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Abstract
Understanding turbulent premixed flames is essential to predict and optimize advanced 
combustion strategies, but critical capability gaps exist for collecting and validating meas-
urements such as turbulent flame speed. Here, we evaluate synthetic jets as a new, promis-
ing turbulence generation device for constant-volume combustion chambers, quantitatively 
assessing turbulence intensity and spatial uniformity in a hypothetical 4,189-cm3 vessel for 
various premixture conditions.
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1 Introduction

Laminar flame speed, also known as unstrained burning velocity, is an important funda-
mental property of flames, key to understanding fuel utilization and optimizing combus-
tion efficiency. In the presence of turbulence, flame surfaces can be distorted, result-
ing in increased volumetric flame surface density as well as modifications to the local 
combustion chemistry. As a result, turbulent flame speed can be dramatically different 
than its laminar counterpart and hence serves a separate and distinct role in combustors. 
For internal combustion engines and turbines, high laminar flame speeds enable strong 
flame kernel development that is resistant to localized extinction, while high turbulent 
flame speeds allow the fuel to be consumed before end-gas conditions reach autoignition 
(i.e., knock). However, a significant capability gap exists for collecting and interpreting 
turbulent flame speed measurements. Such data are scant in the literature (Bradley et al. 
2013; Bagdanavicius et al. 2015; Marshall et al. 2017; Turner et al. 2019) and lack suf-
ficient generality to inform and validate predictive models (Farrell et al. 2004; Daniele 
et al. 2011) of turbulent flame phenomena across a broad range of device configurations.

Experimentally, turbulent flame speeds are typically measured using up to four 
canonical configurations: Bunsen flames, rod-stabilized flames, counterflow (stagnation) 
flames and spherically expanding flames (Law 2006). The first three of these feature 
stationary flames, while the final one requires dedicated devices capable of generating 
turbulence inside a spherical constant-volume combustion chamber (CVCC). CVCC 
facility surveys have been summarized elsewhere (Ravi et  al. 2012). Generally, most 
turbulent CVCCs employ impellers (Ravi et al. 2012; Bradley et al. 2019; Mannaa et al. 
2019; Morones et al. 2019) for relatively uniform turbulence generation, although recent 
reports suggest that traditional jets (i.e., nozzles) may also be used to create highly 
uniform turbulence (Davani and Ronney 2017; Davani et  al. 2019). However, each 
experimental agitation method has unique limitations, such as vortical biases induced 
by impellers (Bonhomme et al. 2014; Bradley et al. 2019; Mannaa et al. 2019) or the 
pumping challenges (i.e., high pressure drop) required by the small openings of jet noz-
zles. Likewise, significant safety hazards are introduced by improper sealing and wear 
of high-rpm impeller parts, or, in the case of traditional jets, by the practical challenge 
of needing to premix the fuel and oxidizer in the absence of incidental ignition sources 
prior to entering the CVCC.

In this article, we explore the possibility of synthetic jets as an alternative and poten-
tially advantaged turbulence generation device for turbulent combustion experiments. 
Unlike traditional jets, synthetic jets move fluid via periodically oscillating diaphragms 
that are contained within a wall-recessed cavity and eject fluid through a narrowed open-
ing into the chamber (Smith and Swift 2003). Thus, synthetic jets result in high fluid 
ejection velocities with net-zero mass flux, driven by a significant momentum flux—
attractive features for several applications encompassing power electronics cooling 
(Mahalingam and Glezer 2004; Arik et al. 2012; He et al. 2015), aerodynamics (Has-
san and JanakiRam 1998; McCormick 2000), microfluidic devices (Mautner 2004) and 
granular flows (Han et al. 2020), among others. Turbulent premixing for combustion is 
one possible extension of synthetic jets, and we assess their technical viability as turbu-
lence generation devices in a hypothetical 4,189-cm3 CVCC using computational fluid 
dynamics (CFD) modeling. This model framework serves as an early basis for synthetic 
jet design and engineering for next-generation flame speed measurement apparatuses.
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2  Results and Discussion

