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ABSTRACT Rational engineering of gas-fermenting bacteria for high yields of bio-
products is vital for a sustainable bioeconomy. It will allow the microbial chassis to
renewably valorize natural resources from carbon oxides, hydrogen, and/or lignocel-
lulosic feedstocks more efficiently. To date, rational design of gas-fermenting bacte-
ria such as changing the expression levels of individual enzymes to obtain the
desired pathway flux is challenging, because pathway design must follow a verifiable
metabolic blueprint indicating where interventions should be executed. Based on
recent advances in constraint-based thermodynamic and kinetic models, we identify
key enzymes in the gas-fermenting acetogen Clostridium ljungdahlii that correlate
with the production of isopropanol. To this extent, we integrated a metabolic model
in comparison with proteomics measurements and quantified the uncertainty for a
variety of pathway targets needed to improve the bioproduction of isopropanol.
Based on in silico thermodynamic optimization, minimal protein requirement analy-
sis, and ensemble modeling-based robustness analysis, we identified the top two sig-
nificant flux control sites, i.e., acetoacetyl-coenzyme A (CoA) transferase (AACT) and
acetoacetate decarboxylase (AADC), overexpression of which could lead to increased
isopropanol production. Our predictions directed iterative pathway construction,
which enabled a 2.8-fold increase in isopropanol production compared to the initial
version. The engineered strain was further tested under gas-fermenting mixotrophic
conditions, where more than 4 g/L isopropanol was produced when CO, CO2, and
fructose were provided as the substrates. In a bioreactor environment sparging with
CO, CO2, and H2 only, the strain produced 2.4 g/L isopropanol. Our work highlighted
that the gas-fermenting chasses can be fine-tuned for high-yield bioproduction by
directed and elaborative pathway engineering.

IMPORTANCE Highly efficient bioproduction from gaseous substrates (e.g., hydrogen
and carbon oxides) will require systematic optimization of the host microbes. To date,
the rational redesign of gas-fermenting bacteria is still in its infancy, due in part to the
lack of quantitative and precise metabolic knowledge that can direct strain engineering.
Here, we provide a case study by engineering isopropanol production in gas-fermenting
Clostridium ljungdahlii. We demonstrate that a modeling approach based on the thermo-
dynamic and kinetic analysis at the pathway level can provide actionable insights into
strain engineering for optimal bioproduction. This approach may pave the way for itera-
tive microbe redesign for the conversion of renewable gaseous feedstocks.
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Population growth and changes in energy structure pose a growing pressure on
human society. Energizing the world sustainably therefore requires revolutionizing the

way we harness natural resources. New renewable technologies include the microbiologi-
cal upgrading of syngas, a gas mixture consisting of carbon monoxide (CO), hydrogen
(H2), and carbon dioxide (CO2) (1, 2). This technology provides an attractive strategy to val-
orize low-cost substrates, such as waste streams, into fuels and chemicals in low operat-
ing-temperatures/pressures and high product uniformity (3). Coupling this process with
cutting-edge CO2 capture technologies and photovoltaics-driven electrochemical syngas
generation (4, 5) will offer a promising means to produce energy from sunlight, water, and
air, without aggravating pressure on the environment (6).

Acetogenic bacteria are being developed as capable chassis organisms for syngas utili-
zation due to their innate Wood-Ljungdahl pathway (WLP), which converts H2/CO/CO2 to
acetyl-coenzyme A (CoA), the primary building block for the biosynthesis of acetate and
other fermentation products. The WLP in acetogens can work individually fixing CO2, lead-
ing to carbon-negative bioconversion, or it can coordinate with the glycolytic pathway for
syngas-sugar coutilization with minimal CO2 release (7, 8). Thus, highly carbon-efficient
biofuel production would be enabled by plugging in a specific foreign pathway that redi-
rects acetyl-CoA flux to the product of interest. Recent development of genetic systems in
acetogenic bacteria has made these attempts successful, for example, in the production of
isopropanol (IPA), acetone, and 3-hydroxybutyrate (7, 9–12). Nevertheless, most engineer-
ing efforts in acetogenic bacteria are in the early stages of development. Some of them
rely on laborious trial and error of target pathways, due in part to a lack of comprehensive
assessment of pathway properties within the host’s metabolism. The lack of adequate met-
abolic knowledge hampers pathway optimization a grand challenge. Specifically, artificially
engineered pathways in the context of natural metabolism could lack intrinsic optimality.
Engineering perturbations in gene expression levels may lead to either fluctuated pathway
flux or the disappearance of a stable steady state due to depleted or overaccumulated
intermediates, thus leading to a suboptimal metabolic outcome (13). To address this chal-
lenge, rational reengineering of gas-fermenting bacteria based on systematic metabolic
knowledge will be of potential value.

