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Enzymatic deconstruction of poly(ethylene terephthalate) (PET) is under
intense investigation, given the ability of hydrolase enzymes to depolymerize
PET to its constituent monomers near the polymer glass transition tempera-
ture. To date, reported PET hydrolases have been sourced from a relatively
narrow sequence space. Here, we identify additional PET-active biocatalysts
from natural diversity by using bioinformatics and machine learning to mine
74 putative thermotolerant PET hydrolases. We successfully express, purify,
and assay 51 enzymes from seven distinct phylogenetic groups; observing PET
hydrolysis activity on amorphous PET film from 37 enzymes in reactions
spanning pH from 4.5-9.0 and temperatures from 30-70 °C. We conduct PET
hydrolysis time-course reactions with the best-performing enzymes, where we
observe differences in substrate selectivity as function of PET morphology. We
employed X-ray crystallography and AlphaFold to examine the enzyme
architectures of all 74 candidates, revealing protein folds and accessory
domains not previously associated with PET deconstruction. Overall, this
study expands the number and diversity of thermotolerant scaffolds for
enzymatic PET deconstruction.

Poly(ethylene terephthalate) (PET) is one of the most commonly dis-  discovery of natural microbial systems that respond to the presence of

carded plastics. Given its ubiquity in consumer plastics and the relative
ease of ester bond cleavage, PET is among the most well-studied
polymers for chemical recycling'>. For biocatalytic PET conversion,
the use of hydrolase enzymes has witnessed major advances, both in
terms of advancing the industrial relevance of this approach, and the

PET in nature®.

Multiple serine hydrolase family enzymes have been confirmed to
deconstruct PET to mono(2-hydroxyethyl) terephthalate (MHET), ter-
ephthalic acid (TPA), and ethylene glycol (EG) (Supplementary
Table 1), with new discoveries being reported frequently”'s. Most
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known PET hydrolases are cutinases, lipases, and carboxylesterases
(Enzyme Commission 3.1.1-)'°"2®  Based upon pioneering
discoveries®®5121517192¢ - fyrther efforts have aimed to identify the
necessary features for PET hydrolytic activity and to improve these
enzymes for industrial use’">**% Notably, the most efficient PET-
degrading biocatalysts reported thus far are thermostable enzymes
that exhibit optimal PET hydrolysis activity near the PET glass transi-
tion temperature (PET Tz -65-80°C) and to date, mostly on amor-
phous PET substrates. For example, the thermotolerant leaf-branch
compost cutinase (LCC) has been engineered for improved amor-
phous PET hydrolysis®®*, with similar work on Thermobifida cutinases
and the mesophilic Ideonella sakaiensis PETase, among
Other58,26,27,29,34,36,43,44.

The sequence and structural features that confer PET hydrolysis
activity are not yet fully understood®, both within and beyond the
sequence space explored thus far. Similarly, the diversity of enzymes
naturally able to hydrolyze PET remains unclear. To address these
questions, Danso et al. applied a Hidden Markov Model (HMM) to
search metagenomic databases for potential PET hydrolases. They
identified 504 putative PET hydrolases, based on known sequences at
the time". They proposed that PET hydrolysis activity is likely quite
rare in nature. As these authors discussed, there remains an urgent
need to further develop the suite of known PET-active enzymes from
natural diversity'>*",

To that end, the current study aims to expand the catalog of
thermotolerant PET hydrolase scaffolds available for future enzyme
discovery and engineering. We combined an HMM approach with
machine learning (ML) to identify PET hydrolases and predict the
temperature where the enzymes would be optimally active based on
sequence. From this analysis, we selected 74 putative thermotolerant
PET hydrolases for experimental screening, sourced from seven dis-
tinct phylogenetic groups, including several from which no PET
hydrolysis activity has been previously reported to our knowledge.
Expression and purification trials for each enzyme were conducted,
and the proteins successfully expressed were screened for amorphous
PET hydrolysis as a function of pH and temperature. For the best-
performing enzymes from each group, we conducted thermal char-
acterization to measure the melting temperature (T,,). To examine
substrate selectivity, which is critical for applications of PET hydrolases
to semi-crystalline post-consumer PET waste**®, we performed time
course deconstruction reactions using crystalline PET powder, amor-
phous PET powder, and amorphous PET films as substrate to ascertain
differences in reactivity as a function of substrate properties. Next, we
explored the relationship between enzyme charge and optimal reac-
tion pH for each of the three PET substrates. We then integrated high-
throughput X-ray crystallography and AlphaFold**° for structural
characterization of all 74 enzymes to gain insights into a significantly
broadened diversity of folds. Together, this work demonstrates that
PET hydrolytic activity can be sourced from a wider range of natural
sequence diversity than previously reported and expands the number
of enzyme scaffolds for thermotolerant PET hydrolysis.

Results

Bioinformatics and ML enables identification of 74 diverse
putative thermotolerant PET hydrolases

Similar to other successes in identifying PET hydrolases with
HMM"°%*' we constructed an HMM from 17 characterized enzymes
that had been confirmed to exhibit PET hydrolysis activity as of
December 2018 (Supplementary Table 1), and applied the HMM to
search sequences in the National Center for Biotechnology Informa-
tion (NCBI) non-redundant database® and select thermal metagen-
omes from the Joint Genome Institute Integrated Microbial Genome
(JGI IMG) database (Supplementary Table 2)°>. We sought to limit the
search to thermostable enzymes capable of PET hydrolysis near the
PET T,. To this end, we leveraged the correlation between enzyme

maximum temperatures and the optimal growth temperature (OGT) of
the organism or the environment where the sequence was
detected***. Hence, the HMM sequence hits were mapped to OGT data
retrieved from the NCBI Bioproject database, the BacDive database®®,
and the JGI IMG metagenome sample temperature. Sequences with
OGT lower than 50 °C were discarded. For sequences that could not be
mapped to OGT data, we trained a ML model (ThermoProt) to dis-
criminate between 8000 proteins from thermophiles (>50°C) and
8000 proteins from non-thermophiles (<50 °C) using the support
vector machine method with calculated amino acid features. Ther-
moProt demonstrated an accuracy of 86.6% in five-fold cross-valida-
tion tests (Supplementary Tables 3-7).

We observed that many of the top HMM hits from the JGI IMG
metagenomes were identical or very similar to hits from NCBI. To
diversify the sequence search space further, we selected proteins with
predicted thermostability and high HMM scores (>100, E-value < 8.0e
-26) from the NCBI hits, but thermophile-derived proteins with rela-
tively low scores (<55, E-value >2.0e-11) from the JGI IMG hits. Con-
sequently, 74 sequences were selected. We note that 14 of these
sequences have been reported in other studies (Supplementary
Tables 1, 8) to our knowledge and were retained in our assays as
benchmarks. As illustrated in Fig. 1A, phylogenetic analysis showed
that these 74 sequences comprise at least seven distinct phylogenetic
groups, with the more diverse JGI IMG sequences forming three clades
(which we termed groups 1-3) that are clearly separate from the NCBI
sequences. The NCBI sequences form two clades (which we termed
groups 6 and 7) and two paraphyletic groups (termed groups 4 and 5)
(Fig. 1A). Based on these results, the 74 PET hydrolase candidate
sequences were assigned identification numbers according to these
phylogenetic groups (101 and 102 in group 1, 201 and 202 in group 2,
and so on). The full list of candidate sequences is provided in the
Source Data file and an annotated description with accession numbers
for each is provided in Supplementary Table 9.

