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a b s t r a c t

This work describes the development of a community-scale energy model for a mixed-use low-income
community located inHuntington Beach, CA. An accurate community-scale energymodel is useful for eval-
uating the use of limited capital resources used to invest in clean energy technologies. This work lays out
the process of developing such amodel while relying primarily on publicly available data and highlighting
critical partnerships necessary formodel development success. The primary contribution of thiswork is the
demonstration of the process used to develop an accurate energy model for a disadvantaged community
whenminimal building and energy use data is available. The heart of the model is the physics-based com-
munity scale energy modeling platform URBANopt. Using a bottom-up load modeling approach, energy
simulated energy use falls within 3% or less of aggregate annual utility data, and within 10% or less aggre-
gatemonthly utility data. The demonstratedmodel development and tuning process can be used by others
to characterize other atypical communities, which may differ significantly from prototypical models.
� 2023 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The purpose of this paper is to describe the process used in
developing and tuning a community-scale energy model in prepa-
ration for evaluating the impact of clean building energy technolo-
gies and upgrades throughout a disadvantaged community.
Community-scale energy modeling (CSEM) is the process of devel-
oping energy models for multiple buildings and energy systems
located in the same community. This is also known as urban build-
ing energy modeling (UBEM) when considering an urban commu-
nity. The number of buildings captured in these modeling
approaches ranges from a single neighborhood with tens of build-
ings, to entire cities with hundreds of thousands of buildings [1]. A
key benefit of CSEM and UBEM is the ability to evaluate the wide-
spread energy, environmental, and economic performance of clean
building energy technologies prior to implementation. Since these
technologies tend to cost more [2] and have long lifespans [3,4], it
is critical to understand technology performance and interactions.
This is critical in low-income communities with limited and/or
highly constrained capital.

CSEM/UBEM applications have spanned the characterization of
energy use for entire cities [5,6],to the design and evaluation of
clean energy technologies and building-to-grid technologies across
a neighborhood [1]. Aside from characterizing city energy use,
CSEMs and UBEMs are typically based on physics-based building
energy models (BEM) [7], such as EnergyPlus [8], using paired with
standardized BEM templates (e.g., the U.S. Department of Energy
Prototype Building Models [9–11]). A general approach relies on
automated BEM assembly based on a reduced set of building data
(building geometry, vintage, end-use, etc.). [12,13].

The direct application of this approach results in BEM generation
for each building captured in a particular design area. For example,
the CityBES model described in [14] uses public building records to
develop EnergyPlus BEMs for all buildings within a geographical
area. This model is demonstrated and used to evaluate five energy
conservation measures across 940 office and retail buildings in
San Francisco. Another example focused on urban residential build-
ing design and placement is presented in [15]. A more data-
intensive approach is demonstrated in [16]. This approach relied
on custom building urban BEMs tuned using real interior tempera-
ture data to examine the effect of building design on interior com-
fort. Although this work does not follow a traditional automated
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1 This work is in service of a project examining the potential to convert a low-
income community into a microgrid to ensure reliable energy service during adverse
events.

Nomenclature

ACPF (AC) Alternating current power flow
ACS American Community Survey
BAHSP Building America House Simulation Protocols
BEM Building Energy Model
CBECS Commercial Building Energy Consumption Survey
CSEM Community Scale Energy Model
DEER Database of Energy Efficient Resources
DER Distributed energy resource
DHW Domestic hot water
DOE Department of Energy

EE Energy efficiency
EUI Energy use intensity
FFA Finished floor area
HVAC Heating, ventilation, and air conditioning
OS-HPXML (HPXML) Open Studio – Home Performance eXtensi-

ble Markup Language
RECS Residential Energy Consumption Survey
TDV Time Dependent Valuation
SDK Software Development Kit
UBEM Urban Building Energy Model
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BEM development workflow, this work captures efforts to examine
energy use and occupant comfort in a dense urban setting.

The efforts described above result in the production of BEM for
each building in a design area. Although this approach can main-
tain unique building details, computational effort increases with
each building. Statistical and machine learning methods have been
applied to reduce computational. One approach uses statistical and
machine learning methods to group buildings into ‘‘archetypal”
building clusters. After grouping, the ‘‘archetypal” BEMs are simu-
lated, and results are scaled to buildings within each cluster. This
workflow is described in detail by Reinhart et al., [12], and is
applied using EnergyPlus to simulate archetypal buildings in
[17–20], and by Fonseca et al., which uses a custom BEM approach
[21,22]. A different approach machine learning is presented by
Nutkiewicz et al. [23,24]. Detailed EnergyPlus models are used to
train a neural network. The neural network is then used in place
of BEMs to predict energy demand in other buildings.

Current UBEM development relies on detailed building energy
data and/or existing buildings matching prototypical BEM models.
In many instances, building energy data may be unavailable due to
privacy concerns, lack of civic energy disclosure requirements or
properties falling below disclosure threshold requirements (e.g.,
building floor area below reporting threshold), and/or difficulty
associated with soliciting building energy data directly from
tenants and property owners. Residential energy use surveys
report wide variance in how energy is used [3] and efforts to relate
usage to socioeconomic, climate, and building factors has proven
difficult [25–28], potentially resulting in large differences between
a real community and a model based solely on prototype BEMs.
This paper focuses on the situation where energy data is only avail-
able at the aggregate community level and current prototype BEMs
do not capture actual energy use in the community.

The current work adds to the existing literature by demonstrat-
ing a process for developing an accurate community scale energy
model for an atypical community when detailed energy data is
unavailable. This addition develops a roadmap for the develop-
ment of a community scale model by highlighting datasets, tools,
and partnerships that were key to accurate model development.
This contribution is accomplished through a case study of the
low-income Oak View community, located in Huntington Beach,
California. The community energy simulation tool URBANopt
[29,30] was used for CSEM development. The current effort is
focused on describing the model development process. Subsequent
work will analyze the application of clean energy and microgrid
across the community. This work also includes the demonstration
of a new single-family building energy model workflow designed
to simulate the stochastic nature of residential energy use [31],
and consideration of the local electric distribution circuits through
development of an AC power flow (ACPF) model.

The paper is organized as follows. Section 2 describes the design
area (the Oak View community). Section 3 describes the URBANopt
2

and ACPF modeling platforms used in our analysis. Section 4 devel-
ops the process for building and tuning the CSEM and ACPF simu-
lation. Section 5 evaluates the CSEM and ACPF simulation results.
Section 6 provides a discussion on the extensibility and scalability
of the CSEM approach, the accuracy of the model, and pathways
towards improving model accuracy.
2. The Oak View community

The Oak View Community is in Huntington Beach, Orange
County, California at 33.71oN, 117.995oW, or under 2010 U.S. Cen-
sus Tract 994.02 [32].. The community population is approximately
8,090 residents. Maps of the Oak View neighborhood are shown in
Fig. 1. The current work focuses on a subset of buildings in the
community, shown as the Oak View Microgrid Design Area in
Fig. 1b.1 The design area includes 286 residential and 31 commercial,
industrial, and educational buildings. The Oak View Community was
selected for this work because it qualifies as a disadvantaged com-
munity under the California State definition [33]. Factors that con-
tribute to the disadvantaged community designation are [34,35]:

� Household income is 36 % lower than county average
� Per capita income is 51 % lower than county average
� Home ownership rate (�25 %) is 56 % lower than county
average

� Less than 37 % of the population have attended some college or
education beyond high school, versus 64 % for Orange County

� The CalEnviroScreen 3.0 environmental burden is in the 83rd
percentile for California, driven by local toxic releases proximity
of residential buildings to a solid waste transfer and hazardous
waste facility seen in Fig. 1b, and the persistent heavy vehicle
traffic in the area

� The CalEnviroScreen 3.0 social burden is in the 62nd percentile,
driven by low education levels, high housing burden, linguistic
isolation, and high poverty rates

Fig. 1 provides additional detail on the location and building
types for all buildings.
3. Community-Scale modeling tools

3.1. Community-Scale energy model development

This section describes the URBANopt software [29,37], the
stochastic single-family detached BEM workflow (or the OpenStu-



Fig. 1. Aerial images and building cluster information for the Oak View neighborhood, and additional building details for the Oak View Microgrid design area. North runs top
to bottom in the image. Aerial images are from [36].
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dio Home performance XML - OS-HPXML [38]), and the typical
workflow used for all other buildings.

3.1.1. URBANopt software
URBANopt is a physics-based energy modeling platform for dis-

tricts and communities [29,30]. URBANopt is designed as a modu-
lar, open-source SDK, and is built on top of the U.S. Department of
Energy (DOE) open-source tools for simulating individual build-
ings: EnergyPlus, OpenStudio, and Spawn of EnergyPlus. URBANopt
includes capabilities and workflows that enable multi-building
analysis at a neighborhood, district, or campus scale (generally
10 s to 100 s of buildings), and connections to other tools and engi-
nes that allow for the analysis of shared energy systems, dis-
tributed energy resources (DER), and the electric distribution
systems, including interactions and impacts with building effi-
ciency and demand flexibility strategies [39].

