offline: When a
node detects a member of the recv grp has left, it can imply
two possibilities, one, that one of the other receivers in the
group has crashed, or two, that the sender node for that group
has crashed. For possibility one, the node does not need to
act because it still remains connected to its sender, but for

possibility two, the node must join a new group. Once a peer
detects it, it sends a grp qry message on that particular group
containing the group id. If a recipient has the same group
as its send grp, it responds with its own id. Once the node
receives all the responses, if none of the responses contains
the sender’s id, it implies that the sender is offline. It then
proceeds to send a join req as described previously but with
‘grp type’ as ‘recv grp’. The steps are described in Algorithm
4.

In Fig. 6, when both node 3 and node 6 go offline, node
4 and node 1 become isolated from the rest of the topology,
it then initiates the protocol and node 4 joins the send grp
of node 1 while node 1 joins the send grp of node 5. As a
result, all the nonfaulty nodes 1,2,4 and 5 become connected
again with both incoming and outgoing routes to each other.
In this case, none of the new paths exceeds the threshold
distance of 3. However, there might be certain scenarios where
that might be the case. In such cases, the next round of
the DiscoverPeers and the GroupUpdate stages can again
restructure the connectivity graph to ensure a bounded path.

Algorithm 4 BPD Fault-tolerance: If recv grp member leaves

1: on event MemberLeft(group) for nodei do
2: if group.id in recv grpi.id then
3: grp qryi ← { ‘req’ : nodei.id, ‘grp type’ :

‘recv grp’, ‘grp’ : group.id }
4: recv grp.send(grp qryi)
5: end if
6: on event recv grpi.recv(grp qryj)do
7: if grp qryj .grp = send grpi.id then
8: grp ansi ← { ‘req’ : nodei.id, ‘grp type’ :

‘recv grp’, ‘grp’ : group.id, ‘rep’ : nodei.id }
9: else

10: grp ansi ← { ‘req’ : nodei.id, ‘grp type’ :
‘recv grp’, ‘grp’ : group.id, ‘rep’ : ‘’ }

11: end if
12: on event recv grpi.recv(grp ansi)
13: if count(grp ansi) = recv grpi.size− 1 then
14: if grp ansi.rep == ‘′ ∀grp ansi then
15: do Algorithm 3 with grp type = ‘recv grp’
16: end if
17: end if

V. EVALUATION AND RESULTS

The experiments performed mainly looked at evaluating
two aspects: the performance of a peer-to-peer algorithm in
terms of its convergence accuracy and speed as a result of
using the algorithm as well as the resilience properties of the
algorithm under fault conditions, which were the objectives
that the algorithm was designed for.

A. Experimental setup

The experiments were carried out using a network of six
beaglebones [28] running RIAPS. The communication was
carried out using Ethernet. A virtual machine running Linux
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(a) Node 3 and Node 6 go offline

(b) Node 4 and Node 5 are connected to
Node 1

Fig. 6: Fault-tolerance protocol for the scenario when a mem-
ber of the recv grp foes offline

Ubuntu 18.04 was used as the control node from which
the applications were deployed to the target nodes using the
RIAPS control graphical user interface.

The algorithm was compared with the base topology (of Fig
1) without any modification, a fully peer-to-peer approach with
all-to-all communication, and a randomized gossip style pull
pattern that is used in most state-of-the-art schemes. The peer-
to-peer algorithm used to perform the experiment was a simple
distributed consensus algorithm. For a linear system of N
nodes with the local state of the i-th node being denoted as xi,
the distributed consensus algorithm updates the state according
to the equation 3. For discrete-time, it can be modified to the
form of equation 4, with the derivative being replaced by the
difference operator for the discrete case.

ẋi(t) =
∑
j∈N\i

aij(xj(t)− xi(t)) (3)

xi[k + 1] = xi[k] +
∑
j∈N\i

aij(xj [k]− xi[k]) (4)

Here, aij represents the connectivity between node i and
node j. It can be shown that the algorithm theoretically
converges to the average of the initial states xi[0] of the
system.