State-of-the-art rational engineering assisted by constraint-based metabolic model-
ing has enabled the development of a variety of microbial chasses that host engi-
neered pathways for novel bioproducts (14, 15). Metabolic models typically simulate
enzyme-catalyzed metabolic conversions by modeling interactions between genes,
enzymes, and reactions. Once metabolic “blueprints” have been profiled computation-
ally, researchers can iterate a design-build-test-learn cycle to identify those genetic
modifications that could improve titers, rates, and yields. Although a wide range of
computational approaches can be used to correlate gene expressions with fluxes, rela-
tively few approaches seek to describe the pathway properties in all critical dimensions
that consider both feasibility, reaction dynamics, and pathway stability comprehen-
sively in an altered environment. It’s also challenging to estimate these models’ pre-
dictability for intracellular reactions and cell activities. Earlier computational tools (16)
implemented within the COBRA Toolbox (17) were used with the genome-scale meta-
bolic models to enumerate the reactions that should be actively forced through
genetic interventions in order to achieve the overproduction of target products. This
method can predict the increase, decrease, or elimination of the flux value correspond-
ing to each of the involved reactions. These tools lack quantitative mapping between
fluxes and gene expression levels and do not account for kinetic and thermodynamic fea-
tures governing the metabolic behavior of the host microbe. To address this, new model-
ing approaches were developed more recently. One of them, known as PathParser (18),
combines metabolic models with reaction thermodynamic and kinetic parameters to eval-
uate the pathway directionality, enzyme requirements, and robustness against expression
level changes. Using an ensemble modeling method, this tool can also calculate flux con-
trol indexes (FCIs) that describe the sensitivity of metabolism to enzyme expression and
can be used to guide strain engineering. However, to what extent PathParser can direct

Modeling Directed Strain Redesign for Gas Fermentation mSystems

March/April 2023 Volume 8 Issue 2 10.1128/msystems.01274-22 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

3 
M

ay
 2

02
3 

by
 2

60
1:

28
5:

10
3:

56
80

:f
49

7:
e9

ac
:f

9f
1:

77
b5

.

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01274-22


metabolic engineering, specifically in signifying potential modification targets, has not
been validated by experimental tests.

In this study, we used a previously developed computational tool (18) to evaluate a rede-
signed IPA pathway within Clostridium ljungdahlii’s metabolism. The focus of this research is
to apply a proof-of-concept application of PathParser to quantify the uncertainties in path-
way control that are needed to improve IPA production. We leveraged the proteomics data
collected in strain design experiments and tested if our methodology can indeed predict the
outcome of strain engineering. The modeling prediction as well as systems biology analysis
enabled iterative construction of Clostridium ljungdahlii strains which eventually produced
4.4 and 2.4 g/L IPA under mixotrophic and autotrophic conditions, respectively. It is evi-
denced that our approach can distill key information in kinetic and thermodynamic parame-
ters and provide executable insights into guiding strain engineering. Given that IPA is among
the top blendstocks for turbocharged gasoline engines and has been known to be a drop-in
gasoline additive, our work explicitly highlighted the potential and feasibility of rational met-
abolic redesign and optimization in syngas-fermenting bacteria for biofuel overproduction.

RESULTS
Thermodynamics of acetogenic metabolism toward IPA production. Microbial

IPA production can be derived from the WLP and the central carbon metabolism via
acetyl-CoA. This functionality can be achieved by four catalytic reactions, acetyl-CoA
acetyltransferase (ACAT), acetoacetyl-CoA transferase (AACT), acetoacetate decarboxyl-
ase (AADC), and secondary alcohol dehydrogenase (SADH), acting in sequence (see
Fig. 1A) (19). However, the thermodynamic feasibility of the overall pathway within
acetogenic metabolism is still poorly understood. We therefore modeled the max-min
driving force (MDF) (20, 21) and sought to decipher the pathway potential in a thermo-
dynamic landscape. Specifically, we constructed a thermodynamic model for de novo
IPA synthesis from syngas with the standard Gibbs energy changes, DG90 (or DG9m for

FIG 1 The thermodynamic feasibility of IPA biosynthesis from acetogenic WLP. (A) The WLP and IPA pathway. Heterologous
enzymes engineered into C. ljungdahlii for IPA production are shown in red. (B) The thermodynamic driving force of the
pathway is presented as the cumulative sum of reaction Gibbs energies, DG9. The blue line denotes standard Gibbs energies
with all metabolite concentrations fixed at 1 mM, and the red line denotes Gibbs energies when the highest reaction DG9 is
iteratively maximized in the negative direction. The optimized metabolite concentrations are shown in Table S1. The most
and least thermodynamically favorable reactions are shown in blue and yellow boxes, respectively.