Upon classifying the sequences according to families from the
ESTHER database”, results reveal that all candidate sequences in
groups 4-7 with high HMM scores (>100) belong to the polyesterase-
lipase-cutinase family, along with nearly all previously reported PET
hydrolases, and are associated with carboxyl ester hydrolase (3.1.1.-)
and cutinase (3.1.1.74) activities (Supplementary Fig. 1, Supplementary
Table 10)*%. However, the sequences derived from lower HMM scores
(groups 1-3) diverge from canonical PET hydrolases and are associated
with distant families, including peptidases (3.4.-.-). A sequence simi-
larity network (Fig. 1B), plotted at a level of stringency sufficient to
subdivide the sequence set into functional families, demonstrates the
clustering of currently known and group 5-7 candidate PET hydrolases
in the polyesterase-lipase-cutinase family, and the divergence of can-
didate sequences from groups 1-3.

Screening on amorphous PET shows that PET hydrolysis activity
is distributed among all seven phylogenetic groups

The 74 enzymes were expressed in Escherichia coli with each putative
PET hydrolase gene codon-optimized and cloned into a pET21b(+)
plasmid with a C-terminal hexa-histidine epitope tag, as detailed in the
Methods and in the Supplementary Information. Given the diversity of
enzymes to be expressed and purified, we adopted a 4-stage expres-
sion screening approach that varied E. coli expression strains, growth
medium composition, incubation temperature and duration, induc-
tion protocol, and other relevant expression parameters, as described
in the Methods and in the Supplementary Information. Enzyme pur-
ification followed a standardized protocol of affinity chromatography,
buffer exchange, and size exclusion chromatography as described
in Supplementary Methods. Supplementary Table 11 details the
expression strategies that enabled the production of 51 of the 74
enzymes, and Supplementary Fig. 2 shows the expression yield for
each enzyme.
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Fig. 1| Bioinformatics and machine learning to derive PET hydrolase sequences
from natural diversity. A PET hydrolase candidates (74 total) selected by HMM
and ML shown with a minimum-evolution phylogenetic tree. Sequences retrieved
from environmental (meta)genomes in JGI IMG with lower HMM scores (groups
1-3) are notably diverse compared to the sequences that comprise the rest of the
tree (groups 4-7). The symbols around the tree show expression, activity, and
previously reported PET activity. Full organism names and accession numbers are
shown in Supplementary Table 9, and sequence identity between these

74 sequences and previously reported PETases is shown in Supplementary Table 8.
A maximum-likelihood phylogenetic tree of all experimentally confirmed PET
hydrolases is shown in Supplementary Fig. 1. B Sequence Similarity Network (SSN)
of PET hydrolases with experimentally confirmed PET hydrolase activity, including
sequences examined in this study and previously reported PETases. Edges repre-
sent pairwise BLAST similarity with E-value < 1e-10. The SSN clusters are consistent
with the associated families in the ESTHER database®, and show that most reported
PET hydrolases fall in the polyester-lipase-cutinase family. We note that these
clusters are different from phylogenetic groups in (A). Full details of experimentally
verified PET hydrolases are shown in Supplementary Tables 1 and 10.

We employed a comprehensive, semi-quantitative screening assay
to first detect PET hydrolytic activity from each enzyme. In this initial
activity screen, we employed commercially available amorphous PET
film from Goodfellow, thereby enabling inter- and intra-study
comparisons*?. All reactions were conducted for 96 h at an enzyme
loading of 0.7 mg enzyme/g PET and a substrate loading of 2.9%. The

aromatic reaction products, bis(2-hydroxyethyl) terephthalate (BHET),
MHET, and TPA, were quantitated using ultra-high-performance liquid
chromatography up to a product concentration of 500 mg/L
accounting for dilution, above which the calibration curve was outside
of the linear range. For this substrate loading, the upper limit of
quantitation of the product corresponds to a maximum extent of
conversion of 2.1% by mass. Aromatic product release concentrations,
relative to background aromatic product release detected in no-
enzyme control reactions at each pH and temperature, are presented
throughout. For comparison to the state-of-the-art from the PET
hydrolase literature, we also tested four thermophilic PET hydrolases,
the LCC wild-type enzyme®*® two improved mutant variants (ICCG and
WCCG)"®, and T. fusca cutinase BTA-17, to serve as benchmark datasets.
We also tested representative mesophilic PET hydrolases, including
the PETase wild-type enzyme from /. sakaiensis® and an improved
double mutant variant (W159H/S238F)*"*°. The 6 benchmark enzyme
sequences are provided in the Source Data file and accession numbers
are in Supplementary Table 9. The ICCG variant of LCC is reported as a
control for all experiments.

Figure 2 shows illustrative heat maps of total aromatic product
release across 30 reaction conditions using amorphous PET film as
substrate for the 19 best-performing enzymes from each of the seven
phylogenetic groups, alongside the ICCG variant of LCC. Supplemen-
tary Fig. 3 contains the full screening data for all 51 expressed and
purified candidate enzymes and the 6 benchmark PET hydrolases. At
least one enzyme from each of the phylogenetic groups shown in Fig. 1
exhibited measurable PET hydrolysis activity. Overall, 37 enzymes
were found to be active for PET hydrolysis at levels above the lower
limit of aromatic product quantitation, while 14 of the 51 enzymes did
not exhibit any detectable PET hydrolytic activity. Figure 2 shows that
enzymes in groups 5-7 exhibited the highest detected activity. This is
not surprising given that most of the enzyme discovery efforts to date
for PET hydrolases have identified enzymes belonging to the
polyesterase-lipase-cutinase family, to which the enzymes in groups
5-7 also belong™">". Groups 1 and 4 also exhibited appreciable PET
hydrolysis activity, while groups 2 and 3 displayed only minimal
activity above the no-enzyme control background. Overall, this
screening highlights 23 thermostable enzymes that have not been
previously reported, to our knowledge, and that exhibit PET hydrolase
activity beyond the 36 previously reported enzymes at the time of
writing this manuscript (Supplementary Table 8).

As shown in Fig. 2, there is a breadth of activity across the pH and
temperature ranges studied, with activity of at least one enzyme in
every condition tested. For the four enzymes that exhibited optimal or
near optimal activity at pH 6.0 (102, 611, 702, 715), we further extended
the pH screen. As shown in Supplementary Fig. 4, the ICCG variant of
LCC is active in buffered medium with a pH as low as 5.0, while 102 was
not active at pH below 6.0, and 611, 702, and 715 all exhibit detectable
activity at pH <6.0.

Characterization of the best-performing enzymes highlights
reactivity differences as a function of substrate

We were also interested to learn if the best-performing enzymes from
each phylogenetic group would exhibit different reactivity profiles as a
function of PET substrate. For these comparisons, we used two com-
mercially available substrates that have been thoroughly
characterized”, namely a crystalline Goodfellow PET powder and the
same Goodfellow amorphous PET film used for screening. This set
included 12 enzymes selected to represent a diverse group for which
the highest extents of conversion were observed during screening, and
hydrolysis reactions utilized the single best reaction condition identi-
fied during screening on amorphous PET film (Supplementary Figs. 5,
6). These reactions proceeded for 168 h to capture effects due to
enzyme stability. As shown in Supplementary Fig. 5, the control
enzyme (LCC ICCG) and several group 7 enzymes (701, 704, 714, 716)
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Fig. 2 | Enzyme activities. Heat map profiles of pH and temperature screening for
hydrolytic activity on amorphous PET film by a diverse selection of 19 candidate

enzymes and a positive control enzyme, LCC ICCG. The heat map gradient indicates
the extent of measured product release up to 500 mg/L of total aromatic products
after 96 h reaction time, and is reported as the average of reactions performed in

250 500+

triplicate (n = 3). Each heat map displays the reaction conditions utilized (citrate at
pH 6.0, NaH,PO, at pH 7.0, NaH,PO, at pH 7.5, HEPES (H) at pH 7.5, bicine at pH 8.0,
and glycine at pH 9.0), and reaction temperature (30, 40, 50, 60, or 70 °C). The heat
maps for all other enzymes tested on amorphous PET film are shown in Supple-
mentary Fig. 3. Source data are provided as a Source Data file.

exhibited higher activity on amorphous PET film, consistent with prior
work®?769-62 However, we also identified enzymes with higher activity
on crystalline PET powder compared to amorphous PET film (Sup-
plementary Fig. 5), which has not previously been reported for wild-
type thermophilic PET hydrolases, to our knowledge. Additional
comparisons of the 168 h reactions are in Supplementary Fig. 6, Sup-
plementary Tables 12 and the Source Data file show the corresponding
reaction conditions employed in these experiments and the data,
respectively.