URBANopt helps manage geospatial information for modeling a
community and automates the creation of detailed physics-based
models for baseline scenarios (e.g., existing conditions) and
advanced performance scenarios (e.g., retrofit upgrades). URBA-
Nopt manages and automates data exchange with other tools or
engines, manages simulations, and aggregates/post-processes
results for evaluation and comparison of scenarios. In total, the
Oak View community-scale model is captured in one GeoJSON file
that describes building geometry, energy systems, and building
end use, one CSV file used to tune and implement different scenar-
ios, and a separate CSV file linking building models to scenarios.
While URBANopt workflows for generating commercial building
models have been described elsewhere [29,40], this paper
describes in detail newer URBANopt workflows for generating
models of low-rise single-family detached residential buildings,
which were used in the Oak View energy model, and the general
workflow used for all other building types.

3.1.2. Single-family detached OS-HPXML building models
Models for residential buildings were created using the OS-

HPXML workflow. The general workflow is depicted in the flow
3

chart shown in Fig. 2. This flow chart depicts the process of assem-
bling URBANopt input files combined with BEM assumptions to
generate descriptions of individual dwelling units that are merged
to form a single BEM. One major difference between the OS-
HPXML and other OpenStudio workflows is the direct manipula-
tion of residential building energy systems, including common
appliances, residential space conditioning, and hot water systems.
In general, the workflow operates using Home Performance XML
(HPXML) building description files and consists of applying several
OpenStudio measures that build residential EnergyPlus models.
Each EnergyPlus model represents an individual residential dwell-
ing unit: a single-family detached building, or a single unit of a
single-family attached or low-rise multifamily building. In this
case, only single-family detached buildings were modeled using
the OS-HPXML workflow.

URBANopt uses the following OpenStudio measures of the OS-
HPXML workflow:

� BuildResidentialHPXML: this measure builds an HPXML file
based upon a set of building description inputs. Feature infor-
mation contained in the URBANopt GeoJSON file, along with
default assumptions contained in both lookup files and ANSI/
RESNET/ICC 301–2019 [41], are used to populate its arguments.

� HPXMLtoOpenStudio: this measure translates the HPXML file to
an OpenStudio model.

These measures are called sequentially by the BuildResiden-
tialModel measure, developed for URBANopt, for each dwelling
unit in a single-family detached/attached (e.g., see Fig. 3 ) and
low-rise multifamily building feature contained in the URBANopt
GeoJSON file. Individual OpenStudio models corresponding to mul-
tiple dwelling units of a building are merged into a single OpenS-
tudio model. For more information on how single-family
detached, single-family attached, and low-rise multifamily build-
ings can be modeled using the single unit -based approach, see
the Residential Workflows [42] section in the URBANopt SDK
Documentation.



Fig. 2. Flowchart depicting the process of converting URBANopt GeoJSON files into a complete BEM. Each individual HPXML file describes single dwelling units, which are
then assembled to form a BEM. For the current work, only single-family detached buildings are modeled using this workflow.

Fig. 3. 3D rendering of example residential single-family detached building energy
model. Image is taken from [43].
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A separate GeoJSON schema was developed specifically for
building types supported by the OS-HPXML workflow. The schema
makes certain high-level inputs available for easy adjustment by
URBANopt users, while other inputs can be adjusted using lookup
files (as noted above). Current high-level inputs consist of required
fields such as floor area, number of stories, and foundation type, as
well as optional fields such as heating ventilation and air condi-
tioning (HVAC) system type and presence of an attached garage.
Additionally, occupant-related schedules can either be defaulted
according to the 2010 Building America House Simulation Proto-
cols (BAHSP) [44], or stochastically generated using time-
inhomogeneous Markov chains derived from American Time Use
Survey data [31]. Schedules are currently defaulted to be stochas-
tically generated but can be modified using the BuildResiden-
tialModel measure.

3.1.3. DEER building models
The origin and history of Database of Energy Efficient Resources

(DEER) building energy models are described within the context of
matching BEM templates to real buildings in Section 4.1. In gen-
eral, DEER BEMs and associated workflows are like existing U.S.
DOE Prototype Energy Models. However, construction sets are
based on California building construction requirements.

3.1.4. URBANopt model parameters
Prior work has shown that EnergyPlus models contain more

than 3,000 tunable parameters, 150 of which have a measurable
impact on BEM accuracy [45]. Due to the scale of the current pro-
ject and limited building information, a major goal of the model
was to reduce model inputs to match with public data and infor-
mation collected from local governments while maintaining model
accuracy. Additionally, it was important to allow for the tuning of
individual BEMs to enable the ground-up load construction
approach described in Section 4.
4

In total, the current approach uses 14 BEM inputs, including
building geometry, end use, vintage, space conditioning and
DHW system definitions, thermostat settings, and energy load sca-
lars (e.g., parameters to increase or decrease end use loads like
lighting, plug loads, DHW, etc.). BEMs developed using the OS-
HPXML included additional energy load scalars associated with
individual large appliances and loads.

3.2. Energy infrastructure model development

Energy infrastructure models only capture systems operating
inside the design area highlighted in Fig. 1. Energy surveys and
community interviews showed that nearly all energy delivered to
the community was either electricity or natural gas. The purpose
of an energy infrastructure model in this work is to understand
how local energy infrastructure will react to the introduction of
clean building energy technologies. Since many of these measures
will reduce natural gas, a model of the gas distribution system is
not necessary. DER and electrification measures, however, could
lead to phase imbalances, voltage deviations, and over-ampacity
issues across the electric distribution system. As a result, the elec-
trical distribution system is the primary focus of energy infrastruc-
ture model development.

The electric distribution model was developed using the alter-
nating current (AC) power flow simulator OpenDSS [46]. The
OpenDSS tool can fully resolve a three-phase distribution system,
including both cables and transformers. There are ongoing efforts
to incorporate an OpenDSS module into the URBANopt SDK [47].
These efforts will allow for direct integration between the commu-
nity scale energy and electrical infrastructure models.

A description of how the OpenDSS circuit model was developed
is presented in Section 4.5. Two important factors relevant to
model development are system voltage and ampacity constraints.
For voltage, the National Electrical Code requires voltage to be
within ±5 % of nominal voltages [48,49]. For ampacity, current
through electrical components (e.g., cables and transformers) can
be limited by joule heating [50]. Both anecdotal evidence and doc-
umented system performance metrics indicate that the current
electrical distribution systems operates both consistently and reli-
ably [51]. As a result, initial model development is focused on siz-
ing components to replicate stable operation within the ACPF
model.

4. Community-scale energy model development

This section describes the process used to develop Oak View
CSEMwith an emphasis on critical datasets and resources. The goal
of model development is to produce an accurate and physics-based
representation of how energy is used in the community. The first



Fig. 4. Annual electric and natural gas demand in the residential sector highlighted in the Oak View Microgrid design area (2015 and 2020 gas usage data was not provided).
Average electricity and natural gas use across all residential buildings is 3540 MWh and 33,780 MMBtu per year, respectively.
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critical dataset is actual utility usage data for the community. Local
electrical and natural gas utilities provided aggregated energy use
data for all residential customers in the Oak View design area. The
annual residential usage is shown in Fig. 4 (2015 and 2020 gas
usage data was not provided). This data shows that, on average,
the residential customers in Oak View use 3540 MWh of electricity
and 33,870 MMBtu of natural gas per year. Aggregate commercial
and industrial usage data was not available due to privacy
concerns.

The general process for assembling the community-scale
energy model consisted of six steps. First, building geometry,
construction sets, and energy systems were defined in a GeoJSON
format and used as inputs to the URBANopt modeling platform.2

Second, building energy systems were defined using OpenStudio
measures. Examples include HVAC and water heating system types
and efficiencies. Third, baseline predictions for building energy end
uses were developed using a combination of building energy surveys
and accepted modeling guides [3,4,52,53]. Fourth, individual BEM
end use energy loads were adjusted to match baseline energy predic-
tions developed in step 3. Fifth, aggregated BEM energy loads were
compared against both the utility data shown in Fig. 4, and energy
use survey data [3,4,53]. Major sources of error were identified,
resulting in the final adjustment to the community-scale model. This
workflow is presented graphically in Fig. 5, which also indicates data
sources and inputs. Finally, energy simulation results were then fed
into an ACPF model and electrical distribution component sizes were
adjusted to accommodate voltage and ampacity requirements.

The different types of data used to develop the tuned
community-scale energy model presented in this work can be bro-
ken down into four categories:

1) Building structure: The geometry and materials used to
construct the opaque building envelope, fenestration, and
interior walls and features.

2) Building energy systems: The performance characteristics
of end use energy systems, such as HVAC, domestic hot
water (DHW), appliance, lighting, and all other devices/sys-
tems/appliances powered by electricity or natural gas.3
2 Direct use of the community scale model after developing building geometry,
construction sets, and energy systems produced annual electricity and gas use
estimates 100% higher and 60% lower than actual usage. This result showed the lack
of fit between the prototype BEM workflows and actual Oak View energy use.

3 Building energy system technical performance is not necessary to predict energy
use in a community. This information, however, is necessary to predict the impact of
energy efficiency measures, including higher efficiency energy systems.
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3) Disaggregated building energy use: Patterns that define
how and when energy is used in a building.

