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Thermal energy storage of excess grid electricity

when demand when demand and price
and price are low: are high:
Long-duration
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Low loss if well-insulated High efficiency with good recycling
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Thermal energy storage of excess grid electricity

carbon

Thermophotovoltaic
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High semiconductor material quality

Optimized diode device architecture

TPV Efficiency = Power Output
Power Incident — Power Reflected

Emitter temperature

High reflectance of the back mirror

Low parasitic absorption in the semiconductor
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Thermophotovoltaic efficiency

Estimated TPV system efficiency
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29% with silicon PV

/" Yablonovitch experiment:
29.1% with InGaAs PV

Swanson experiment:
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More materials and system complexity

TPV Efficiency =

High semiconductor material quality

Optimized diode device architecture

Power Output
Power Incident — Power Reflected

Emitter temperature

High reflectance of the back mirror

Low parasitic absorption in the semiconductor
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Rear heterojunction architecture with a thick n-type absorber

Au Au| Front Gridlines
n* GalnAs, 200 nm Front Contact

n InP, 50 nm Window
_Growth n GalnAs, 2 um Absorber
Direction

 / p InP 200 nm Back Surface Field
nt AlGalnAe 5 0 nm Back Contact

Back Reflector

Grids 10 um x ~6 um tall, spaced ~50-200 pm apart
~ 30-60 Q/sqr

sheet

All dimensions are nominal.
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Inverted TPV devices

Inverted growth gives easy access to the device backside for applying advanced contacts

- Enables a range of device designs

InP substrate can be etched away,
or potentially removed and reused

Handle can be:
* silicon or glass

* something flexible
e another solar cell (ifthe\>
back contact is gridded)

uoNOBIIP YIMOID)

Mirror and Back Contact
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Large area TPV cells

Growth and fabrication on a 2” reactor
at NREL yields 12 TPV cells

Each cell has an illuminated area of 0.64
cm?

Individual cells can be cleaved or diced
from the wafer after fabrication

Back metal thickness is ~2.5 uym and
front grids are > 5 um tall, for decreased
series resistance
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“One-sun” characteristics
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Excellent collection efficiency (at 1000 W/m2)

We estimate the internal luminescent efficiency to be > 98%
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TPV measurements at Antora Energy

TPV “V2” test bed InGaAs cell

Thermal Reflected
Radiation z Light
I | Aperture

Power - B TPV CeII .| Electrical
i Probes
* lHeat .
Temperature
Measurements
.. Contact the cell on all four sides, to
TPV Efficiency = Power Out ’

control series resistance.

Power Out + Heat Absorbed
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Current Density (A!cmz)

High intensity performance metrics
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Equivalent of ~330 suns relative
to 1000 W/m? Modeled after J. Geisz et al., Journal of Photovoltaics, 5, 1827 (2015).

Manuscript in preparation
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Absorption losses

FTIR measurement and model Optical model including Drude FCA
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1850°C weighted reflectance = 94.7%

Gold back reflector dominates the parasitic absorption
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TPV efficiency
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Considering the different losses...

Based on Burger et al., JouIe 4, 1660 (2020)
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TPV efficiency
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