The above algorithm was coded into the Averager RIAPS
component logic for the application model described in figure
3a in Python. A logger component was also added to the
model to collect data for the experiments. The application
was allowed to run for 10 minutes for each test to ensure
sufficient time for the averaging algorithm to converge. The
metrics evaluated for algorithm convergence were the percent-
age deviation from the optimal value (true average) and the

Method Deviation
from
optimal
value

Min.
number of
iterations
to reach
±5%

Messages
per
iteration

Time
taken (s)

All-to-All 4.55% 445 30 3
Gossip 10.76% 172 18 1.8
Unmodified 11.32% 320 10 1
BPD 6.28% 60 13 1.3

TABLE I: Convergence Performance Comparison

number of iterations taken to reach within a 5% tolerance band
of that value. The number of messages generated per iteration
was also recorded. As expected, all-to-all had the highest with
30 (6×5), followed by Gossip which had 18 (3×6), the graph
of Figure 4 initially had 10 links and BPD added 3 more to
make the paths bounded. The initial values for the different for
the peer-to-peer averaging algorithm were changed such that it
led to a different optimal value for each run of the experiment
to eliminate any bias in the results.

B. Algorithm Convergence Results

Table I lists the convergence performance of the different
topology algorithms. The time taken to execute one pass of the
control function was 0.01 ms, averaged across all nodes using
the above described setup. In terms of peer selection strategy,
as expected, a fully connected network produces the most
accurate results with a deviation within 5% of the theoretical
optimal value. However, in doing so, it also consumes the
most messages per round (iteration), further emphasizing the
trade-off that was discussed previously. Bounded Path Dissem-
ination (BPD) improves upon the other approaches on both
convergence accuracy and speed. It reaches the steady state
the quickest, but the value is not optimal. In our experiments,
we also observed sharper fluctuations in the values as the algo-
rithm progressed through successive rounds compared to the
all-to-all configuration. This is because the new information
received caused a larger correction in some rounds than in
others. Gossip performance lies somewhere in between. Due
to its inherently random nature, some nodes perform well,
since they can receive all the information, but other nodes
might take longer to receive the same. However, Gossip will
perform better when a large number of nodes are incoming
and outgoing, since the algorithm is automatically scalable.

C. Fault-tolerance Results

Since the operational efficiency of a peer-to-peer smart
grid application depends on the effective dissemination of
information to all participating nodes in the network, we
measure the success of our fault-tolerance logic on the basis
of its ability to maintain network coverage in the presence
of faults. Gossip reliability is a measure that has been tradi-
tionally used to evaluate broadcast algorithms. It is defined
as the percentage of active nodes that can transmit a gossip
broadcast, with 100% denoting a perfectly reliable broadcast
[29]. However, reliability only considers messages originating
from one source and forwarded by others until they reach all
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Method Gossip Unmodified BPDFailure
17 % (1/6) 0.82 0.54 0.83
33 % (2/6) 0.66 0.17 0.66

TABLE II: Dissemination Performance Comparison under
Faults

Fig. 7: Node-wise Dissemination Efficiency for BPD showing
faults and recovery

other nodes. It does not capture the information that shows
whether messages originating from all nodes reach all other
nodes, which is the case for a peer-to-peer application. Thus,
we slightly modify the definition of reliability to be the fraction
of messages originating from distinct source nodes that were
received by other peers in a peer-to-peer network. We can
call this altered reliability the dissemination efficiency (DE).
Its value ranges from 0 − 1, where 1 implies that all peers
received information generated by every other active member,
while 0 implies that no messages were received.

Table II shows the average DE for the various techniques
under 17% and 33% node failure scenarios. It can be seen that
the unmodified topology suffers heavily due to the network
being partitioned. Gossip is inherently robust since it random-
izes the recipients and ensures that faulty nodes are eventually
replaced in the sending list. BPD performs similarly to Gossip
since it is able to reconnect the graph, thus ensuring that the
remaining nodes are able to effectively receive information
from each other.

