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Role of machine-learning in science and engineering

Machine-learning is a powerful set of techniques for mapping between 
experimental data and values you want to predict.

Measurement A → Measurement B
Composition → Structure

Processing → Performance

Machine-learning is most useful when first-principles or numerical modeling 
approaches fail, due to complexity or computation cost (image classification, 
physics informed neural networks).

Data science tools/frameworks can help extract quantitative or qualitative 
information from previously unmanageable data sets.
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Opportunities for ML in battery degradation
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Machine-learning (ML) for health diagnosis

K. Smith, P. Gasper, A. Colclasure, Y. Shimonishi, S. Yoshida. 2021. Lithium-ion battery life model with electrode cracking and 
early-life break-in process. Journal of the Electrochemical Society, in press, https://doi.org/10.1149/1945-7111/ac2ebd.
P. Gasper, A. Schiek, K. Smith, Y. Shimonishi, S. Yoshida. 2021. Predicting battery capacity from impedance at varying conditions 
using machine-learning. In preparation.
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Metrics for battery health

Cell performance can be limited by both capacity and resistance, so it’s important to 
monitor both.

While capacity and resistance seem related, there is a complex relationship between them.

Data recorded at DENSO 
Corporation
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Metrics for battery health

Capacity and resistance are clearly related, but the relationship is non-linear.

Data recorded at DENSO 
Corporation
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Measuring battery health metrics

To monitor vehicle battery capacity, we could 
simply fully discharge the battery periodically 
during its life, like we do in the lab.

However, these measurements must be 
recorded under controlled conditions, and 
take a long time.

We could instead use a faster measurement, 
requiring less energy and time, and utilize 
machine-learning to map to capacity.

3 hours
10 minutes

Data recorded at DENSO 
Corporation
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Visualizing high dimensional data

To reflect real-world variation in battery state, EIS was recorded not only versus SOH, but 
also at varying temperature and SOC. 

BOL Aged

-10°C, 
50% SOC

25°C, 
50% SOC

This is data for 1 cell. There are 31 cells!

Data recorded at DENSO 
Corporation
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Visualizing high dimensional data

However, visualizing raw values of high dimensional data (3D EIS x Capacity x Temperature x 
SOC) for all measurements is not possible (interpretable). To visualize high dimensional data, 
there are several ML techniques. Here we are using UMAP.

Temperature has huge impact on 
EIS measurements.

Low T

High T

Capacity trend more obvious at 
low temperature than high.

High q

Low q

Data recorded at DENSO 
Corporation
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Modeling goals

Goal 1: 
Predict capacity (at a specific temperature and rate), which is 
slow to measure, using EIS (at varying temperature and SOC).

𝑞𝑞 = 𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸

Goal 2: 
Train a model on lab data and use it onboard electric vehicles.

e.g.,
Train a model that works well on cells it hasn’t seen before.
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Define relationships between 
variables

Use expert-knowledge and judgement to propose relationships between variables.

Experimental 
variables

Measured 
variables

Simplest approach is to ignore 
experimental variables.

EIS Capacity

TEIS SOCEIS
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Define relationships between 
variables

Use expert-knowledge and judgement to propose relationships between variables.

TEIS and SOCEIS should not be used as model inputs, unless we can 
prove they do not impact the capacity prediction.

Experimental 
variables

Measured 
variables EIS Capacity

TEIS SOCEIS
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Define relationships between 
variables

Use expert-knowledge and judgement to propose relationships between variables.

TEIS and SOCEIS interact with the EIS, which is then somehow related to cell 
capacity. We could attempt to remove this interaction using a model 

(resistance versus temperature, for instance), or hope the ML can handle it.

Experimental 
variables

Measured 
variables EIS Capacity

TEIS SOCEIS



Training a model
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Model training

Start with a simple case, predicting capacity using impedance only at -10°C at 50% SOC 
with a linear model.

Input data needs to be arranged into a matrix for training.

ZReal ZImaginary |Z| ∠Z

fhigh → flow fhigh → flow fhigh → flow fhigh → flow
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Model results

The model appears extremely accurate.
These results seem good. But relative to 

what? What is our baseline? 
This is the purpose of dummy models.

Can we really be sure this will work in a real-world device?



Testing a model
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Train/test splits

How can we check to see if we’ve met our second goal? 
This is the purpose of train/test splits. We can train on ~70% of our data, and test on the 

other third. Note we’re splitting by cell, not by data point. Thus, we are testing if our 
model performs well on unseen cells, not unseen EIS measurements.
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Overfitting

This is an example of overfitting. One way to understand model fitness is the concept of 
bias/variance tradeoff. For example, in a linear model:

𝒀𝒀 = 𝑿𝑿 × 𝑨𝑨 + 𝐵𝐵

N x 1

N x M

M x 1

We train ‘M’ slopes but only 1 bias, B. Thus, if we have many features M, our model will be 
very sensitive to variance in M but not to the bias. Our dummy model, on the other hand, is 

all bias, with no variance: 

𝒀𝒀 = 𝐵𝐵
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Overfitting

Too much bias Too much varianceBalanced
Train

Test
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Train/Test/Validation

It is best practice to examine how our model performs on multiple sets of unseen data. 
This helps prevent systematic errors, for example, maybe just the single test set is an 
‘easy’ test. This can also help avoiding issues with data collection, for instance, where 
train/test/validation data is recorded using different instruments or with varied protocols. 
Two sets of unseen data also helps to evaluate model ‘fitness’ with more rigor. 