4) ACPF tuning: Sizing and adjustment of electrical distribu-
tion system components to enable safe and reliable
operation

All data sources used in this work are publicly available or can
be acquired through partnerships with local governments and
agencies (e.g., public record information and/or anonymous utility
data).
4.1. Building structure

State and Federal agencies have both developed building ‘‘pro-
totypes” used in BEM designed to emulate typical buildings
[9,54–56]. One set specific to California is the DEER Database
[57]. These California building prototypes were originally devel-
oped to support of cost-benefit analysis of ex ante energy efficiency
(EE) (or incentives used to reduce initial EE investment costs) [58].
This analysis originally used the DOE-2.1 building energy simula-
tion platform, but has been converted for use with OpenStudio
[59–61]. Specific DEER construction sets differ between building
type, vintage, and relevant California building energy code Title
24 [62]. This work assumes that the Oak View is accurately cap-
tured using the DEER prototypes. Building vintage was based on
tax lot data provided by the City of Huntington Beach coupled with
site visits and occupant interviews.

Building geometries were developed using aerial images [63,64]
and site visits. Geometries were described in a GeoJSON format
[65]. Building stories were determined using aerial images and site
visits. During geometry development, two assumptions were made
for mixed-use and building with asymmetric floor areas across dif-
ferent stories. First, the current residential multifamily building
workflow did not account for mixed use buildings (e.g., a residen-
tial building with an enclosed garage). In these instances, enclosed
garage areas were removed from the building geometry to avoid
exaggerating building thermal loads. For buildings with asymmet-
ric floor area by story, these buildings were either modeled as a
single-family building when the second floor consisted of a single
residential unit over a garage area (e.g., residences along Oak and
Emerald Lanes), or the building was modeled as having symmetric
floor areas (e.g., residences along Fir Drive and Oak Lane also).
Building geometries, DEER BEM templates, and building stores
used to model the Oak View community are shown in Fig. 6.

The DEER prototypes also include occupancy and energy inten-
sity assumptions for various types of buildings. These assumptions



Fig. 5. Summary of model development and tuning process, including data sources used to develop simulation result targets. Aside from the anonymized, aggregated
residential load data, community scale and individual BEMs are tuned using a combination of energy survey data, BEM standards (i.e., Building America), and building
construction assumptions.

Fig. 6. Building geometries, DEER BEM templates, and building stories for all buildings included in the Oak View Microgrid design area.
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were found to be inaccurate at the individual building and commu-
nity scale when compared to energy survey data [3,4,53], energy
prediction models [52], and real utility data. As a result, BEMs were
tuned to improve community level accuracy. The tuning process
used ‘‘Building America” load predictions and energy use surveys.
These load predictions required four inputs: number of residential
units per residential building. finished floor area (FFA), garage area,
number of bedrooms, and:
6

� The number of residential units per multifamily building was
determined using tax lot and address data provided by the City
of Huntington Beach.

� FFA values were extracted from the GeoJSON geometry. Garage
area was estimated by counting all enclosed parking spots
across the community, followed by assuming that each spot
has an area of 20 feet by 10 feet. Garage area was then backed
out of FFA. When possible, FFA was compared against public
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records, i.e., Redfin [66]. The average residential unit in Oak
View has a FFA of 1,240 ft2.

� The number of bedrooms was based on public records (i.e., Red-
fin). When unavailable, number of bedrooms were estimated
using housing statistics from the American Community Survey
[35]. This data source estimates, on average, two bedrooms
per residential unit.

4.2. Building energy systems

Building energy systems address the properties of space condi-
tioning and domestic hot water (DHW) systems.

4.2.1. Building energy systems used in Oak View
Building energy system information was collected through site

visits and owner/tenant interviews tenants. Commercial and
industrial building system information was gathered through con-
tact with property owners and tenants. These interactions also pro-
vided details on existing plug and process loads. However, due to a
combination of factors,4 developing accurate commercial and indus-
trial BEMs proved to be difficult. In place, prototypical commercial
building DEER BEM templates were used.

Due to the large number of residential buildings in Oak View,
less than 20 % of all residential units were visited. These visits
revealed that most residential buildings are equipped with all
gas appliances. Most buildings lack central air conditioning sys-
tems, use wall mounted gas heaters, and have conventional gas
tank water heaters. Discussions with property owners, community
leaders, examination of utility data, and appliance adoption sur-
veys [53] led to the assumption that nearly all residential buildings
mirror the subset of residential units. Each residential unit is also
modeled as having a single refrigerator, microwave, two televi-
sions, a dishwasher, and other miscellaneous plug loads. Site visits
also showed that most residential buildings have shared laundry
facilities.

Two exceptions to these assumptions were a set of buildings
that were determined to be fully electrified, and a separate set of
buildings that have central air conditioning systems. The set of
electrified buildings consists of five apartment buildings with
11 % of all residential units in the community. These buildings all
have electric appliances and electric resistive space and tank water
heating systems.

Buildings with central air conditioners were easily spotted
through the presence of condenser coils outside six residential
buildings. It was assumed that these buildings have a central air
conditioner and furnace to provide space cooling and heating to
the building. Free standing and window mounted single room air
conditioning units were observed throughout the community.
However, these units were excluded from the current model
because an accurate count of total units was unavailable. HVAC
systems at each building in the design area are shown in Fig. 7.

4.2.2. Building energy system performance characteristics
The building energy systems modeled include HVAC, DHW,

lighting, gas and electric appliances, and all other plug loads. HVAC
and DHW system properties were explicitly modeled in OpenStu-
dio. Component properties were based on DEER standards and
the relevant Title 24 building efficiency standards. These assump-
tions are listed in the Appendix:

Appliance, plug load, and process load system characteristics
are not explicitly captured in the current DEER modeling workflow.
As discussed in the prior section, commercial and industrial plug
4 Issues and challenges included privacy concerns, limited operational detail, or
major changes in equipment and building usage over the course of this work due to
external economic and business factors.
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and process loads were difficult to capture and present in this
work. In this case, it was assumed that these loads could be cap-
tured using the plug and process load definitions present in the
DEER standard, combined with load tuning based on commercial
building energy survey results discussed in detail in Section 4.4.

Technical performance characteristics were required, however,
to define disaggregated residential energy end uses. In this
instance, performance parameters described in [52] were adopted
for the current work. This reference contains a series of equations
that convert technical characteristics and building characteristics
into annual disaggregated energy end use. Relevant appliance per-
formance characteristics adopted for the current work are as
follows:

� CFL lighting is assumed to be ubiquitous and operates at 55 lm
per watt

� Gas and electric cooktops are assumed to be 74 % and 40 % effi-
cient, respectively

� Gas and electric ovens are assumed to be 11 % and 5.8 % effi-
cient, respectively

� Electric and gas clothes dryers are assumed to process 2.95- and
2.4-pounds damp laundry per kWh energy input, respectively

4.3. Disaggregated building energy use and baseline load development

The method for baseline load development depended on build-
ing type. Commercial and industrial buildings were tuned using fil-
tered results from the DOE Commercial Building Energy
Consumption Survey (CBECS) data set [4]. Additional tuning efforts
were limited due to wide variation in energy use across nonresi-
dential buildings with similar use, and dynamics of business cycles
observed within the Oak View community. Details on how the
CBECS data was filtered and the resulting end-use load targets
are described in the Appendix .

Conversely, there are more high-quality residential energy data
sources and end-use load predictions. The NREL Building America
Simulation Protocols [52] were used to develop initial load predic-
tions. These equations were exercised using the building parame-
ters described in Section 4.1. Beyond FFA and number of
bedrooms, residential unit occupants were based on U.S. Census
Bureau American Community Survey (ACS) estimate [67] of
approximately-four people per unit.
4.4. Baseline tuning

The data sets described in Sections 4.1 and 4.2 were converted
to a GeoJSON format used by URBANopt. OpenStudio electric plug
load and gas appliance measures were applied to tune URBANopt
simulation results to match with the baseline load described in
Section 4.3. Tuning occurred in two steps. First, HVAC loads were
tuned to match energy survey data [3,4] through adjustment of
model thermostat values. TMY3 weather data files for the Long
Beach Airport, located in Long Beach, CA [68] were used in this
work.

After thermostat tuning, the complete community scale energy
model was benchmarked against measured utility data shown in
Fig. 4. Since commercial and industrial building utility data was
not available, nonresidential building tuning was resolved once
BEM matched DOE CBECS data. Residential energy use buildings
were benchmarked against the average annual utility demand data
shown in Fig. 4.After tuning residential BEMs to the NREL Building
America calculations, residential electricity end use was projected
to be 5442 MWh per year (54 % higher than actual usage of 3540
MWh per year). The following adjustments were made based upon
an energy audit and the site visits:



Fig. 7. Building HVAC systems captured in the Oak View community energy use model.
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� During site visits, it was observed that numerous tenants do not
use all available lighting fixtures. For example, a multi-bulb fix-
ture with a single light bulb. This behavior was not consistently
observed across different residential units. Regardless, total
interior lighting was reduced by 20 % in each building to
account for lower than predicted lighting intensity. This
reduced annual electricity uses by 118 MWh per year.