Given that the hydrolytic activity on crystalline PET powder was
higher than expected, for a selection of 18 candidate enzymes,
including a subset of 9 of the 12 selected enzymes above, we repeated
the screening experiment over 30 reaction conditions using the crys-
talline PET powder from Goodfellow, as well as an amorphous PET
powder with the same particle size distribution profile as the crystal-
line powder, to control for accessible substrate surface area. Detailed
characterization of the amorphous powder is described in the Meth-
ods and in the Supplementary Information. As shown in Fig. 3A and
Supplementary Table 13, the optimal reaction conditions identified for
each enzyme varies with each specific substrate morphology (Sup-
plementary Fig. 7). Additional 168 h time course reactions were per-
formed for the selected enzymes also using the amorphous PET
powder, comparing the single best reaction condition from amor-
phous PET film screening, even though this is not necessarily the best
reaction condition shared across all substrate morphologies (Supple-
mentary Fig. 8). We observed that most enzymes demonstrate the
highest levels of PET hydrolysis on the amorphous powder substrate
(Fig. 3B). This is not unexpected and aligns with process conditions

recommended for optimal hydrolysis reported in the previous
studies®. Despite this, especially when comparing across conditions,
we observe 3 enzymes from this selected set that demonstrate
higher extents of hydrolysis for crystalline powder compared to either
amorphous powder or amorphous film (enzymes 503, 602, and 711)
(Supplementary Fig. 9, Supplementary Table 13). Also of note are
enzymes with better hydrolytic performance on amorphous film
compared to amorphous powder (enzymes 701 and 704) (Supple-
mentary Fig. 9, Supplementary Table 13).

Of the total expressed and purified enzymes, 20 were of sufficient
yield and solubility for thermostability analysis by differential scanning
calorimetry (DSC), including at least one member from each of the
seven distinct phylogenetic groups, as shown in Supplementary
Table 14. Enzyme 306 exhibited the highest T, (92.6 °C) of all 20
enzymes analyzed, including wild-type LCC.

Structural characterization highlights diversity of PET-active
enzymes

Given the range of sequence diversity captured in this work (Fig. 1B)
and the opportunities to develop structure-function relationships
across a broad group, we conducted comprehensive crystallization
screening, resulting in eight high-resolution X-ray structures for
enzymes 202 (7QJM), 306 (7QJN), 606 (7QJO), 611 (7QJP), 702 (7QJQ),
703 (7QJR), 705 (7QJS), and 711 (7QJT) at resolutions extending
between 1.43-219A (Supplementary Table 15). As we screened
enzymes more divergent from those originating from /. sakaiensis,
Thermobifida, and LCC, the success rate of crystallization hits fell.
Given that PET-active representatives were identified in all seven
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Fig. 3 | Substrate selectivity varies across PET morphologies. A Heat map pro-
files of pH and temperature screening for hydrolytic activity on 3 PET substrate
morphologies, the same amorphous PET film presented in Fig. 2, as well as an
amorphous PET powder and a crystalline PET powder, using a subset of 9 candi-
date enzymes and positive control enzyme, LCC ICCG. The heat map gradient
indicates extent of measured product release up to 500 mg/L of total aromatic
products after 96 h reaction time, and is reported as the average of reactions
performed in triplicate (n =3). Each heat map displays the reaction conditions
utilized (citrate at pH 6.0, NaH,PO, at pH 7.0, NaH,PO, at pH 7.5, HEPES (H) at pH
7.5, bicine at pH 8.0, and glycine at pH 9.0), and reaction temperature (30, 40, 50,
60, or 70 °C). The heat maps for all other enzymes tested on the 3 PET substrate
morphologies are shown in Supplementary Fig. 6. Source data are provided the a
Source Data file. B Log-plot of the sum of aromatic products measured after 168 h
reaction time using amorphous PET film (aFilm, black squares), crystalline PET

powder (cryPow, open circles) and amorphous PET powder (aPow, gray circles) as
substrates. Reaction conditions used for time course experiments correspond to
the pH and temperature resulting in the highest product release observed in
amorphous PET film screening reactions, which are listed in Supplementary
Table 13. Ratios of product release observed from hydrolysis reactions for each PET
substrate morphology pairwise comparison, demonstrating differences in sub-
strate selectivity for each selected enzyme is presented in Supplementary Fig. 9.
For all enzymatic reactions shown in A, B, the enzyme loading was 0.7 mg enzyme/
g PET and the solids loading was 2.9% (29 g/L). The reaction products were
quantified with UHPLC, and the results show the sum of aromatic products,
including BHET, MHET, and TPA. All reactions were conducted in triplicate (n = 3).
Error bars represent standard deviation and are centered on the average of the
three reaction measurements. Source data are provided as a Source Data file.
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Fig. 4 | Structural diversity of PET-active and representative enzymes from
phylogenetic groups. All structural models are shown to scale, rendered as car-
toons with transparent accessible surface areas and putative active sites high-
lighted with the Ser-His-Asp catalytic triad in red sticks. A PET hydrolase scaffolds
identified from mesophilic (top, I. sakaiensis PETase, PDB ID 6EQE™) and thermo-
philic (middle, LCC, PDB ID 4EB0*, and bottom, T. fusca cutinase 1 DSM44342 (703;

PDB ID 7QJR)) sources occupy a narrow structural space with highly conserved o/
hydrolase folds. B A selection of representatives from more distant phylogenetic
groups reveals multiple additional and alternative structural features with sub-
stantial increases (102) and reductions (307) in the core fold. C Several additional
distinct domains were revealed, including a Peripheral Subunit-Binding Domain
(PSBD) and a Family 35 carbohydrate binding module (CBM).

phylogenetic groups, we also employed AlphaFold*’ to interrogate the
structural diversity of all 74 enzymes (Supplementary Figs. 10-12) to
better understand structural features across the entire cohort for PET-
active and inactive enzymes.

As shown in Fig. 4A, representatives of known PET hydrolase
enzymes, such as those in groups 5-7, share highly similar structures.
However, in groups 1-4, the expanded primary sequence diversity
correlates with a large increase in structural diversity, including large
core deletions, modifications, and substantial fold extensions or
additions (Fig. 4B). Overall, this group of enzymes spans molecular
weights ranging from 13 to 55 kDa (/. sakaiensis PETase is ~27 kDa) and
isoelectric points from 4.3 to 9.7 (Supplementary Table 9).

Surface residue modifications provide functional diversity while
maintaining a conserved catalytic core

The group 5-7 enzymes share many common features including a
highly conserved core domain with a 9-stranded [-sheet flanked by 8
or 9 a-helices. These groups represent generally the most active
members of the cohort of 74, with the exception of 712 and 713, which
have truncated sequences and are inactive on PET.