Train Test Validation

Optimize model parameters

Optimize model structure

Helps identify ‘best’ model
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However, we may not have a huge amount of available data to create reasonably sized 
test/validations splits. We can use other approaches, such as cross-validation and 
bootstrapping, to run multiple train/test splits on different subsets of the data.

Cross-validation and bootstrapping

BootstrappingCross-validation



Feature engineering: 
Selecting and extracting useful features
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Feature engineering 

Feature engineering is a general term referring to:
• Combining existing features to create new ones Feature Generation

Xnew = X1*X2 Xnew = X1
2 Xnew = exp(X1)

• Extracting features from data Feature Extraction
Xnew = mean(X) Xnew = coefficients of 4th order polynomial fit to X

• Selecting a subset of useful features Feature Selection

These terms are general, and distinctions b/w these terms are sometimes hard to make.

Data is also usually normalized or rescaled prior to making predictions.
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Feature generation

If we want to incorporate temperature into our model, we can 
make interaction terms.

Expert knowledge tells us resistance is exponentially related to 
temperature. We could also propose some activation energies.

EIS
CapacityTEIS TEIS∙EIS

EIS
CapacityTEIS

exp(Ea∙TEIS)∙EISexp(Ea,1∙TEIS)
exp(Ea,2∙TEIS)

…
exp(Ea∙TEIS)∙EIS

…
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Feature extraction

There are an infinite number of ways to extract features. Some use 
background knowledge or intuition. There are also algorithms to reduce the 
dimensionality of a signal, like PCA or UMAP).

Statistics: Graphical: Dimensionality 
reduction:

mean
median
range
IQR

skew

std. dev.
variance

MAD
MdAD

kurtosis
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Feature selection

Feature selection methods are usually classified into three 
categories:
1. Filter (select features before passing to model)
2. Wrappers (use model performance to select features)
3. Embedded (model selects features)
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Feature selection

Filter example:
Pick features that are highly correlated to the target, but avoid redundancy

This requires defining a few hyperparameters: the number of 
features we want, and the threshold for similarity that we use 
to define redundancy.

Feature 1
Feature 2
Feature 3
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Feature selection

Wrapper example:
Exhaustively search through all possible combinations of two 

frequencies (here, 2346 combinations).

Embedded example:
LASSO (linear models)
ARD (GPR models)
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Feature transformation pipelines

Combining multiple steps of feature normalization, generation, 
extraction, and selection can result in a complex sequence of 
steps prior to model training, some of which may have various 
hyperparameters or have different behaviors during training 
and testing.

Feature transformation pipelines make combining multiple 
feature transformations simple.



Model performance 
with feature engineering
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Model results

The model performance on the training set is not as good as before, but cross-validation 
and testing errors are dramatically better.

Model MAETrain MAETest

Linear, all features 1.23% 1665%

GPR, 2 freq. 2.44% 1.65%



Model interrogation
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Model interrogation

Many ML models are black boxes. We can’t look inside (at least 
in any way that makes sense to humans), but we can poke 
them, and see how they wiggle.

• Carefully analyze your predictions
• Partial dependence
• SHAP
• ….
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Partial dependence

Values for this feature in 
the training data

Average value of y 
from the entire data 

set when all values for 
this given feature are 

set to x

Only one or two 
features are varied 
at a time. All other 
model features use 

values from the 
training data.
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Partial dependence

High freq. resistance (Ohmic) 
strongly predicts capacity

Phase at low 
freq. helps 

predict capacity 
near beginning 

of life.
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Partial dependence

2D partial dependence performs a grid-search on all combinations of 2 features 
within the measured range of those features in the training data.



Takeaways
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Takeaways

Rich, multi-dimensional data is full of information, but can lead to overfitting.

Holding out test data lets us experiment how models behave on unseen data.

Extracting features from raw data can improve modeling results and may help 
us gain insight into the data.

Interrogate models to get better understanding of model behavior.



Hands-on example
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Hands-on example

Develop a regression model to predict battery capacity from EIS 
using data from Zhang et al. Nature Communications 11 2706 
(2020)

Stretch goal(s):
• Use random train/test splits to rigorously determine what 

the ‘best’ frequency is, independent of your selection of a 
specific train/test split
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