� It was also observed that the appliances and devices typically
captured in miscellaneous loads are not present in the Oak View
community. For example, HVAC fan systems, high end audio/vi-
sual equipment, multiple desktop computers, and other office
equipment were typically not present in most residences. These
plug loads are captured under ‘‘miscellaneous plug load equip-
ment.” As a result, the miscellaneous plug load equipment
Equation (5) shown in the Appendix was modified. First, the
constant coefficient of 1595 kWh per year was removed. Sec-
ond, the remaining coefficients were reduced by 15 %. In total,
these modifications reduced community wide demand by
1904 MWh per year. These adjustments are justified given that
prior energy survey analyses have shown that energy use can be
lower than average in low-income areas [53].

The combination of lighting and miscellaneous plug load mod-
ifications reduced the difference between the projected and actual
average electrical load from 54 % to 3.2 %.

Natural gas use across all residential buildings was projected to
be 244,632 therms per year, 28 % lower than the actual average
gas use of 337,860 therms per year shown in Fig. 4. Comparing the
NREL Building America natural gas loads to DOE RECS data shows
that a potential source of error is due to underestimated DHW
8

energy use. The DOE RECS data set suggests that annual gas use for
DHWwould be 230 therms per year for an average Oak Viewmulti-
family residential unit, or 50 % higher than what is predicted using
the Building America calculations. Although theDOERECS data does
not provide sufficient data to determine if this gap is due to system
performance or underestimatedwater use, theNRELBuildingAmer-
icamodel canbemanipulated to generate better insight into reasons
for error. For example, holding demand constant, DHW uniform
energy factor must be reduced from 60 % to 36 % to reduce this dif-
ference. Holding system efficiency constant at 60 %, hot water
demand must be increased by 60 % to eliminate the difference. The
most likely explanation for the difference between the projected
and actual gas use is a combination of poorly performing DHW sys-
tems and underestimated DHW demand. However, it is more likely
thatunderestimateddemandcreatesmost of this difference is due to
higher than reported occupancy or other unobserved factors. As a
result, DHW demand was increased by 60 %. This adjustment
increases total residential gas demand to 329,714 therms per year,
or 2.4 % lower than actual average annual demand. DHW demand
adjustments were also applied to buildings with electric resistive
tank water heaters, slightly increasing total electrical demand to
3,526 MWh per year, or within 0.32 % of actual demand.

4.5. Oak View Microgrid electric power flow model

The AC power flow model development occurred in three steps.
First, distribution system circuit maps were used to develop a
rough outline of powerline locations throughout the Oak View
community [48,49,69]. These resources were cross-references with
aerial imagery.
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Second, site walks were performed to clear up inconsistencies
in circuit diagrams, determine transformer locations and capaci-
ties, to link buildings to specific transformers, and to assign single
phase distribution lines to specific phases in a three-phase circuit
originating from the local electrical substation. In instances where
cable and electrical equipment were located underground, or
where above-ground transformers lacked kVA ratings, cable and
transformer ratings were estimated based on number of connected
residential units. Cable gauge could not be measured due to safety
concerns.

Third, an initial OpenDSS model was developed using the infor-
mation captured from circuit maps and site walks. This model was
exercised using the electrical demand results from the Oak View
URBANopt model. During model construction, cable gauges were
tuned to avoid over-ampacity issues. Cable ampacity ratings for
copper wire were used but could be easily converted to the equiv-
alent aluminumwire gauge. In instances where transformer power
limits were exceeded, building – transformer connections were
first examined to ensure correct linkages. If overloads continued
to occur, transformer ratings were increased to the proper kVA rat-
ing. In eight instances, a pole mounted transformer with a known
kVA rating was found to be undersized for the load produced from
the community-scale energy simulation. After verifying building to
transformer connections, eight transformer ratings were increased
to appropriate levels regardless of the labeling, with kVA rating
increases ranging between 10 % and 100 %. These adjustments
were justified due to the relatively high reliability metrics reported
for the circuits that provide service to the community – Smeltzer
and Standard [51].

The result of this model development process is shown in Fig. 8.
Fig. 8 shows the layout of the above and underground electrical
service, highlights where single and three phase circuit paths,
and the location of pole and pad mounted transformers.
Fig. 8. Circuit map developed to capture the electric distribution system used to provide
powered by the Ocean View substation (not pictured but located to the east of the comm
fed by Standard and Smeltzer combine for approximately 1,100 total customers.

9

4.6. Microgrid simulation results analysis

Analysis of the community scale energy simulation presented in
Section 5 is provided to establish the accuracy and dynamics of the
model. Critical information, such as predicted utility bills, will be
addressed in subsequent work. The current work is focused on
energy use for the baseline model. Aside from electrical energy
and natural gas usage data, the time dependent valuation (TDV)
of energy use in California [70] is applied to the Oak View model.
The TDV metric was developed to understand how the value of
electricity, natural gas, and other energy sources and emissions
from these sources change throughout the year on an hourly basis.
A component of this metric includes primary energy use for the
different energy sources, or the quantity of fossil resources
required for the delivery of utility electricity and natural gas. The
primary energy TDV value of natural gas is constant throughout
the year at 1.0166 kBtu per 1.0 kBtu natural gas used onsite (the
TDV value of natural gas is higher than the delivered energy due
to transmission and distribution losses). The TDV value of electric-
ity varies depending on time of day and across seasons. This metric
is summarized for the quarters of the year in Fig. 9. This figure
shows the average hourly TDV primary energy required to deliver
1.0 kWh of electricity. TDV energy trends with solar potential –
TDV energy is lowest during daytime, and the spring quarter has
the lowest overall TDV energy value due to the high levels of
renewable electricity production.

5. Community scale model simulation results

Results from the community scale energy model are presented
in three sections. The first section evaluates simulation accuracy
and compares simulation results to CBECS and RECS energy use
intensities (EUI). Additionally, the residential portion of the URBA-
electricity to the Oak View community. Both the Standard and Smeltzer circuit are
unity) and power approximately 3,000 utility customers each. Oak View customers



Table 1
Modeled annual electric energy use intensity for all major building groups captured in the Oak View community scale energy model. EUI values are provided for every major end
use in all buildings and are presented as total electricity use divided by building floorspace. Values are omitted when a building type lacks the specific electrical load (e.g., electric
heating, which only exists in a handful of educational and residential buildings).

EUI (kWh/ft2/year) Education Service Office Commercial & Manufacturing Waste Transfer Residential

Electric Cooling 2.43 – 2.14 1.31 – 0.03
Electric Heating 0.12 – – – – 0.02
Interior Lighting 1.20 2.70 1.90 2.70 2.70 0.35
Exterior Lighting 0.08 0.08 0.08 0.08 0.08 0.08
Electric Plug Loads 4.44 3.46 4.86 3.46 3.46 1.56
Fans 0.38 0.01 0.24 0.11 0.00 0.02
Pumps 0.21 0.00 0.44 0.25 0.00 0.00
Electric DHW 0.62 – – – – 0.40
Total Electric 9.48 6.25 9.66 7.91 6.25 2.45

Table 2
Modeled annual natural gas energy use intensity for all major building groups captured in the Oak View community scale energy model. EUI values are provided for every major
end use in all buildings and are presented as total energy use divided by building floorspace.

EUI Education Service Office Commercial & Manufacturing Waste Transfer Residential

Gas Heating (kBtu/ft2) 0.34 1.36 0.55 0.52 0.74 3.14
Gas DHW (kBtu/ft2) 7.48 5.43 5.46 2.10 0.00 15.61
Gas Equipment (kBtu/ft2) 0.33 0.00 0.00 0.00 0.00 4.02
Total Gas (kBtu/ft2) 8.15 6.80 6.01 2.62 0.74 22.77

Fig. 9. Average primary energy intensity for grid electricity in California, according to the TDV of energy [70]. Results are presented based on quarterly average across the
calendar year. The lowest energy intensity occurs during Q2, or from April to June, and the highest occurs during Q1 and Q4, or October through March. These results are
related to renewable resource availability.
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Nopt model is aggregated and compared against the actual energy
use data shown in Fig. 4. The second section explores the energy
used dynamics produced by the simulation. The third section
shows the results of the ACPF simulation.

5.1. Simulation accuracy

Simulated annual, cumulative EUI’s for all major building are
provided in Table 1 and Table 2. Electricity EUIs are shown in
Table 1 and are separated by end-use categories. Natural gas EUIs
are shown in Table 2, also broken down by end-use. As expected,
tuned end-use EUIs match targets derived from CBECS, RECS, and
Building America Sources. However, these results also show that
the simulated cooling demands in office and educational buildings
are higher than CBECs results (1.0 and 1.4 kWh/ft2/year for office
and educational respectively). These differences are likely due to
1) the existence of a cooling thermostat schedule throughout the
entire year,5 and 2) a lack of natural ventilation options in the cur-
5 Cooling thermostat settings were 74�F during normal business hours, and 82�F
during all other hours. Heating thermostat settings were 70�F during normal business
hours, and 64�F during all other hours.