A comparison of LCC with enzymes 504 and 611 reveals high
similarities, and almost identical active site triad geometries (Fig. 5A)
making the selectivity of these two enzymes for crystalline PET pow-
der, relative to LCC, surprising. Analysis of the surface charge dis-
tribution revealed a highly acidic patch adjacent to the active site
cavity of enzyme 504 compared to LCC, while 611 displays an excep-
tionally acidic surface extending around multiple faces, in stark con-
trast to canonical PET hydrolases that are generally more positively
charged on the solvent-exposed surface (Fig. 5A). This correlates with
an isoelectric point of 4.3 for enzyme 611, compared to 9.3 for LCC.

Structural features provide clues for mechanism of substrate
selectivity. In search of a mechanistic explanation for the diverse
substrate selectivity behavior observed through biochemical assay,
two hypotheses based on structural characterization were explored.
First, the diverse surface charges, represented by a broad range of
isoelectric points, may be key in mediating enzyme-substrate interac-
tions or enzyme access to reactive sites on the surface of the substrate.
For example, enzyme 611, which has a very low pl (4.3), shows a

significant change in substrate selectivity across substrate morpholo-
gies under different reaction pH conditions (Supplementary Fig. 6D).
To understand if enzyme pl correlates with optimal reaction pH for any
of the PET substrate morphologies, optimal reaction pH was plotted
against enzyme pl (Supplementary Fig. 13). No correlation is observed
in our experiments, as has been previously reported for other
enzymes®. A second hypothesis explores the active site cleft con-
formation and the constraints it sets for accommodating PET poly-
mers. Computational substrate docking reveals that LCC
accommodates a PET trimer deep within a cleft, which leads to a strong
preference for twisting of the adjacent monomers in the polymer chain
(Supplementary Fig. 14). Enzymes 504, 606, and 611 all present shal-
lower clefts that enable the polymer chain to adopt low energy con-
formations where the monomer units adopt a more linear
arrangement, similar to that observed in crystalline PET. These results
therefore provide a potential structural rationale for the observed
preferential breakdown of crystalline rather than amorphous PET by
these enzymes (Supplementary Figs. 6D and 13).

Evolution of lid and accessory domains generates additional
variety

A variety of accessory domains are observed in groups 2-4, ranging
from small lids that cap or partially occlude the predicted active site
regions, to large independent folds connected by flexible linkers
(Figs. 4C, 5B). These include a Peripheral Subunit-Binding Domain
(PSBD) in enzyme 202, and a Family 35 carbohydrate binding module
(CBM) in enzyme 407 (Fig. 4C). Enzyme 408 contains a putative cell
wall anchor domain, and enzyme 212 contains a predicted extended
transmembrane anchor (Supplementary Fig. 15).

The group 2 enzymes are peptidase-like hydrolases with sparing
activity on PET, all characterized by a central core with the addition of
lid domains in a variety of constructions. Examples include a mixed
helical and -sheet arrangement (204), a three-helix bundle (211), and
for enzyme 214, a substantial 80-residue extended helical domain
which creates a 40 A wide flat surface platform of unknown function
(Fig. 5B, Supplementary Fig. 16).

It is of particular note that the shapes of the group 2 active site
clefts are also unusual. In example, enzyme 204 displays a partially
covered active site (Supplementary Fig. 17). In a departure from classical
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Fig. 5 | Increasing degrees of structural diversity across phylogenetic groups.
A Conserved canonical folds with surface residue changes in groups 5 and 6.
Electrostatic surface representations are colored with a gradient from red (acidic)
at -7 kT/e to blue (basic) at 7 kT/e (where k is Boltzmann’s constant, T is tem-
perature, and e is the charge on an electron). The general location of active site cleft
is indicated with a star. Known (LCC) and predicted catalytic triad residues are
shown as stick representations in the corresponding images below. B Accessory lid
domains in group 2 enzymes. Examples of alternative lid domains are highlighted in
green. C Mini-PETases are created from large core deletions to the canonical fold.
LCC is shown in the middle column (yellow) as a cartoon with the catalytic triad
highlighted in red, and a surface representation below with a PET trimer (blue)
docked in the active site cleft. A comparison with 307 on the left (cartoon above
shown without the lid domain for clarity) reveals the extent of the core deletion,
removing four of the eight B-strands and corresponding helices. A comparison with

305 on the right reveals an almost complementary set of deletions. These major
rearrangements generate alternative binding clefts and docking studies predict
vastly different binding modes (PET trimers in blue). Superpositions of the three
enzymes in this panel are depicted in Supplementary Fig. 19. D An alternative
enzyme family for PET hydrolysis. The enzymes 101 (left) and 102 (right) are colored
according to the 3-domain arrangement in the Geobacillus stearothermophilus
carboxylesterase EST55 (PDB ID 20GT). Both enzymes display a truncated version
of the catalytic domain (pink) compared to EST55 (Supplementary Fig. 20) and have
modified versions of the o/ domain (blue). Only enzyme 101 has a version of the
regulatory domain, the absence of which in 102 disrupts the formation of the
canonical active site (locations highlighted with red dashes). While the catalytic Ser
and Glu residues are conserved between EST55 and 101 (pink and yellow sticks),
there is no direct substitute for the His residue. In enzyme 102, only the catalytic Ser
is position is conserved (Supplementary Fig. 20).

PET hydrolases, the active site of 202 is completely buried in this apo
crystal structure. However, the occluding helix sits on what appears to
be a hinge-like structure that may have the potential to swing open to
accommodate the polymer chain (Supplementary Fig. 18).

Mini-PETases reconstitute productive active sites from only half
the core domain

Enzyme 307 has a large deletion of around one half of the core domain,
with only four strands in the central 3-sheet compared to the typical
eight or more strands found in canonical PET hydrolases (Fig. 5C,
Supplementary Fig. 19). Despite the absence of four helices in the core,
this enzyme remarkably retains the conserved canonical active site,
which conveys a low level of PET hydrolysis activity (Supplementary
Figs. 3, 5). As a result of the deletion, the 307 active site is open and
docking studies predict potential electrostatic interactions that may
stabilize an otherwise flexible protein following substrate binding.
Docking simulations with a PET trimer reveal the potential for binding
within a large open cleft, as compared to the relatively narrow groove
of the LCC active site (Fig. 5C).

Enzyme 305 also displays a major deletion, but more surprisingly
in the opposite half of the core compared to 307. The missing a-helical
region would normally contribute half of the active site cavity and the
His residue of the active site triad in the canonical fold. On closer
inspection, an alternative His is positioned in the triad, reconstituting
what appears to be a unique active site from the same half of the core
(Supplementary Fig. 19). Both mini-PETases offer opportunities to
investigate the minimal protein chain required for PET hydrolysis, and
these examples offer two alternative active sites. Experimental vali-
dation of the predicted catalytic residues is still needed to fully
understand the implications of these alternative active sites.