Modeling Directed Strain Redesign for Gas Fermentation mSystems

March/April 2023 Volume 8 Issue 2 10.1128/msystems.01274-22 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

3 
M

ay
 2

02
3 

by
 2

60
1:

28
5:

10
3:

56
80

:f
49

7:
e9

ac
:f

9f
1:

77
b5

.

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01274-22


physiological conditions with 1 mM as the standard concentration) derived from the
eQuilibrator database (22). The thermodynamic feasibility of a pathway is impeded by
the least favorable reactions. As such, maximizing the minimal minus Gibbs energy
change (–DG9) of these reactions iteratively will mimic the optimal cellular process to-
ward the overall driving force of the pathway within a physiological range of metabo-
lites (here 1 mM to 10 mM). The optimized driving force of reactions is illustrated as the
“downhill” map in Fig. 1. Compared with the unoptimized thermodynamics where
metabolites are set with concentrations at 1 mM (Fig. 1B, blue line), the engineered
IPA synthesis pathway (Fig. 1B) shows much better thermodynamic feasibility after
optimization (–260 kJ/mol versus –150 kJ/mol, both originating from H2/CO/CO2). The
strongest driving force in IPA synthesis is generated by methylenetetrahydrofolate re-
ductase of the WLP (blue box), whereas the weakest driving force lies in the reactions
catalyzed by ACAT and AACT (yellow boxes), which need to be engineered for IPA pro-
duction. It is noteworthy that net pathway flux is fundamentally controlled by metabo-
lite concentrations according to the second law of thermodynamics: DG9 = DG90 1 RT
ln Q, where Q is the reaction quotient (i.e., the ratio of products and reactants). During
the optimization of overall pathway driving force, we found that the concentrations of
acetyl-CoA and acetate reached the preset upper bound of 10 mM (see Table S1 in the
supplemental material), which suggests that these two metabolites should be main-
tained at a high level to guarantee the unobstructed IPA synthesis. Coincidently, aceto-
genic bacteria as a host meet this requirement well, as they can accumulate acetate, as
well as its precursor acetyl-CoA, thus favoring IPA production thermodynamically.

IPA production enabled by plasmid-based pathway construction and stabilized
by genome integration. In silico thermodynamic analysis of the IPA pathway rational-
ized in vivo implementation of pathway construction. To express the pathway, we con-
structed a plasmid pIPAv1 which contained a codon-optimized atoB from Escherichia
coli and the ctfAB and aadc genes from Clostridium acetobutylicum (Fig. 2A) using NEB
HiFi assembly. These genes encoding the ACAT, AACT, and AADC, respectively, were
placed behind a strong native ferredoxin promoter from C. ljungdahlii. The last step,
the SADH, can be catalyzed by an endogenous enzyme in C. ljungdahlii (23) and thus
was not included in the plasmid constructs. HPLC analysis confirmed the presence of
both IPA and its precursor acetone (Fig. 2C) in the engineered strain (IPA v1), whereas
the parental strain did not demonstrate these two peaks. The initial construct has pro-
duced 0.05 g/L acetone and 0.78 g/L IPA in the broth.

A potential risk that could affect the sustainable production of IPA over time was
identified. As we passaged the strain, we noticed that IPA levels were getting progres-
sively worse, potentially due to strain degeneracy. A highly expressed nonnative path-
way on a plasmid would be genetically less stable than genome expression and might
explain the attenuation of IPA productivity over time. We thus redesigned the IPA
pathway to be integrated into the genome, targeting the pyrE locus. The pyrE gene
causes sensitivity to 5-fluoroorotic acid (5-FOA) as it converts 5-FOA to a toxic 5-fluo-
rouridine monophosphate (5-FUMP). Disruption of pyrE will lead to 5-FOA resistance
and thus can be used for selection of genome integration (24). By designing flanking
regions targeting pyrE and containing the IPA pathway, we successfully transformed
these targeted plasmids into the wild-type strain. The transformants showed IPA pro-
duction, indicating that the pathway carried in the new plasmid is functional (data not
shown). 5-FOA selection further allowed us to obtain several 5-FOA-resistant mutants,
indicating that the IPA pathway has been integrated into the genome. This was further
confirmed by PCR analysis and DNA resequencing using primers that flanked the pyrE
locus (Fig. 2B). In the second version of IPA strains (IPA v2), 0.97 g/L IPA titer was
achieved from YTF medium containing Yeast extract, Tryptone and Fructose, and the
IPA production showed fairly good stability over ;10 passages.