10
rent BEMs. These two factors result in BEM cooling system operation
in winter and spring months, outdoor air is available at or below
thermostat settings. Tracking cooling in non-summer months (sum-
mer is defined as June through September) shows that cooling EUI’s
could be reduced by approximately 1 kWh/ft2/year through natural
ventilation.

On an annual basis, the current residential sector in URBANopt
matches utility electric and gas data within 3.2 % and 0.32 %
respectively. Although anonymous, the utility data is provided by
billing period. Billing periods for all gas data lined up with calendar
months, allowing for direct comparison of real and simulated data.
Electric data does not perfectly line up and require filtering to esti-
mate monthly energy use. Real monthly data is presented versus
simulated data in Fig. 10.

These results show general agreement between both electrical
and natural gas demand. Modeled monthly electrical use is within
10 % of filtered electrical data except for February and January (ap-
proximately an 18 % difference). This larger error could be due
incorrect data due to billing period matching issues, unmodeled
changes in building energy use patterns, the use of standalone
air conditioning equipment not captured in the current model or
a combination of all factors.



Fig. 10. A comparison of actual monthly residential utility electricity and natural gas use versus simulated use. The actual energy use was provided by local utilities.
Electricity results are shown in the top figure, natural gas results are shown in the bottom. Simulated monthly energy use is captured in the plot as ‘‘UO Simulation,” or
URBANopt simulation. Results show good agreement between simulated and actual energy use in the community.
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Simulated natural gas use generally tracks actual gas use data
throughout the year. Simulated gas use is higher than actual
December use and lower than actual spring and summer months.
These errors may be due to overestimated space heating paired
with underestimated DHW and gas appliance use.

5.2. Simulation characteristics and dynamics

The prior section presented simulated sector wide EUI results
and monthly residential sector energy results within the modeled
subset of the Oak View community. Additional simulation details
on a community and individual building basis are presented in
Fig. 11. This figure shows the modeled community-wide energy
use per month broken down by building end-use. Corresponding
maps show individual BEM EUI. Results are presented for electric-
ity, natural gas, and TDV energy. TDV energy combines both elec-
tricity and natural gas on a primary energy basis. Predicted total
annual energy use across the entire community is 10.35 GWh elec-
tricity, 35,523 MMBtu natural gas, and 56,341 MMBtu TDV energy.

Commercial and industrial buildings account for 66 % of elec-
tricity use in the model. Simulation results show that monthly
electricity use peaks in summer months, driven in part by
increased cooling loads in educational and aerospace manufactur-
ing buildings. Peak use, however, is only slightly above average
monthly electric energy use due to a lack of cooling across the res-
idential sector. Examining building electricity EUI results further
reinforces the difference in electrical use intensity between resi-
dential and nonresidential sectors. However, the highest electric
EUI occurs in the fully electrified residential buildings located in
the middle east section of community. These high electric EUI
11
results are due to the use of electric resistive systems used for
DHW and space heating.

Nearly 93 % of natural gas use is predicted to occur within res-
idential buildings. Gas use in nonresidential buildings is due to a
combination of mild winter temperatures, no modeled industrial
process loads, and minimal DHW loads. Within each building type,
gas use EUI is always higher for 1) single story buildings, and 2)
buildings with higher surface to volume ratios (e.g., long thin
buildings in the northwest corner). Both results are due to building
geometry affecting heat transfer and building energy capacitance.

Electricity and gas results are combined on a primary energy
use basis in the TDV energy use plots at the bottom of Fig. 11.
On a delivered energy basis, electricity is delivered to the commu-
nity in nearly equal quantities as natural gas. However, according
to TDV energy results, natural gas energy accounts for 64 % of com-
munity energy use, or nearly a 2–1 gas to electricity ratio. Com-
bined residential electricity and gas use accounts for 75.5 % of all
primary energy use in the community.

In addition to understanding how energy is used in this com-
munity, it is also important to understand the dynamics of energy
use for a complete analysis of clean energy technologies and
impacts on local electric distribution systems. An example week
of building hourly electric and natural gas demand dynamics in
January are shown in Fig. 12. Figure subgroup a) show the results
from a single-family building simulated using the OS-HPXML
workflow. All other buildings captured in this figure were simu-
lated using the DEER workflow. Dynamics are shown for both sum-
mer and winter months to highlight operational differences in
space conditioning systems. Other commercial and industrial
buildings are not shown because load shapes for other nonresiden-



Fig. 11. Modeled community scale energy use broken down by month and building type. Corresponding maps show the modeled annual EUI for each building type, showing
where and how energy is being used in the community. Results are presented for total electricity use, natural gas use, and TDV energy use.
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tial building types resemble aerospace manufacturing minus the
cooling load.

In general, these load shapes follow expected hourly profiles,
with nonresidential building energy loads peaking during normal
business hours. Nonresidential space heating peaks in the morning
when thermostat settings change to warm buildings for business
operating hours. Cooling loads peak in the early afternoon. Resi-
dential electrical loads peak in the early evening while gas loads
have dual peaks in the morning and early evening.

One obvious difference between the single- and multifamily
load profiles is the repetition of daily load shape for the multifam-
ily BEM. Due to differences in BEM modeling (i.e., stochastic occu-
pancy modeling for single family), single-family load shapes are
not regularly repeated during the simulation. This attribute is fur-
ther explored in Fig. 13, which shows the range of load profiles
generated across all single-family buildings captured in the com-
munity energy model. This figure shows the average load for these
12
buildings, the 25 % and 75 % percentile load shape envelope, and
the maximum sand minimum load at each time step.

Additional residential sector results are shown in Fig. 14. This
figure shows energy end-use across electricity and natural gas.
Gas space heating, which is not shown, uses 4,602 MMBtu per year
per residence. A breakdown of all other building types is provided
in the appendix.

5.3. Electrical distribution system

The predicted electrical demand for each BEM was aggregated
at the transformer level. These loads were then fed into the ACPF
simulation described in Section 4.5. Results from the simulation
were used to ensure that voltage and ampacity constraints were
respected. Two boxplots depicting per unit secondary voltage (or
at the delivery voltage) and cable ampacity are shown in Fig. 15.
The x-axis of the figure indicates the start of branch circuits shown



Fig. 12. Examples of DEER standard BEM electric and natural gas use dynamics for different building types for a week in January. Buildings include a) single family, b)
multifamily, c) elementary, and d) aerospace manufacturing. The aerospace manufacturing load dynamics are representative of other commercial and industrial buildings.
Plots show operation during a winter week, showing space heating operation in all building types. Results also show space cooling operation to offset internal heat gains.
Although this operation is a product of model limitations described in Section 5.1, cooling system dynamics are like summer operation. X-axis ticks are located at 12 pm noon
each day.

Fig. 13. The range of electricity and natural gas loads captured in the single-family
BEM workflow during a winter week. The figure shows the average load across all
single-family buildings, the range of loads captured between the 25th and 75th
percentile during each time step, and the complete range single-family simulation
results.
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in Fig. 8. Smeltzer circuit branch circuits are labeled as ‘SR1’, ‘SR2’,
‘SR3’, ‘SR4’, ‘SR5’, and ‘SR6’. The lone Standard branch circuit is
labeled as ‘SD1’. Transformers and cables for each branch are
shown in order of proximity to the start of each branch circuit.
Annual secondary voltage and cable ampacity simulation results
for all circuit branches and nodes are shown using boxplots. The
middle red line in each box plot indicates the median annual value.
The 25th and 75th percentile values are shown as the bottom and
top of each box, respectively. All regular data falls within the whis-
kers and extreme data points as red ‘+’ markers..

The top subplot in Fig. 15 shows that per unit secondary voltage
distribution for all active nodes always within acceptable limits,
ranging between 0.998 and 0.983 p.u. respectively. The bottom
subplot in Fig. 15 shows the line-to-line ampacity for all active
branch circuits. Assuming copper conductors, all residential cir-
cuits can safely use 6-gauge. The commercial and industrial circuit
(‘‘SR6”), however, requires 1-gauge cable at the start of the circuit,
followed by 2-gauge and 6-gauge cable sizes along the remainder
of the length of the circuit. Only 6 % of total SR6 cable length is
comprised of 1-gauge cable.

6. Discussion

The goal of this work is to demonstrate a replicable and scalable
method for simulating energy use across an atypical community



Fig. 14. Pie charts showing end use breakdowns for annual energy use in the
residential sector. Results are shown for electric and natural gas use. Since DHW
loads have a large impact on community wide energy use, natural gas results are
split between gas appliances and DHW use. Gas space heating, which is not pictured
here, uses 4,602 MMBtu per year across all residential buildings.
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with minimal private data input. Four factors that require discus-
sion are the extent to which private data can be avoided altogether,
the accuracy of the building and community scale energy models,
model extensibility and scalability, and the potential value of
including an ACPF model. Two other outcomes from this work
were 1) the mismatch between prototype energy models and
annual energy use in the low-income Oak View community, and
2) the difference in TDV energy use between residential and com-
mercial/industrial buildings. This highlights the care and effort that
must be made to accurately model energy use in neighborhoods
with different socioeconomic characteristics compared to the gen-
eral population. Additionally, this highlights the need to focus on
residential buildings to address building energy and climate goals.