To assess the agitation behavior of a premixed fuel in air, we first define the appropriate sys-
tem size, geometry and conditions to establish a synthetic jet modeling framework (Table 1). 
A stoichiometric (φ = 1.0) mixture of methane  (CH4) and air is assumed as a base-case 
fluid initially dispersed within a 200-mm-diameter spherical chamber (4,189-cm3 volume). 
The eight synthetic jets are placed at the corners of a cube inscribed inside of the chamber 
(Fig. 1), a basis of configuration selected from prior studies on synthetic (Hwang and Eaton 
2004) and traditional (Davani and Ronney 2017) jets. Further, the 10-mm-wide synthetic jets 
are “cavityless” (Fig. 1a), such that the fluid in the chamber is subjected to a periodic veloc-
ity boundary condition at the jet opening (Eq. 1), accomplishing net-zero mass flux without 
needing to define an explicit cavity geometry (Kral et al. 1997; Matiz-Chicacausa and Lopez 
Mejia 2020). (Notably, cavity shape, depth and internal volume are expected to significantly 

Table 1  Baseline system 
parameters and conditions 
for synthetic jet models 
(parenthetical values denote the 
additional conditions evaluated 
in this study)

a Ideal gas law assumed as the equation of state to calculate fluid mix-
ture density

Parameter Assigned value

Temperature, T 300 (600) K
Pressure, P 1.0 (30) atm
Equivalence ratio, φ 1.0 (0.25, 1.25)
Mass fraction of methane, xCH4 0.055
Mass fraction of oxygen, xO2 0.220
Mass fraction of nitrogen, xN2 0.725
Average fluid  densitya, ρ 1.24 kg·m–3

Chamber diameter, dch 200 (400, 800) mm
Slit diameter, dsl 10 (5, 20) mm
Number of synthetic jets, N 8 (4, 20)
Velocity constant, v0 10 (1, 20) m·s–1

Oscillation frequency, f 500 (50, 100, 250, 1,250, 2,500) Hz
Mesh element length 0.0050 m for chamber domain, 

0.0010 m for jet inlet region

Fig. 1  a Illustration of three-dimensional spherical model control volume. Small circles at the surface rep-
resent 10-mm synthetic jet openings; four additional jets are symmetrically and oppositely located on the 
backside of the sphere (not shown). b Meshing of control volume, with refined finite volume sizing at and 
near jet openings. c Magnified illustration showing finer meshing at a jet opening
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influence the behavior of a real experimental device  (Kotapati et al. 2007; Chaudhari et al. 
2008, 2009; Jain et al. 2011; Capuano et al. 2019), but these considerations are beyond the 
scope of this study.)

Transient, finite-volume simulations are performed in ANSYS Fluent 2021 R2 to spatially 
discretize and solve the governing Reynolds-Averaged Navier–Stokes (RANS) equations using 
a shear stress transport (SST) k-omega (k–ω) turbulence model. We employ pressure–velocity 
coupling to compute the conservation equations via a segregated, guess-and-correct method 
and enable data sampling for time-based turbulence statistics (see Eqs. S1–S3 and discussion 
below). Full details of model development, sampling and sensitivity are included in the Sup-
plementary Information (SI). To begin characterizing synthetic jet behavior predicted by this 
model framework, the root mean square (RMS) jet velocity vRMS is calculated from Eq. (1) 
to describe a nominal average of synthetic jet velocities v from periodic fluid pulses of fre-
quency f and amplitude v0; this metric enables comparison to traditional jet behavior (Davani 
and Ronney 2017).

First, a 2D circular cut plane with four symmetrically opposed synthetic jets is employed 
as a simplified, reduced-order test case for the eight-jet 3D spherical volume to verify reason-
able velocity profiles and an appropriate turbulence model (i.e., SST k–ω). Briefly, the CFD 
model conditions and parameters shown in Table 1 yield physically meaningful velocity pro-
files and turbulence intensities within expected orders of magnitude (Fig. S1), suggesting that 
the assumed physics models are valid for this system and may be readily extended to the 3D 
system (Fig. 1). Full details and discussion of assumptions and sensitivities (Roache 1994) are 
included in SI.