Newly identified PET-active family members offer alternative
folds, binding surfaces, and active site geometries

The group 1 enzymes exhibit a distinct fold, closer to carbox-
ylesterases, such as the EST55 enzyme from G. stearothermophilus
(PDB ID 20GT)** (Fig. 5D) and a previously identified mesophilic
enzyme with PET activity, Bacillus subtilis p-nitrobenzylesterase,
BsEstB**®°. An AlphaFold structural model reveals that the BsEstB
enzyme is similar to ESTSS5, sharing the same 3-domain architecture
(catalytic, regulatory, and o/p) with conserved active site triad residues
(Supplementary Fig. 20). However, enzymes 101 and 102 have com-
paratively large deletions in the main catalytic domain, and enzyme
102 lacks the regulatory domain entirely (Fig. 5D). These truncations
are significant because in the canonical fold they contribute around
one half of the active site environment, including the catalytic His and
Glu residues (Supplementary Fig. 20). Both 101 and 102 conserve the
position of the catalytic Ser, but there is no equivalently positioned His
in 101, and no equivalently positioned His or Glu in 102. Further
experimental validation of the non-canonical predicted catalytic resi-
dues will be necessary to identify if there may be additional alternative
active site residues involved in PET hydrolysis.

Discussion

Enzymes capable of PET hydrolysis have been identified thus far from a
relatively narrow sequence space™'° 2, and therefore are unlikely to fully
encompass the natural diversity that can catalyze this reaction. Using
bioinformatics and ML to gather sequences from environmental and
cultivar genomes, we discovered distinct enzymes that hydrolyze PET,
likely all via a serine hydrolase mechanism based on almost universally
complete conservation of the catalytic triad, but with different active
site architectures, including several variations that will benefit from
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more study. Many of these rearrangements and adaptations create
alternative active site clefts, gorges, and planes, which may provide a
useful diversity of structural motifs to achieve efficient interfacial bio-
catalysis for PET deconstruction. Furthermore, distinct differences in
surface charge and in binding mode provide tractable parameters for
enzyme engineering to develop biocatalysts with high selectivity for
different morphologies of PET, as commercially available model sub-
strates are not necessarily representative of PET waste streams.

TheJGI IMG sequences in groups 1-3 yielded low alignment scores
with the PET hydrolase HMM (Supplementary Table 9), though several
of these sequences demonstrated hydrolytic activity on PET, despite
being markedly diverse relative to canonical PET hydrolases. This
finding suggests that the distribution of currently known PET hydro-
lases, which are largely limited to the polyesterase-lipase-cutinase
family (Fig. 1B), may result from biases of sequence similarity and HMM
methods that limit the search to a narrow sequence space within the
vicinity of these first studied PET-active enzymes. To understand these
limitations, we further examined the ability of HMM scores to dis-
criminate between active PET hydrolases and inactive homologs by
computing the area under the curve (AUC) of the receiver operating
characteristic plot and the Spearman correlation coefficient (p)
between HMM scores and our experimental activity data (Supple-
mentary Fig. 21A-C). Our results indicate that the HMM scores
demonstrate mediocre performance in predicting the PET hydrolase
activity of putative hits (AUC=0.581, p=0.167). Furthermore, we
investigated the distribution of amino acids at each position in a
multiple sequence alignment (MSA) of active PET hydrolases and
inactive homologs to identify positions that correlate with activity and,
therefore, could play key roles in PET hydrolysis activity®’. We did not
find statistically significant relationships (two-sided chi-squared test of
independence, p <0.01) between positional variation in the MSA and
activity (Supplementary Fig. 21D). This suggests that pairwise covar-
iation and higher-order interactions that are not captured by the
HMM?®® could play dominant roles in PET hydrolase activity. Recent
studies have shown that ML can successfully capture such complex
pairwise interactions®®”’°. Consequently, the application of ML with
our experimental activity data within a semi-supervised framework
provides promise for improved prospecting of additional active PET
hydrolases”.

Our analysis of candidates from this study already extends to
some industrially relevant parameters. For example, previous studies
have shown that high substrate crystallinity leads to reduced conver-
sion extents relative to amorphous PET?***>3*375°72 This has led to an
emphasis on substrate pretreatment to amorphize PET"". We recently
reported a techno-economic analysis and life cycle assessment of
enzymatic PET recycling***¢. Of relevance to PET crystallinity and
pretreatment, the process model included thermal extrusion, rapid
quenching, and mechanical size reduction using a microgranulator to
reduce the crystallinity of PET from post-consumer PET flake™. Sensi-
tivity analysis indicates the potential to reduce process electricity
usage by 67%, overall process energy by nearly 50%, and a savings of
$0.24/kg recovered TPA if substrate pretreatment could be avoided,
thus motivating an interest in enzymes with specificity to crystalline
substrates. As shown in Figs. 2 and 3, several enzymes reported here
preferentially deconstruct crystalline PET powder relative to some
morphologies of amorphous PET, suggesting possibilities in biocata-
lyst development for crystalline PET deconstruction'®*>*¢, and high-
lighting the potential for identifying additional desirable biocatalyst
characteristics from natural diversity toward the development of
enzymatic PET recycling.

Methods

Materials

Amorphous PET film (Goodfellow Product ES30-FM-000145) and
crystalline PET powder (Goodfellow Product ES30-PD-006031) were

purchased from Goodfellow Corporation (USA). Percent crystallinity
for each substrate has previously been reported®. All reagents and
buffer components were acquired from Sigma-Aldrich.

Sequence search and alignments

Environmental metagenomes (n =3136) were retrieved from the Joint
Genome Institute Integrated Microbial Genome (JGI IMG) database™ in
April 2017. The metagenomes were first categorized into sub-
categories (thermal springs, groundwater) as previously reported’’*,
and only thermal spring metagenomes were considered further
(Supplementary Table 2). Sequences from these metagenomes were
retrieved (-38 million sequences). The National Center for Bio-
technology Information (NCBI) non-redundant database*’ was also
downloaded as of 20 December 2018 (-184 million sequences). A
dataset of 17 enzymes that were confirmed to exhibit PET hydrolysis
activity as of 20 December 2018 was compiled (Supplementary
Table 1). Sequences of the 17 PETases were retrieved and aligned with
T-Coffee”. T-Coffee performed better in aligning the distantly related
sequences, compared to MAFFT”®, ClustalW2”’, and MUSCLE’®, parti-
cularly in correct placement of the catalytic Ser and His residues and
the terminal Cys residues.

A profile hidden Markov Model (HMM) was constructed with the
PETase alignment using the HMMER software (version 3.1b2)”° and
putative PET hydrolases were retrieved by hmmsearch of the HMM
against the retrieved NCBI and JGI IMG sequences. The NCBI search
returned 2165 hits with alignment scores ranging from 100 to 442 (E-
value: 7.7e-25 to 8.6e-129). To diversify the sequence search space,
the HMM threshold was lowered for the JGI IMG search and sequences
with relatively lower scores were selected. The JGl search returned 1367
hits with alignment scores ranging from 26 to 360 (E-value: 1.0e-2 to
1.8e-104). For organisms from which the NCBI sequence hits were
derived, optimal growth temperature (OGT) data were retrieved from
the NCBI Bioproject database (https://www.ncbi.nlm.nih.gov/
bioproject/) and the BacDive database® (https://bacdive.dsmz.de/).
The sample temperatures of the JGI IMG metagenomes (Supplemen-
tary Table 2) were used as the OGT for the JGI IMG sequence hits. To
limit the search to thermostable sequences, only thermophilic
sequences with OGT of 50 °C or greater were selected. Among the
NCBI hits, 31 were selected as thermophilic, 1777 were mesophilic and
were discarded, and 353 were from organisms that could not be
mapped to OGT data. The thermophilicity of these sequences that
could not be mapped to OGT data was predicted with ThermoProt
(vide infra). The final selection included 58 thermophilic sequences
(predicted/OGT) from NCBI (scores: 104-442, E-values: 8.0e-26-8.6e
-129) and 35 sequences from JGI IMG (scores: 27-35, E-values: 3.0e
-3-2.6e-5). Redundant sequences (100% identity, excluding the pre-
dicted signal peptide region) were removed, which left 74 putative
thermophilic PET hydrolases in the selection (Supplementary Table 9).