6.1. Data availability

Aside from tax lot and anonymous residential utility data, all
other data sources used in this work are publicly available or can
be generated through site visits involving minimal resident inter-
14
action. Tax lot and utility data were critical to model development
and were made available through a partnership between research-
ers and the City of Huntington Beach. Additionally, knowledge
gained through energy audits of approximately 10 % of all Oak
View residential units was necessary for critical internal evaluation
of model outputs. These audits were made possible through our
partnership with the City, which had immediate contact and atten-
tion from Oak View property owners.

Local governments are moving to create new datasets that are
useful in the developing of community-scale energy models. Exam-
ples include energy disclosure requirements and data sharing,
searchable and downloadable tax lot information databases, build-
ing geometry files, and other data products. Based on our project
experience, initial development of any community-scale energy
model should include consultation with local governments at the
city and county level to reduce model development time and to
speed up and improve any necessary interactions with community
residents. The key tools, data, and initiatives used in this work
include 1) the collection anonymous utility data, 2) tax lot and
building geometry information, 3) a bottom-up load estimation
process [52], 4) energy use survey data [3], and 5) an effort to per-
form on-site energy audits. In this case study, the energy audit cov-
ered approximately 10 % of all residential units in the community,
and resulted in critical insight on building envelope, HVAC and
DHW systems, existence of plug loads, lighting density, and ther-
mostat setpoints.

6.2. Accuracy of energy models

In the author’s estimation, prototypical BEMs perform poorly in
this work due to a lack of nuance and understanding of how energy
use in a low-income community differs from standard modeling
assumptions. A prime example are plug loads, which are estimated
to be far lower in Oak View than estimates for a typical residential
[3,44]. By definition, the purpose of a prototype BEM is to develop a
general approximation of how energy is used in a typical building.
This leads to the clear need for BEM tuning in order achieve any
level of acceptable accuracy at the community scale (<10 % error).
Section 5.1 demonstrated that additional tuning based on energy
survey and energy audit data can achieve a high level of accuracy
on both an annual and monthly basis. While the model tuning
efforts presented in this paper are specific to the Oak View Com-
munity, the model tuning methods, associated data sources, and
energy audit approaches presented in this paper can be leveraged
in future site specific studies to arrive at a more robust and accu-
rate community models that mimics energy use predictions for
disadvantaged communities than would otherwise be achieved
through the use of prototypical models.

Current efforts were limited to tuning at the community level
only. However, the measures and processes used for community
scale tuning described in Section 3.1.2 and 3.1.4 adjust individual
building loads. These methods are immediately useful for tuning
of individual BEMs when detailed submeter energy data is
available.

When submetered building energy data is not available, it is
likely preferrable to use a stochastic approach like the single-
family OS-HPXML workflow. This workflow, which generates loads
using Markov chains based on real usage data [31], generates res-
idential load profiles that can capture critical features of realistic
load dynamics. These stochastic processes were developed using
real residential building data and were previously shown to repli-
cate residential energy load dynamics.

This approach does not ensure accuracy when compared to real
building data but is designed to capture stochastic and cyclical
energy dynamics present in real buildings. Furthermore, if load
characteristics (i.e., peak load, dynamics, and total energy) are cap-



Fig. 15. Per unit secondary voltage distribution and line ampacity across all nodes, transformer and, cables in the Oak View Community ACPF.
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tured using this method, quality, and reliability of clean energy
technology analyses from CBEM approaches is likely to improve
without needing detailed hourly load profiles from each individual
building.
6.3. Community model scalability and extensibility

The current model captures a large community design area of
317 buildings covering 2.36 million square feet finished floor area.
Simulations ran to completion in approximately 45 min when
using a machine with 20 2.80 GHz processors. Simulation result
files were reduced to Matlab data objects that were up to
400 MB in size (or 1.3 MB per building per simulation) and con-
tained time resolved, disaggregated load profiles and interior zonal
temperatures for all buildings.

Depending on the types of clean energy technologies considered
in a CSEM or UBEM, this level of detail may be unnecessary and
black box BEM (i.e., statistical or machine learning based BEMs).
However, more complex measures that require interaction
between building thermal zones and energy systems will likely
require detailed physical models prior to black box model develop-
ment. An example of this is the integration of a hot water heat
pump into a building space cooling system, or the development
of more complex BEM workflows (i.e., single family OS-HPXML).

The current approach is also extensible to different regions and
technologies. First, URBANopt uses weather inputs that can be tai-
15
lored to specific climates and areas using existing open source BEM
development tools [71,72]. Existing BEM templates can be changed
to better represent building stock in different regions, and BEM
structural components (e.g., opaque exterior and fenestration fea-
tures and properties) can be fine-tuned using existing OpenStudio.
Second, current measures can be modified to capture new clean
energy technologies. In instances where existing measures are
insufficient to capture the physics of emerging clean energy tech-
nologies and applications, new measures can be developed in the
traditional OpenStudio and EnergyPlus environments, followed
by community scale examination using URBANopt.
7. Summary and conclusions

This paper presents a process for developing a community scale
energy model for a disadvantaged community located in Hunting-
ton Beach, CA. The modeled community includes 286 single and
multifamily residential buildings and 31 commercial, industrial,
and educational buildings. The community-scale energy model
includes individual BEM for all buildings, and an AC power flow
model of the local electrical distribution circuits.

Community scale energy model tuning is accomplished through
the individual tuning of each BEM. Commercial, industrial, and
educational BEM are tuned to match annual energy use values sug-
gested by commercial building energy surveys. Residential build-
ings are tuned using a combination of energy survey data,
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building energy model prototype standards (i.e., Building America),
and energy audit results. This approach allows for detailed load
construction, setting the stage for the analysis of energy efficiency
measures, electrification, and onsite renewable energy conversion
and storage technologies. BEM workflows used in this work
included a new detached single-family BEM approach that uses a
stochastic building load development approach based on real
building energy data.

Important outcomes from this work are:

� This work demonstrates the development of an accurate low-
income community-based energy model using publicly avail-
able data or accessible with support from local governments.
While results are specific to the case study presented in this
work, necessary data inputs are widely available, and the
approach is replicable in different cities and climate zones.

� Special care must be taken when simulating a disadvantaged
and low-income community. For the community in this study,
the application of prototype energy model standards yielded a
predicted aggregated residential electricity demand 54 % higher
and natural gas use 28 % lower than actual use. This error was
reduced through the development of a bottom-up load con-
struction approach based on site information and visits, energy
survey data, and building energy modeling standards. The com-
bination of the approach with community interaction led to
critical model tuning steps, such as modification of miscella-
neous plug loads and DHW demand.

� At the community level, the proposed modeling approach cap-
tures the dynamics of monthly energy use across the residential
sector. This is accomplished through the tuning of loads on an
annual basis. Typical monthly error between aggregate BEM
and actual residential building energy use is less than 10 %.

� The individual BEM tuning method can be readily employed to
incorporate real building energy use data. This creates the
potential to improve BEM accuracy as higher quality data
becomes available.

� The resulting model captures both the physics of building
energy use and interaction with the local electric distribution
system. The model is ready to examine the impact of energy
efficiency, electrification, and renewable DER systems. The
model is also suitable for integration with transportation mod-
els that can capture the introduction of electric vehicles into the
local energy system.
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Data will be made available on request.
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Appendix

This appendix describes the benchmarks used for tuning indi-
vidual buildings inside the community scale energy model. Equa-
tions from the NREL Building America document were used as
the basis for developing residential energy loads, while the DOE
CBECS survey was used as the basis for all nonresidential loads.

Residential Lighting: The original lighting baseline in the NREL
Building America document assumes a lighting mix of 66 % incan-
descent, 21 % compact fluorescent, and 13 % linear fluorescent.
Lighting efficiency standards implemented in 2020, which required
for typical residential lighting to operate at 45 lm per watt or
higher [73], have eliminated the sale of new incandescent lighting
for use in common lighting fixtures used for conventional lighting
purposes. As a result, the baseline was altered to eliminate incan-
descent lighting with compact fluorescent.

The following sets of equations were used to develop annual
energy used for interior and exterior lighting. Eq. (1) predicts total
interior lighting based on interior floor area and an adjustment fac-
tor based on types of bulbs used. This factor is predicted by Eq. (2).
Note that Eq. (2) is adjusted from the original equation reported in
[52] to account for the removal of incandescent light bulbs from
the baseline. This equation also factors a 10 % increase in lighting
as energy efficient bulbs are adopted. Other factors in Eq. (2) are
FCFL and FLF , or the fraction of lighting that is compact fluorescent
and linear fluorescent, respectively. These values are set to
FCFL ¼ 0:87 and FLF = 0.13. These values assume that all incandes-
cent bulbs are replaced using compact fluorescent, not linear fluo-
rescent. Exterior lighting is predicted using Eq. (3).