Turbulence magnitudes and uniformity metrics are derived from time-averaged sampling 
calculations of the mean velocity uj,i (Eq. S1) and the RMS of fluctuating velocities u′

j,i
 , where 

j = x, y, z Cartesian coordinates at location i, allowing for calculation of time-averaged (Eq. 
S2) and volume-averaged (Eq. S3) turbulence intensities u′

i
 and u′

V
 , respectively. Simulation 

times are sufficiently long to allow for at least 25 jet pulses. Following the volume-averaged 
quantitative analyses described by others (Davani and Ronney 2017), we similarly define the 
mean flow index (MFI), homogeneity index (HI) and isotropicity index (II) in Eqs. 2–4. Full 
definitions and discussion of index terminology are provided in SI.
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Briefly, MFI represents a volume-averaged RMS flow normalized by the volume-aver-
aged turbulence intensity. HI represents the extent to which turbulence intensity remains 
constant within the entire control volume, whereas II represents the spatial uniformity of 
the local intensity values. All three turbulence metrics, along with ui and u′

i
 , are used here 

to characterize synthetic jet agitation effectiveness and uniformity for various test cases.
Figure 2 depicts the 3D model velocity fields resulting from simulation at conditions 

described by Table 1. These heat maps of velocity magnitude illustrate spatially symmetric 
fluid velocity profiles at the middle section plane within the chamber, suggesting that syn-
thetic jets are capable of highly uniform agitation. Time-averaged turbulence statistics are 
reported in Table 2 for this base case (No. 2) and for variations of the velocity constant v0 
(Eq. 1), oscillation frequency f, methane/air equivalence ratio φ, synthetic jet slit size dsl, 
and chamber diameter dch.

Overall, ui and u′

i
 monotonically increase with increasing v0, vRMS and dsl (Nos. 1–3, 11, 

13), while f exhibits an inverse relationship with these two turbulence descriptors (Nos. 
2, 4–8). When the total mass flowrate is kept constant with changing dsl (Nos. 2, 12, 14), 
similar ui and u′

i
 are calculated for the 5-, 10- and 25-mm openings, with some loss in 

turbulence intensity noted for the 25-mm case; relatedly, as dch is increased two-fold (No. 
15) and four-fold (No. 16), time-averaged turbulence statistics precipitously decrease for a 
given fixed timescale. However, across all these cases, maximum local Reynolds numbers 
Remax (Eq. S4) are identical within two significant figures for these three trials. Indeed, 
both dsl and dch appear to be important yet flexible design parameters, potentially allow-
ing for tunable flow profiles and extents of turbulence in a prospective real device. Finally, 
base-case RANS results (No. 2) are compared to predictions of a large eddy simulation 
(LES; No. 17), an alternate turbulence model which yields internally agreeable values for 
ui , u

′

i
 and Remax. Sensitivities of other model parameters are further assessed to verify the 

robustness of the 3D model relative to baseline model conditions and to a traditional jet 
analogue; full results are described in SI (Figs. S2–S4, Table S1).

Next, Fig. 3 illustrates calculated volume-averaged turbulence metrics as a function of 
dimensionless radial position r/R and oscillation frequency f for the base-case velocity con-
stant v0 of 10  m·s–1. Above 50  Hz, turbulence indices MFI (Eq.  2, Fig. S5), HI (Eq.  3, 
Fig. 3a), II (Eq. 4, Fig. 3b) and time-averaged turbulence intensity u′

i
 (Eq. S2, Fig. S6) are 

Fig. 2  Center-plane contours of 3D model results of a time-averaged mean velocity u
i
 (m·s–1) and b time-

averaged turbulence intensity u′

i
 (m·s.–1). Color legend (right) illustrates magnitudes of each calculated 

velocity. See Table 1 for baseline conditions and Eqs. S1–S2 for definitions of u
i
 and u′

i
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effectively constant for r/R < 0.8, suggesting that flame speed measurements taken in this 
field of view would feature highly homogeneous, spatially uniform turbulence and flow 
fields. For r/R > 0.8 (i.e., near the chamber wall), viscous dissipation likely damps the tur-
bulent fluctuations and leads to observable deviations in index profiles; these wall effects 
are more pronounced for lower frequencies, which necessarily feature longer timescales for 
turbulent fluctuation settling. Overall, while turbulence descriptors here do not yet match 
or exceed the magnitudes of those predicted for traditional jets (Davani and Ronney 2017), 
the model framework instead serves to illustrate that synthetic jets may indeed be capable 