Figure 7 shows how the algorithm affects individual nodes
in real-time under fault conditions for the starting topology
of Fig 4a. The plot shows the change in the DE for each
node in response to node faults as the number of rounds of
message exchange progresses. For the experiments conducted,
the period chosen for each round was 10 ms. It shows that the
DE stabilizes to the expected values of around 0.83(5/6) and
0.667(4/6) after node 3 and node 6 crash respectively It also
shows that the algorithm is able to restore the connectivity
once a faulty node is repaired and it rejoins the network.
The average time taken by BPD to restore the topology
connectivity following a fault was 16 ms. There are some
cases where it shows the DE to jump up to 1 right after a

fault. This is because to calculate the metric, each node stores
a history of the values that it receives and its source, which is
refreshed periodically. Thus, it takes some time for the residual
entries to be removed, and the true value is then reflected. We
will investigate more efficient methods for recording metrics in
the future, possibly by adding tags to all outgoing messages or
using sequence numbers to differentiate between current and
older entries. However, this is only related to the way the data
shows up and has no effect on the algorithm performance. The
sharp downward spikes are due to the time it took for the BPD
protocol to be completed after detecting that a group member
left. In all our experiments this delay was within the range
of 10 ms, which is quite low compared to the usual sampling
time period of peer-to-peer EMS algorithms of > 100 ms.

D. Network Measurements
Table III shows the average bandwidth consumed per node

and latency data captured for the different methods. As seen
from the data, BPD uses about 80% less network bandwidth
compared to the fully connected configuration, with the per-
formance of the other two lying in between. This is expected
since those two do not take any steps to optimize the virtual
topology. However, the methods that employ virtual topologies
(BPD modifed and the unmodified) produced a higher latency
than the other two. This is due to the fact that using a virtual
topology implies that each message needs to go through an
additional layer of routing on top of the physical network
routing, while in the other two cases it only needs to go
through the physical network routing. Although the extra delay
is still negligible for it to affect the experiments in this paper,
we plan to study it in more detail for larger networks in the
future.

Method Bandwidth consumed
(kB/s)

Latency (ms)

All-to-All 33 1.2
Gossip 21.5 0.88
Unmodified 12 3.6
BPD 6.8 2.4

TABLE III: Bandwidth consumed and latency data for the
different methods

VI. CONCLUSION

Peer-to-peer communication plays an important role in
implementing several of the core functionalities for Energy
Management Systems. An important question that design-
ers must address is how to achieve a balance between the
amount of network traffic generated as the network scales
and the preservation of performance goals with respect to
the various algorithms that are deployed at each functional
layer of the grid. The choice of communication topology is
an important design decision that power system engineers
must take into account with regard to that trade-off. In this
paper, we introduce an integrated framework for smart grid
applications that allows users to deploy and prototype different
virtual communication topologies for peer-to-peer smart grid
applications and empirically evaluate their performance.
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We also propose a new algorithm, Bounded Path Dissemina-
tion, which ensures the dissemination of information through-
out all participating peers in the network within a specified
threshold. It also has dedicated fault-tolerance features to
prevent partitioning of the virtual topology if one or more
nodes drop out. Experimental evaluations that compare the
performance of BPD with other state-of-the-art approaches
show improved convergence accuracy and speed for a peer-
to-peer application. Similar studies under faulty conditions
also show that the algorithm is able to maintain network
communication connectivity in the presence of such faults and
the Dissemination Efficiency factor is on par with a robust
randomized gossip technology. With the integration of more
ad hoc participants in a grid such as hybrid electric vehicles, a
self-adaptive virtual topology management algorithm such as
BPD could potentially enable these ad hoc players to join or
drop out dynamically. Thus, it would be interesting to study
how the algorithm performs in the presence of such entities.

This paper was mainly used to introduce the algorithm
concepts and show it on a working example. In the future,
large-scale experiments on more complex networks need to
be performed. Comparison between the proposed scheme and
some other node linking choices such as connecting two
intermediate nodes should also be considered. Techniques for
optimizing the topology based on the number of commu-
nication links and desired convergence, as well as a time-
synchronized implementation of the averaging algorithm are
also interesting directions to explore.
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