InteriorLighting ¼ glighting 0:542 � FFAþ 334ð ÞkWh=year ð1Þ
glighting ¼ 0:34þ 0:27 � FCFL � 0:21ð Þ þ 0:17 � FLF � 0:13ð Þð Þ
� 0:9þ 0:1 ð2Þ
ExteriorLighting ¼ glighting � 0:145 � FFAkWh=year ð3Þ
Note that the Building America protocol recommends that a

more detailed analysis be conducted for multifamily building than
what is presented in Eqs. (1) through (3) due to the presence of
common areas (i.e., shared laundry facilities). However, this
approach was not taken because 1) many of the multifamily build-
ings lack a traditional common area, placing laundry facilities in
shared garage spaces, and 2) floor plans and space end use designa-
tions were not available for many of the properties, both of which
are needed for a more detailed analysis.

According to this model, the average Oak View multifamily res-
idential unit (FFA = 1240 ft2) will have an annual interior lighting
load of 571 kWh per year, and an exterior lighting load of 102
kWh per year.

Residential Electrical Plug Loads and Electrical Equipment:
The following types of electrical appliances were assumed to be
present in every residential unit operating at a fixed energy use
per year:
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� Single refrigerator: 434 kWh/year
� Microwave: 78 kWh/year
� Television(s): 673 kWh/year

Additional electrical plug loads assumed to be present in each
unit were dishwashers6 and ‘‘miscellaneous” plug loads, which were
predicted using Eqs. (4) and (5) respectively, where Nbr is the num-
ber of bedrooms in a residential unit. According to these predictions,
the average multifamily residential unit would use 146 kWh per
year to power a dishwasher, and 2653.96 kWh per year on miscella-
neous electrical loads. Most properties include shared laundry facil-
ities, leading to the assumption that loads associated with clothes
washing occur onsite. Eq. (6) was used to predict clothes washer
electrical energy use, producing an annual demand of 64.6 kWh
per year for an average residential unit.

Dishwasher ¼ 87:6þ 29:2 � NbrkWh=year ð4Þ

Misc:PlugLoads ¼ 1595þ 248 � Nbr þ 0:454 � FFAkWh=year ð5Þ

ClothesWasher ¼ 38:8þ 12:9 � Nbrð ÞkWh=year ð6Þ
Site visits and energy audits showed that most residential

buildings provide gas for range and clothes dryer operation at most
buildings except for the five fully electrified buildings. Electrical
energy use for electric oven, cooktop, and clothes dryer use is
shown in Eqs. (7), (8), and (9) respectively. Oven and cooktop effi-
ciencies are captured using the g terms. According to these equa-
tions, the average Oak View multifamily residential unit would
use 222 kWh per year to power an oven, 195 kWh per year to
power a cooktop, and 897 kWh to operate a clothes dryer.

Oven ¼ 14:6þ 4:9 � Nbr

gOven;electric
kWh=year ð7Þ

Cooktop ¼ 86:5þ 28:9 � Nbr

gCooktop;electric
kWh=year ð8Þ

ClothesDryer ¼ 538:2þ 179:4 � NbrkWh=year ð9Þ
Residential Gas Appliances and Equipment: Aside from the

five electrified buildings, all other residential buildings are
assumed to use natural gas to power ovens, cooktops, and clothes
dryers. Gas use in these appliances is predicted using the Eqs. (10)
through (12). Oven and cooktop efficiencies are captured with g
terms. Clothes dryer efficiency is captured using ef elecdryer and
ef gasdryer for electric and gas appliances, respectively. These terms
have units kWh energy input per pound of damp, clean laundry
processed and According to these predictions, the average Oak
View multifamily residential unit will use 5.375 therms of natural
gas in an oven, 10.5 therms on a cooktop, and 39 therms of natural
gas in a clothes dryer, per year.

Oven ¼ 0:44þ 0:15 � Nbr

gOven;gas
therms=year ð10Þ

Cooktop ¼ 2:64þ 0:88 � Nbr

gCooktop;gas
therms=year ð11Þ
6 Dishwasher energy use consists of electricity used to operate the system plus
energy required to heat water used in the dishwasher. This plug load prediction only
captures electricity used to operate the system. Energy used to heat water is captured
in the subsequent prediction for domestic hot water heating.
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ClothesDryer ¼ 1therm
29:3kWh

538:2þ 179:4 � Nbrð Þ

� ef elecdryer
ef gasdryer

therms=year ð12Þ

Note that these appliances also require electricity for operation.
However, electricity usage in gas appliances was not captured for
three reasons: 1) electricity requirements for gas appliances are
estimated to be between 85 % and 95 % lower than the comparable
electrical only appliance and is small relative to other loads, 2)
application of energy efficiency tuning measures are projected to
have a minimal impact on electricity use in natural gas appliances,
and 3) energy simulation tuning measures aimed at modeling
energy efficient natural gas appliances primarily reduce gas use,
not electricity. As a result, it is assumed that the electrical load
associated with natural gas appliances is captured in the miscella-
neous electrical plug load prediction model presented in Eq. (5).

Residential Domestic Hot Water: Domestic hot water (DHW)
loads depend on usage patterns and fuel source. Usage patterns
are assumed to be independent of fuel source and depend solely
on residential unit characteristics and water heater setpoint. This
work assumed that the DHW heater setpoint is 140�F. Appliances
that use hot water directly from the DHW heater are clothes wash-
ing machines and dishwashers. Common clothes washers in multi-
family buildings are assumed to require 2.47 gallons per day per
residential unit. Hot water use for dishwashers is shown in Eq.
(13), predicting that the average multifamily residential unit will
use 3.76 gallons of hot water per day.

DishwasherHotWater ¼ 2:26þ 0:75 � Nbrgal=day ð13Þ
Other hot water uses include water use in showers, baths, and

sinks. The target temperature is assumed to be 110�F. If cold water
comes out of the tap at 60�F, 0.625 gallons of each gallon pulled
from a faucet comes from the DHW system at 140�F. This factor
was applied to predict total DHW requirements for a residential
unit using Eqs. (14) through (16). According to these predictions,
the average multifamily residential unit would use 14.6 gallons
hot water per day to meet shower demand, 3.65 gallons to meet
bath demand, and 13 gallons to meet sink demand. Total DHW
hot water demand is predicted to be 37.5 gallons hot water per
day.

ShowerDemand ¼ 0:625 14þ 4:67Nbrð Þgal=day ð14Þ

BathDemand ¼ 0:625 3:5þ 1:17Nbrð Þgal=day ð15Þ

SinkDemand ¼ 0:625 12:5þ 4:15Nbrð Þgal=day ð16Þ
Using a water density of 8.345 lb per gallon of water and a

specific heat C of 1 Btu
lbR, energy input was determined using Eq.

(17). Using the appropriate efficiency, an average residential unit
with an electric resistive tank water heater is projected to use
3108 kWh per year, and 154 therms with a natural gas tank water
heater.

DHWEnergy ¼ 365

� DHWDemand � 8:314 � 140oF � 60oF
� �

gDHW
btu=year

ð17Þ
Other Residential End Uses: The Building America documenta-

tion includes other end use specifications, most notably whole
house and spot ventilation fans. These energy load predictions
were not developed because they do not correspond to a tunable
load in the community scale energy simulation. Instead, additional
loads, such as ventilation fans, were assumed to be a component in
miscellaneous plug loads and are not directly accounted for.
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Residential Heating, Cooling and DHW Performance Proper-
ties: The following properties were used to define the baseline per-
formance of all heating, cooling, and DHW systems across all BEMs.

� All buildings use tank DHW heaters. Gas and electric DHW hea-
ter efficiencies are 78 % and 98 %, respectively, resulting in a
DHW uniform energy factor of 0.6 for gas and 0.9 for electric
water heaters.

� Gas furnaces in residential and small commercial/industrial
have a fuel to heat conversion efficiency of 78 %. Electric resis-
tive heaters have an electricity to heat conversion efficiency of
98 %.

� Larger commercial/industrial buildings using a boiler for space
heating have an 80 % fuel to heat conversion efficiency.

� Residential central air conditioning systems operate with a
coefficient of performance of 3.14. Commercial and industrial
buildings use an air-cooled chiller with a coefficient of perfor-
mance of 2.8.

Residential Thermostat Tuning: Tuning of the heating and
cooling thermostat settings depends in part on annual weather
conditions. Average daily dry bulb temperature is shown in
Fig. 16 for the TMY3 and actual weather from 2016 and 2020. This
figure shows that TMY3 data trends colder than recent weather
except for a handful of days.

Commercial and industrial thermostat data is limited, and heat-
ing and cooling energy use intensities vary greatly between rele-
vant buildings in the DOE CBECS data set. As a result, the
standard thermostat setpoints defined in the DEER BEM template
were used for this work. Heating setpoints of 70�F between 7 a.
m. and 7p.m., and 64�F during all other hours were assumed.