Unless otherwise stated, structure-based multiple sequence
alignments were used in all analyses and were performed as follows.
First, a structural alignment of all crystal structures and AlphaFold
structure models presented in this work was performed with the Pro-
mals3D web server®®. Then, all sequences to be analyzed were aligned
with MAFFT using the structural alignment as constraint’®. Sequence
analyses were implemented with the Biopython package®..

Prediction of thermophilicity with machine learning
(ThermoProt)

From the NCBI and BacDive databases, sequence and OGT data were
retrieved for 24 organisms classified as psychrophilic (<15 °C), meso-
philic (25-37°C), thermophilic (45-70°C), or hyperthermophilic
(>80 °C) (Supplementary Table 3). A separate testing set was formed of
22,299 proteins from an organism in each OGT class, and the
remaining sequences (231,171) were used in training and validation. To
prevent overestimation of the validation performance, the sequences
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were clustered at 40% sequence-identity threshold using the CD-HIT
algorithm®2. From the CD-HIT output, 40,000 sequences were selected
for validation such that there were 10,000 sequences in each class,
with 8000 sequences (2000 in each class) set aside for hyperpara-
meter tuning, while the remaining 32,000 (8000 in each class) were
used for training, validation, and analysis. Three categories of features
were derived from the protein sequences.

Amino acid composition features. the relative amounts of 20 cano-
nical amino acids in the sequence.

g-gap dipeptide composition. the relative amounts of the peptide,
a(x)gb, where a and b are specific amino acids and (x)g represents g
amino acids of any type, sandwiched between a and b®. In this work,
1200 g-gap dipeptides (i.e., g=0, 1, and 2) were tested and the top 10
were selected by their relative (Gini) importance in a random forest
model. Additional g-gap dipeptides beyond 10 did not improve the
random-forest classification performance.

Residue type and physiochemical features. in addition, 20 features
that have been shown in previous works to correlate with thermal
stability were selected, namely the composition of acidic, basic, non-
polar, acyclic, aliphatic, aromatic, charged, and EFMR (Glu, Phe, Met,
Arg) residues; the ratio of basic to acidic, non-polar to polar, acyclic to
cyclic, and charged to non-charged residues®*; the composition of tiny
(Ala, Gly, Pro, Ser) and small (Thr, Asp) residues, the average maximum
solvent accessible area (ASA)®, the ratio of (Glu + Lys) to (GIn + His)®¢,
charged vs. polar composition®”, I'YWREL (lle, Val, Tyr, Trp, Arg, Glu,
Leu) composition®, molecular weight, and heat capacity®’. Supple-
mentary Table 4 shows a full description of the 50 features derived for
each sequence and the Spearman correlation coefficient between
these features and the thermostability class, using the dataset of
32,000 proteins. Five machine-learning methods were tested with the
Scikit-learn Python package’: random forests, logistic regression,
Gaussian naive Bayes, K-nearest neighbor, and support vector machine
(SVM). Hyperparameters for each method were optimized with a grid
search with a separate tuning dataset (8000 proteins). Four binary
classifiers were tested: psychrophilic vs. mesophilic (PM), mesophilic
vs. thermophilic (MT), thermophilic vs. hyperthermophilic (TH), and
mesophilic vs. thermophilic/hyperthermophilic (MTH). Supplemen-
tary Tables 5-7 show the performance of the machine-learning meth-
ods with the different binary classification schemes measured over
fivefold cross-validation with the training dataset (32,000 proteins,
8000 per class). All methods achieve accuracies between 68.0% and
86.6%. In addition to the accuracy, the true positive rate (recall), true
negative rate (specificity), and Matthew’s correlation coefficient were
also computed. The SVM method (termed ThermoProt) yielded the
best performance (MTH, 86.6% accuracy) and was applied to the
PETase HMM hits without OGT data to predict the thermophilicity. It is
important to note that while this work was ongoing, a dataset of OGT
for 21,498 microbes was published**, which enabled regression models
that directly predict the OGT*"?, and the optimal catalytic tempera-
ture (Top) Of an enzyme’”. These new regression methods possibly
enable improved prediction of the thermotolerance of enzymes.

Discrimination of active PETases from inactive homologs with
hidden Markov Models (HMM)

Sequence data of 60 enzymes with experimentally confirmed PET
hydrolase activity were compiled, comprising 36 PETases reported in
other studies (Supplementary Table 1) and 24 non-redundant PETases
presented in this study (Supplementary Table 11). Sequence data of 19
homologs that are experimentally reported to be inactive on PET were
also compiled, comprising 15 sequences from this study (Supplemen-
tary Table 11), PET28, PET29, PET38%, and Cbotu_EstB’® reported pre-
viously. An alignment of all 79 active and inactive sequences was

performed, and the alignment was split to separate sub-alignment of
active and inactive sequences.

The performance of HMM in discriminating active PETases from
inactive homologs was evaluated with fivefold cross-validation. The
active/inactive sequences were split into five folds and the HMM was
repeatedly built with the data in four folds and evaluated with the data
in the left-out fold such that each fold was iteratively used in training
and testing. Two methods of HMM prediction were considered. First,
an HMM was built with active PETases in the training set and searched
against sequences in the testing set, and the HMM alignment score of
test sequences was derived as a predictive measure of PET hydrolase
activity (score method). In the second method (difference method), an
additional HMM was built with inactive homologs in the training set,
and searched against the testing set. The difference between the HMM
score obtained from the active PETase HMM and the score from the
inactive homologs HMM was construed as the predictive measure of
PET hydrolase activity. With the score method, it is expected that PET
hydrolase activity would directly correlate with the HMM scores, while
with the difference method, it is expected that active PETases would
yield higher scores with the active HMM compared to the inactive
HMM. Similar HMM approaches have proven remarkably successful in
discriminating functional subtypes and specificities in protein
families®”*. However, the results here indicated that HMM demon-
strates low performance in discriminating PETases from inactive
homologs (Supplementary Fig. 21).

In addition, the amino-acid distribution in the alignment of active
PET hydrolases and inactive homologs was investigated. If a residue
position plays key roles in activity, it is expected that the amino acid
distribution at that position would significantly vary between actives
and inactives®’. A Chi-squared test of independence (two-sided) was
performed to compare the amino-acid distribution at each position in
the alignment of 60 active PETases and 19 inactive homologs. Positions
with gaps in more than 90% of the sequences were removed (805
removed, 437 remaining). The test examined the null hypothesis that
the amino acid distribution at a position in the alignment is sig-
nificantly different between the active PETases and inactive homologs.
A second test was also performed to compare the distribution of
amino acid types (aliphatic: Ala, Gly, Val, Leu, lle, Met, Cys, Pro; aro-
matic: Phe, Trp, Tyr, His; positive: Arg, Lys; negative: Asp, Glu; polar:
Asn, GIn, Ser, Thr). The results indicated that no single position in the
alignment showed statistically significant difference (p<0.01)
between active PETases and inactive homologs (Supplementary
Fig. 21D).