Table 2  Summary of results of base case (No. 2, Table 1) and varied parameters

Asterisk (*) denotes a prescribed constant overall mass flowrate (as opposed to a constant flow velocity) for 
varied inlet diameters dsl; dagger (†) denotes large eddy simulation (LES) turbulent model as a comparison 
case. Parameters not specified conform to base-case conditions. Calculated values are reported to two sig-
nificant figures at most. See Eq. S4 and surrounding description in SI for definition of Remax

No dsl (mm) dch (mm) v0 (m·s–1) vRMS (m·s–1) φ f (Hz) u(m·s–1) u
′(m·s–1) Remax

1 10 200 1 0.7 1.0 500 0.003 0.004 650
2 10 200 10 7.1 1.0 500 0.22 0.11 6,400
3 10 200 20 14 1.0 500 0.56 0.33 13,000
4 10 200 10 7.1 1.0 50 0.36 0.19 6,400
5 10 200 10 7.1 1.0 100 0.32 0.18 6,400
6 10 200 10 7.1 1.0 250 0.24 0.14 6,400
7 10 200 10 7.1 1.0 1,250 0.19 0.11 6,400
8 10 200 10 7.1 1.0 2,500 0.21 0.11 6,400
9 10 200 10 7.1 0.25 500 0.21 0.10 6,400
10 10 200 10 7.1 1.25 500 0.22 0.10 6,400
11 5 200 10 7.1 1.0 500 0.071 0.043 3,200
12 5* 200 20 14 1.0 500 0.23 0.12 6,400
13 25 200 10 7.1 1.0 500 0.36 0.28 16,000
14 25* 200 4 2.8 1.0 500 0.11 0.07 6,400
15 10 400 10 7.1 1.0 500 0.075 0.046 6,400
16 10 800 10 7.1 1.0 500 0.013 0.008 6,400
17† 10 200 10 7.1 1.0 500 0.17 0.13 6,400

Fig. 3  Spatial variability of a HI and b II values along the dimensionless radial coordinate r/R calculated 
for various oscillation frequencies. See Table 1 for baseline conditions and Eqs. 3–4 for definitions
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of generating spatially uniform turbulence (Figs. 2–3, S2) at sufficient intensities relevant 
to CVCC-based experiments (Fig. S6, Table 2).

Temperature and pressure also impact predicted turbulence profiles by changing effec-
tive fluid densities, and thus momentum flux. Simulation results of stoichiometric fluid 
mixtures initially at 600 K, 30 atm or both are summarized in Table S2. While elevated 
temperature increases the magnitude of calculated mean and RMS velocities, system pres-
sure indeed has a pronounced retardation effect on turbulent fields. However, MFI, HI and 
II are generally lower for these cases, suggesting hypothetical CVCC experiments with 
denser fluids may feature highly uniform turbulence at elevated pressures. Additionally, 
future synthetic jet studies with well-defined cavity geometries and heated chamber walls 
may reveal heat transfer enhancements for pre-experiment thermal equilibration.

Finally, beyond the effects of slit diameter (Table 2, Nos. 2, 11–14), we assess the geo-
metric impact of the total number of jets N. We construct new hypothetical chambers con-
taining 4 and 20 symmetrically placed synthetic jets and compare them at Table 1 condi-
tions, for cases of both constant flow velocity and constant mass flowrate (Table S3, Fig. 
S7). For the N = 20 case at constant flow velocity, values of u′ as high as 0.53 m·s–1 are 
achieved, although practical constraints such as placement of optical windows may prohibit 
such a large N in a real device. Nonetheless, these results illustrate the numerous impor-
tant, flexible design handles available to researchers seeking to construct a synthetic jet-
agitated CVCC in the future.

3  Conclusions

Synthetic jets are demonstrated to be a new, potentially promising turbulence generation 
device for CVCCs, and the model framework established here allows for initial testing of 
important fundamental and practical design hypotheses. These devices and their prospec-
tive applications warrant further investigation from the combustion community, particu-
larly on fundamental mixing physics, cavity design, slit geometry, vibrational mechanisms 
and phasing, suitable materials, device scaling relationships and safety considerations.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10494- 023- 00410-9.
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