The 2015 DOE RECS data were used to develop thermostat set-
tings for all residential buildings. Heating loads for all residential
buildings were tuned to match DOE RECS data. Cooling loads for
the six buildings with central air conditioning were also tuned to
the same dataset. Discussions with tenants during site visits
revealed large differences in how tenants use their heating systems
with several tenants reporting that they rarely heat their homes.
Differences in thermostat settings and HVAC system use patterns,
however, were not included in the current work due to difficulty
in implementing different thermostat settings within the same
building paired with insufficient data to determine how the ther-
mostat in each residential unit is set. Rather, the average impacts
of varying thermostat settings within the residential building stock
are captured. Details on how the energy use targets were devel-
oped using the DOE RECS data are provided below. The resulting
Fig. 16. A comparison of average daily temperature from the TMY3 Long Beach Airport
location between 2016 and 2020. The comparison shows that the TMY3 dataset for this
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heating thermostat settings were changed to 69.3�F for buildings
with natural gas space heating, and 70�F for buildings with electric
resistive space heating. Note that the heating thermostat setting
for buildings with electric resistive heating systems resulted in
an annual heating EUI approximately 50 % lower than DOE RECS
values. However, simulation results did not match the DOE RECS
target unless the thermostat was increased to 74 �F. This setting
was deemed unrealistic based upon discussions with residents.
Cooling thermostat settings were changed to 79 �F, again reflecting
the overall average of settings within the residential building stock
required to match the DOE RECS data.

The DOE RECS target was developed by filtering survey data by
region (pacific), building (multifamily), and equipment type (built
in wall and central natural gas furnace). The resulting filtered data
was then separated by heating degree days (HDD). The resulting
data in total and binned by HDD is shown in Fig. 17 for residential
units with gas heaters. This figure shows a box plot, indicating a
red line at the average of each binned group of data, the 25 %
and 75 % percentile for the binned data at the top and bottom of
each box, the 0 % and 100 % at the end of the vertical hashed marks,
and outliers as red ‘‘+” symbols. The Oak View Community typi-
cally has between 1400 and 1600 HDD per year [74]. Since total
HDD varies from year to year, the average of the 1 K-1.5 K HDD
and 1.5 K-2 K HDD binned groups was taken as the target energy
intensity of 5 kBtu per year per ft2, or 0.05 therms per year per
ft2. For the average Oak View residential unit, this translates to
62 therms per year for space heating. Note that the RECS data
shows large fluctuations in heating energy intensity, with the
75 % of the 1.5 K-2 K bin being nearly double the assumed heating
intensity.

The DOE RECS data set has limited data on multifamily build-
ings with electric resistive heating. However, this estimate is nec-
essary for the five buildings with electric resistive space heating.
Taking the average of the available data in an appropriate HDD
range (+/�1000 HDD) yielded an energy intensity of 0.85 kWh
per year per ft2. After considering assumed heater efficiencies, this
value is 25 % lower in delivered heating versus the gas heating
energy intensity. Explanations for this difference is not clear but
could be due to the high cost of electricity relative to natural gas
resulting in less space heating, the use of individually controlled
baseboard electric heaters that are turned on when certain rooms
are occupied, or a lack of representative electric resistive heating
data.

The same method for estimating space heating was applied to
predicting space cooling. Space cooling results for multifamily
buildings with central air conditioning in the Pacific region from
dataset against the range of average daily temperatures experienced in the same
location tends to be colder than recent actual weather.



Fig. 17. Gas heating intensity versus HDD derived from the DOE RECS data set.
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the DOE RECS dataset is shown in Fig. 18. The Oak View Commu-
nity is characterized as having approximately 1200 cooling degree
days per year. Using this value, the average energy intensity from
the binned data group spanning 1 K-1.5 K CDD was taken, giving
a cooling energy intensity of 0.5 kWh per ft2 per year, or 620
kWh per year for the average Oak View residential unit. This cool-
ing energy intensity was applied only to the six buildings with cen-
tral air conditioning.

Although individual air conditioners are neglected in the base-
line model, the DOE RECS data set was also filtered to yield an
energy intensity for individual air conditioners user in climates like
Oak View. The results indicated that an individual air conditioner
would require approximately 250 kWh per year to operate and
would condition between 200 and 350 ft2.

Using these results, residential thermostats were tuned such
that community scale heating and cooling energy intensity
matched the average values derived from the DOE RECS data: Ther-
mostat adjustments were made against the stock thermostat set-
tings from the DEER BEM multifamily and single-family BEM
templates. The base heating thermostat value for buildings with
natural gas heaters was increased from 68�F to 69.3�F. The cooling
thermostat value for buildings with central air conditioning was
decreased from 80�F to 79�F. Thermostat settings for the five build-
ings with electric resistive heaters were increased from 68�F to
70�F. Despite the increased thermostat setting, the heating energy
intensity is approximately half the value predicted by the DOE
RECS data. In fact, a heating thermostat setting of 74�F or higher
was required to reach heating energy intensity targets. This value
was deemed unrealistic and ignored.

Commercial and Industrial Buildings: The DOE CBECS survey
was used to develop target energy use intensities (EUIs) for com-
mercial and industrial buildings. The CBECS data was filtered to
Fig. 18. Space cooling intensity versus HDD
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examine buildings that were like what is found in the Oak View
community. Target EUIs were then found by taking the weighted
average of the remaining data. FFA was used as the weighting fac-
tor. The following describes how the CBECS data was filtered and
the resulting EUI’s.

Educational: The CBECS data was filtered as follows:

� Limited to the Pacific census division
� School building floor area was limited to 10,000 ft2 or less
� School buildings are only used for ‘‘one activity,” i.e., for typical
school activities

� Operation is limited to 60 h per week
� Between 75 % and 100 % of all floor area is lit during typical
operating hours

� Lights are not on 24 h a day
� Lighting is reduced during off hours
� Linear fluorescent lighting is used in 98 % or more fixtures

Using these filtering parameters, the following EUIs were
developed:

� Interior lighting: 1.2 kWh per ft2 per year
� Plug loads: 4.44 kWh per ft2 per year, which consists of:
� Refrigeration: 0.9 kWh per ft2 per year
� Office equipment: 0.36 kWh per ft2 per year
� Computers: 2.3 kWh per ft2 per year
� Miscellaneous: 0.88 kWh per ft2 per year

These EUI targets were applied to all buildings shown in Fig. 1
inside the polygons surrounding the Oak View Elementary and
Family Resource Center & Library buildings.

Office: The CBECS data was filtered as follows:
derived from the DOE RECS data set.



Fig. 19. Breakdown of energy end uses across the simulated community and within individual building types.
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Table 3
Transformer ratings required for stable and reliable electrical distribution service across the Oak View community.

Transformer Name Transformer Rating (kVa) Transformer Name Transformer Rating (kVa) Transformer Name Transformer Rating (kVa)

S1 75 S24 50 T2 50
S2 25 S25 37.5 T3 150
S3 25 S26 25 T4 150
S4 50 S27 25 T5 150
S5 25 S28 50 T6 75
S6 75 S29 50 T7 1500
S7 50 S30 50 T8 25
S8 50 S31 25 T9 150
S9 50 S32 25 T10 100
S10 100 S33 100 T11 300
S11 100 S34 50 T12 50
S12 50 S35 50 T13 350
S13 & S14 150 S36 25 T14 75
S15 50 S37 100 T15 50
S16 100 S38 50 T16 150
S17 25 S39 50 T17 25
S18 112.5 S40 25 T18 300
S19 50 S41 25 T19 25
S20 37.5 S42 50 T20 300
S21 50 S43 25 T21 150
S22 50 S44 112.5
S23 50 T1 50
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� Total building floors is two or less
� Between 75 % and 100 % of all floor area is lit during typical
operating hours

� The building is used between 30 and 80 h per week
� Linear fluorescent lighting is used in 98 % or more fixtures

Using these filtering parameters, the following EUIs were
developed:

� Interior lighting: 1.9 kWh per ft2 per year
� Plug loads: 4.86 kWh per ft2 per year, which consists of:
� Refrigeration: 0.21 kWh per ft2 per year
� Office equipment: 0.73 kWh per ft2 per year
� Computers: 2.3 kWh per ft2 per year
� Miscellaneous: 1.52 kWh per ft2 per year

These EUI targets were applied to all office buildings.
All other nonresidential buildings: All other nonresidential

building baselines were modeled as an ‘‘automotive repair shop.”
The CBECS data was filtered as follows:

� Total building floors is two or less
� Between 75 % and 100 % of all floor area is lit during typical
operating hours

� The building is used between 30 and 80 h per week
� Linear fluorescent lighting is used in 98 % or more fixtures

Using these filtering parameters, the following EUIs were
developed:

� Interior lighting: 2.7 kWh per ft2 per year
� Plug loads: 3.46 kWh per ft2 per year, which consists of:
� Refrigeration: 0.4 kWh per ft2 per year
� Office equipment: 0.33 kWh per ft2 per year
� Miscellaneous: 2.73 kWh per ft2 per year

These EUI targets were applied to all non-office and educational
buildings.

After tuning the baseline model to match these EUI and Building
America load targets, the community scale energy simulation pro-
duced the results shown in Fig. 19. This figure shows the break-
down of annual energy by end use. These results predict end use
21
energy across the community in preparation for studying the
impact of DER, electrification, and energy efficiency on the
community.

Finally, the transformer ratings used in the Oak View ACPF
model are shown below in Table 3. The ratings are based on field
observations combined with simulate results. During ACPF simula-
tion, transformer ratings were adjusted as needed to ensure all sys-
tem components are never overloaded. Overloaded electric
distribution circuit components tend to fail faster due to periods
of thermal stress beyond system design limits.
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