Phylogenetic analyses and sequence similarity network
Phylogenetic analyses were conducted with the MEGAX software
For the phylogeny of 74 candidate sequences (Fig. 1A), the evolu-
tionary history was inferred using the Minimum Evolution (ME)
method”. The evolutionary distances were computed using the JTT
matrix-based model and are in the units of the number of amino acid
substitutions per site'®. The ME tree was searched using the Close-
Neighbor-Interchange (CNI) algorithm at a search level of 1'°. The
Neighbor-joining algorithm was used to generate the initial tree'®. All
ambiguous positions were removed for each sequence pair with the
pairwise deletion option. A separate tree was constructed to addi-
tionally illustrate the phylogenetic relationships of 36 previously
reported PET-hydrolases and the unique PET-hydrolases presented in
this study (Supplementary Fig. 1) using the maximum likelihood
method with 1000 replicates and the JTT matrix-based model. The
initial tree for the heuristic search was obtained by applying the
Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances
estimated using the JTT model, and then selecting the topology with
superior log likelihood value. All positions with <95% site coverage
were eliminated. The phylogenetic trees were visualized with the
Interactive Tree of Life (iTOL) online tool'”.

97,98
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The sequence similarity network (SSN) (Fig. 1B,) was implemented
with the Enzyme Function Initiative Enzyme Similarity Tool (EFI-
EST)'*“. Sequences were subjected to a BLASTall pairwise search and
the SSN was constructed with a threshold of 1e-10. The SSN was
visualized with Cytoscape'®.

Amorphous PET powder production and analysis

For generation of an amorphous PET powder, 300 mm x 300 mm
sheets of 0.25 mm-thick amorphous PET film (Goodfellow Product
ES30-FM-000145) were first cut into 100 mm x 100 mm squares with a
guillotine. These were then rolled, immersed in liquid nitrogen and
cryo-cut at 2400 rpm in a SM300 cutting mill (Retsch) equipped with a
stainless-steel V-rotor, a bottom sieve with 4 mm square holes, and a
cyclone trap for product collection. Subsequently, this cryo-cut pro-
duct was immersed in liquid nitrogen and subjected to further size
reduction by cryo-milling at 18,000 rpm in a ZM200 centrifugal mill
equipped with a stainless-steel 12-teeth push-fit rotor, a 0.12 mm ring
sieve with trapezoidal holes, and a cyclone trap. A 200 mg sample of
the cryo-milled amorphous PET powder was dried under vacuum for
30 min at 45°C, and its particle size and shape distributions were
compared to that of the purchased crystalline PET powder by dynamic
image analysis using a CAMSIZER X2 (Microtrac MRB) equipped with
an X-Fall module to measure the cross-sectional area and aspect ratio
(Supplementary Fig. 22).

Plasmid construction

Coding sequences were codon optimized for Escherichia coli str. K-12
MG1655 using a guided random approach from the OPTIMIZER server
(http://genomes.urv.es/OPTIMIZER).  Optimized sequences for
expression of the 6 control hydrolases (wild-type /sPETase, mutant
variant [sPETase (W159H/S238F), wild-type LCC, the ICCG variant of
LCC, the WCCG variant of LCC, and BTA-1), and all versions of the 74
candidate enzymes were synthesized by Twist Biosciences in
pET21b(+) (EMD Millipore)-based plasmids. Each construct includes a
C-terminal hexa-histidine epitope tag. Sequences are provided within
the Source Data file.

Enzyme expression

For identifying soluble heterologous protein expression, BL21 (DE3) E.
coli (NEB), OverExpressTM C41 (DE3) (Lucigen), and Lemo2l (DE3)
(NEB) competent cells were used. Competent cells were transformed
with pET21b(+) plasmids encoding the enzyme of interest. Single
colonies from transformation were then inoculated into a starter cul-
ture of lysogeny broth (LB) media containing 100 pg/mL ampicillin and
grown at 37 °C overnight. Four expression strategies were evaluated
using 50 mL cultures and soluble expression was evaluated by SDS-
PAGE with Coomassie staining and Western blot using primary anti-
body against the hexa-histidine epitope tag (Invitrogen). Using results
from the 50 mL scale expression tests, the best condition was chosen
for each control or candidate and scaled to 1-5 L, depending on
expression level. Supplementary Table 11 details which competent cell
line and expression strategy was used for each control and candidate
enzyme, and the final expression level (mg enzyme/L culture) obtained
for each enzyme. Details of the four strategies employed are given
in Supplementary Methods.

Enzyme purification

Harvested cells were thawed on ice and resuspended in a lysis buffer
(300 mM NacCl, 10 mM imidazole, 20 mM Tris HCI, pH 8.0,) with
0.25 mg/mL lysozyme, and 12.5 U/mL DNase I. Cells were lysed using
either a bead beater (BioSpec Products, Inc.) or sonication with a
microtip (39% power, 20 s ON, 20 s OFF for a total of 2min 20 s ON).
Lysate was clarified by centrifugation at 40,000 x g for 40 min at 4 °C.
Clarified lysate was filtered through a 0.45 um PVDF membrane, then
applied to a 5 mL HisTrap HP (Cytiva) affinity column using an AKTA

Pure chromatography system (Cytiva) and eluted using a buffer com-
prising 300 mM NaCl, 500 mM imidazole, 20 mM Tris HCI, pH 8.0.
Resulting fractions containing the protein of interest were pooled and
dialyzed at room temperature (25 °C) using 3.5 kDa molecular weight
exclusion membranes in an exchange reservoir at least 300 times the
pooled sample volume of 300 mM NaCl, 20 mM Tris, pH 8.0 buffer.
After 16-20h of buffer exchange, samples were centrifuged and
evaluated by SDS-PAGE with Coomassie staining. Pooled samples were
concentrated using 3.5 kDa molecular weight cut-off spin columns and
applied to a HiLoad Superdex 75 pg 16/60 (Cytiva) size exclusion col-
umn equilibrated with 300 mM NaCl, 20 mM Tris, pH 8.0 for use in
screening or time course analysis. Protein in eluted fractions from
affinity and size exclusion columns were assessed using SDS-PAGE with
Coomassie staining and Western blot using primary antibody against
the hexa-histidine epitope tag (Invitrogen). Total protein was assessed
by BCA assay'®.

Using E. coli strains transformed with only the empty pET21b(+)
expression vector, no PET hydrolysis activity was observed using the
cell lysate or using endogenous E. coli protein that demonstrates non-
specific binding to the Ni-NTA affinity column.

Signal peptide sequences

The presence of signal peptide sequences was predicted using SignalP
5.0, From 74 putative thermophilic PET hydrolase sequences, 36 signal
peptides were removed for construct synthesis. A selection of 12 trun-
cated constructs that proved challenging to express were re-synthesized
to include the native signal peptide (nSP) and compared for changes in
expression and activity. Of these signal peptide-containing constructs, 7
were successfully expressed and screened, of which, only 607 could not
be expressed without the native signal peptide. Sequences for the nSP-
containing candidates are provided in the Source Data file. In addition,
expression of the Thh_Est enzyme (710) was previously reported from an
expression plasmid (pET26b(+)) containing an N-terminal pelB signal
peptide”. Both the truncated version of 710 and the pelB-containing
version (710-pelB) expressed enzyme, but neither showed activity during
screening (data not shown for 710-pelB).

