

Session 13.01.04: Materials for Quantum Information Science

Instability of Rock-salt Cubic NbN in Density Functional Calculations

Anuj Goyal, Sage Bauers, and Stephan Lany

National Renewable Energy Laboratory, Golden, CO, 80401

Email: anuj.goyal@nrel.gov

Resource: NREL HPC

Funded by: NREL LDRD program

Cubic NbN for Superconducting Quantum Circuits

All nitride semi-/super-conductor heterojunctions¹ for Josephson Junction (superconducting quantum circuit)

In thin-films, superconducting NbN stabilizes in the cubic (rock-salt) phase

NbN Cubic Phase is Unstable in DFT Calculations

Bulk experiments¹:

- Stoichiometric hexagonal ϵ -NbN stable below $T < 1330^{\circ}$ C
- δ -NbN_x, 0.72 < x < 0.86, stable at T > 1070 1225°C

Similar energy ordering reported in DFT literature^{2,3}

Energy ordering remains the same across different DFT functionals (PBE+*U*, SCAN) and Hybrid-DFT)

²V. I. Ivashchenko et al., Phys. Rev. B 82, 054109 (2010)

³K. R. Babu et al., Phys. Rev. B 99,104508 (**2019**)

Why is cubic phase stable in thin-film experiments?

Hypothesis:

- Does there exists other unknown low-energy polymorph(s) of NbN with an average cubic symmetry?
- Can **off-stoichiometry** or **oxygen impurity doping** energetically stabilize rock-salt over WC lattice?
- Does in-plane strain due to lattice mis-match with the substrate stabilizes the cubic phase?

Cubic phase relaxes to lower energy monoclinic phase in DFT Calculations

Search for NbN polymorphs using unconstrained structure prediction

Performed using Kinetically limited minimization (KLM)¹

- Hybrid approach combines random sampling and basin hopping
- Well suited for metastable materials
- Application: nitrides², oxynitrides³
- Considered variable and constrained (c/a) cell shapes and sizes

Structures resulting from KLM sampling (N=4)

¹E. Arca et al., J. Am. Chem. Soc. 140, 4293 (**2018**)

²W. Sun et al., Nat. Mater. 18, 732 (**2019**)

³A. Sharan and S. Lany, J. Chem. Phys. 154, 23406 (**2021**)

Do we find new (low-energy) polymorphs of NbN from structure prediction?

Low energy (< 100 meV/atom) polymorphs from structure prediction

E- E_{GS} = 10.49 meV/atom

16.62 meV/atom

34.01 meV/atom

95.38 meV/atom

Low energy (< 100 meV/atom) polymorphs from structure prediction

Can off-stoichiometry or oxygen doping stabilize rock-salt over CW lattice?

Energy ordering does NOT change for low off-stoichiometric or O impurity doping levels

In-plane strain stabilizes the cubic NbN on sapphire (Al_2O_3) (001)

Monoclinic (C2/m, 12)

WC lattice (P-6m2, 187)

In-plane lattice constant (Å)

WC to monoclinic phase transition is predicted to occur ~3.17 Å

Concluding Remarks

- Rock-salt NbN is energetically unstable and relaxes to a lower energy monoclinic phase
- Low off-stoichiometry or oxygen doping do NOT change the energy ordering
- On sapphire Al₂O₃ (001), in-plane strain stabilizes the cubic NbN phase
- On MgO (001), other factors (energy barrier) could possibly trap the metastable monoclinic phase

Thank you!

www.nrel.gov

This work was funded by the Laboratory Directed Research and Development (LDRD) Program at NREL. The Alliance for Sustainable Energy, LLC, operates and manages NREL under contract DE-AC36-08GO28308. This work used High-Performance Computing resources at NREL, sponsored by DOE-EERE. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. government.