Protein calorimetry (DSC)

Apparent melting temperature (7,,,) values for those purified enzymes
that were sufficiently soluble (>0.1mg/mL) in neutral buffer were
assessed by differential scanning calorimetry (DSC). Immediately prior
to DSC analysis, to ensure both mono-dispersity and an optimal buffer
match, each enzyme was prepared by size-exclusion chromatography
(SEC) through a HilLoad Superdex 75 pg column (Cytiva) pre-
equilibrated with the DSC reference buffer comprising 50 mM
NaH,PO,4, pH 7.5, with either 300 mM NaCl (for 606) or 100 mM NacCl
(for all other enzymes). The SEC column was calibrated with a mixture
of globular protein standards (Sigma-Aldrich)— thyroglobulin
(670 kDa), y-globulin (158 kDa), albumin (67.0 kDa) and ribonuclease A
(13.7kDa)—to allow for the calculation of an apparent molecular
weight (MW,,;,) for each enzyme from its elution volume. Subse-
quently, triplicate DSC analyses, each using 0.1-0.2 mg/mL enzyme,
were performed on a MicroCal PEAQ-DSC-Automated instrument
(Malvern Panalytical). The temperature of the sample and reference
cells was raised from 30 to 120°C at a rate of 1.5°C/min using low
feedback. Thereafter, reference buffer subtraction, baseline correction
and apparent T, determination were performed using the instru-
ment’s data analysis software (v1.60).

Monomer quantitation

Analyte analysis of BHET, MHET, and TPA was performed on an Infinity
II 1290 ultra-high-performance liquid chromatography (UHPLC) sys-
tem (Agilent Technologies) equipped with a G7117A diode array
detector (DAD). Samples and standards were injected using a volume
of 0.25uL onto a Zorbax Eclipse Plus C18 Rapid Resolution HD
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(21x50 mm, 1.8 um) (Agilent Technologies) column maintained at
40 °C. The mobile phase used to separate the analytes of interest was
composed of (A) 20 mM phosphoric acid in ultrapure water and (B)
100% methanol. Separation of analytes was carried out using a con-
stant flow rate of 0.7 mL/min and a gradient program with a total run
time of 3 min. The gradient program proceeded as follows: at = 0 min,
(A)=80% and (B)=20%; at t=2 min, (A)=35% and (B)=65%; from
t=2.01 min until the end at t=3 min, (A)=80% and (B) = 20%. The
calibration curve for each analyte was evaluated between concentra-
tions of 1-200 mg/L with DAD detection at a wavelength of 240 nm.
Ten calibration standards were used with an R? coefficient of 0.995 or
better. Calibration verification standards (CVS) for each analyte was
analyzed every 12-24 samples to ensure the integrity of the initial
calibration. Samples were diluted with ultrapure water for analysis and
maintained at 15 °C during the analysis.

Screening for activity on amorphous PET film

In each screening reaction, 2.9% loading by mass of an amorphous PET
film (Goodfellow) was incubated with 10 pg enzyme of interest (0.7 mg
enzyme/g PET), unless noted otherwise in Supplementary Table 11 due
to low expression levels. Reactions were performed in polypropylene
tubes containing 100 mM NaCl and 50 mM buffering agent (citrate at
pH 6.0, NaH,PO, at pH 7.0, NaH,PO, at pH 7.5, HEPES at pH 7.5, bicine
at pH 8.0, and glycine at pH 9.0) and incubated at 30, 40, 50, 60, or
70 °C. All reactions were terminated after 96 h by the addition of an
equal volume of 100% methanol and PET was removed from the
reaction solution. Soluble fractions were filtered through 0.2 um nylon
filters for monomer quantitation. All PET hydrolysis screening reac-
tions were performed in triplicate.

For enzymes with peak activity at pH 6.0, an extended pH
screening assay was performed using 2.9% loading by mass of amor-
phous PET film (Goodfellow) and 10 pg enzyme of interest (0.7 mg
enzyme/g PET enzyme loading) in polypropylene tubes containing
100 mM NaCl and 50 mM citrate (pH 5.5 and pH 5.0) or 50 mM sodium
acetate (pH 5.0 and pH 4.5). The reactions were again stopped at 96 h
by the additional of an equal volume of 100% methanol and worked up
in the same manner as described directly above.

Aromatic product release data are reported throughout relative to
background aromatic product release detected in no-enzyme control
reactions at each pH and temperature. Background aromatic product
release for both amorphous PET film and crystalline PET powder was
below the detection limit for all pH and temperature combinations
tested.

Characterization of PET hydrolysis activity on varied substrates
with time resolution

Using the reaction conditions (buffer and temperature combination)
where peak PET hydrolysis activity was measured from the screening
assays, a selection of enzymes was further characterized over a 168 h
reaction on amorphous PET film (Goodfellow), crystalline PET powder
(Goodfellow), and an amorphous PET powder produced in-house
through cryomilling of the Goodfellow amorphous PET film. Each reac-
tion was performed using 2.9% by mass substrate loading and 10 pg
enzyme of interest (0.7 mg enzyme/g PET). Reactions were terminated at
the designated timepoint by the addition of an equal volume of 100%
methanol and PET was removed from the reaction solution. Soluble
fractions were filtered through 0.2 um nylon filters for monomer quan-
titation. All time course experiments were performed in triplicate and
samples were diluted with ultrapure water for analyte quantitation.
Supplementary Tables 12, 13 provide details on the enzyme and reaction
condition pairings evaluated over 168 h reaction time.

Structure determination
For crystallography, all proteins were concentrated and sitting drop
crystallization trials were set up with a Mosquito crystallization robot

(SPT Labtech) using SWISSCI 3-lens low profile crystallization plates
(Supplementary Methods). All crystals were cryo-protected with 20%
glycerol in the crystallization solution and flash-frozen into liquid
nitrogen. Diffraction data were collected at the Diamond Light Source
(Didcot, UK) and automatically processed using Autoproc on ISPyB'%,
STARANISO'” was also used for processing anisotropic data and cal-
culating ellipsoidal completeness. The structure was solved within
CCP4 Cloud by molecular replacement with Molrep™ using search
models created by Phyre2™. For 306, MR was solved with an AlphaFold
structure prediction (Supplementary Fig. 11)*’. Model buildings were
performed in Coot'? and the structures were refined with BUSTER™
and REFMAC5™. MolProbity'™ was used to evaluate the final models
and PyMOL (Schrodinger, LLC) for protein model visualizations. Data
and refinement statistics are summarized in Supplementary Table 15.
The atomic coordinates have been deposited in the Protein Data Bank,
and PDB IDs are included in Supplementary Table 15. Search for
structural protein homologs and calculation of RMSD values were
performed with the DALI server". AlphaFold structure predictions
were generated using the same models and inference procedure as
employed in CASP14*’. Mean pLDDT (predicted local distance differ-
ence test) over the structure was used for model ranking, and pLDDT
values were written into the B-factor column of each structure file.

Molecular docking

Molecular docking calculations were performed using the program
Molecular Operating Environment (MOE)". Flexible PET dimers and
trimers were optimized inside a rigid host structure. Initial placement
of the PET oligomer units was carried out using the Triangle Matcher
approach, with subsequent refinement via molecular mechanics using
the MMFF94x forcefield. The position and energy of 200 poses were
optimized and their ranking was carried out based on the most
favorable molecular mechanics interaction energy, E_refine. Results
were discarded where the distance between the carbonyl group of a
monomer unit and the serine of the catalytic triad exceeded 4 A.

Data availability

The data that support this study are available from the correspond-
ing authors upon request. The atomic coordinates and structure
factors have been deposited in the Protein Data Bank, (https://www.
wwpdb.org/) with PDB ID codes 7QJM, 7QJN, 7QJO, 7QJP, 7QJQ, 7QJR,
7QJS, and 7QJT. AlphaFold models are available at https://github.
com/beckham-lab/AlphaFold-PETase-PDBs. Genetic expression con-
structs for the 74 sequences have been deposited at AddGene,
(https://www.addgene.org/Gregg Beckham/). Source data are pro-
vided with this paper.

Code availability
The ThermoProt code and training dataset are available at https://
github.com/beckham-lab/ThermoProt.
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