Ensemble modeling inferred metabolic robustness as well as flux control indexes.
To create better IPA producers, identification of potential targets for strain engineering is
required. We therefore performed robustness analysis to identify potential modification
targets on the pathway. We first estimated the system failure probability in response to the
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down- and upregulation of each pathway enzyme. This analysis is advisable because pertur-
bations in gene expression levels may lead to disappearance of a steady state, for which we
desire to foresee the outcome prior to in-depth metabolic engineering. Figure 3A shows
the robustness profiles of the basis configurations for IPA production. The perturbation is
defined as the fold change of enzyme expression over the reference state. The results sug-
gest that in most cases, the pathway producing IPA has an increased probability of system
failure if the enzyme level is too low (Fig. 3A). In those cases, metabolites for the reaction
will be either depleted or overaccumulated by enzyme knockdown, which could form a so-
called kinetic trap (13). On the upregulation side, the system robustness is very sensitive to
the AcsA, which is a key subunit in acetyl-CoA synthase for CO2 reduction to CO. Our analy-
sis suggested the biosystem may lose steady state upon AcsA upregulation, which could
cause failure. We deduced that this sensitivity could corelate to the unique topology of the
WLP. Note that the WLP consists of a methyl branch which contains cascade-like reactions
connected in a series (Fig. 1A), while a carbonyl branch carries AcsA only. It is likely that the
carbonyl branch lacks intermediate reactions that could buffer perturbation in kinetics
changes. This indicates a potential risk of AcsA overexpression for strain engineering.

The ensemble modeling approach also yields the steady-state metabolic flux
response to kinetic parameter perturbations. The simulation results of the ensemble
can then guide the selection of potential targets for performance improvement. Based
on the likelihood of a metabolic response in the ensemble, Fig. 3B shows the compos-
ite solution of multiple models of WLP and IPA synthesis after different degrees of

FIG 2 Pathway constructions for IPA biosynthesis. (A) Gene cassettes and expression components on the constructs. (B) PCR results indicating that the IPA
pathway on pIPAv2 has been integrated into the genome on the pyrE locus. The PCR templates are genomic DNA from the wild-type C. ljungdahlii (labeled
as WT) and IPA v2 strain (labeled as IPA). PCR products using primer v1f- v1r (left two lanes) and primer v2f-v2r pairs (right two lanes) are shown on the
gel picture, respectively. The locations the primers are labeled in panel A. (C) IPA-producing strains and their IPA productivities. Shown on the left are the
HPLC profiles of the IPA v1 strain and wild-type broths in comparison to the chemical standards. Dashed lines denote the retention time of IPA and
acetone. The presence of IPA pathway genes in various IPA strains and the corresponding IPA titer are shown in the middle and right, respectively. “–”
indicates that the gene was not present in the strain; “1” indicates one copy of the gene; “11” indicates two copies in the strain.
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enzyme activity perturbation. Only the models with a stable steady state are recorded.
The intensity of color in Fig. 3B indicates the density of models or likelihood of results.
For instance, in the case of AcsA, although overexpression of this gene increases the
likelihood of system failure, the survival models in a middle range of upregulation
(2-fold) still demonstrated much increased flux for IPA production (Fig. 3B). More

FIG 3 (A to C) Robustness analysis (A) and flux control indexes (B and C) of the IPA biosynthetic pathway. (A) Pathway robustness is represented by the
probability of system failure at various fold changes of enzyme expression levels over the reference state. A pathway is considered to be entering system
failure when any intermediate is depleted or overaccumulated, and the probability of system failure is calculated as counts in an ensemble of 100 models
which were generated with log-uniformly sampled kinetic parameters from the feasible spaces, meanwhile being subjected to the same flux distribution as
the reference state. (B) Flux fold changes by enzyme perturbation were evaluated by an ensemble of 100 models which were generated with log-uniformly
sampled kinetic parameters from the feasible spaces, meanwhile being subjected to the same flux distribution as reference state. The results are presented
as a set of heatmaps, and the color indicates the number of models of corresponding flux fold change at some enzyme expression level for each enzyme.
(C0 Based on the visualized results in panel B, flux control indexes (FCIs) were also calculated to quantitatively describe the extent of pathway flux change
caused by enzyme perturbations. FCIs for downregulation and upregulation of enzyme expression are plotted in blue and pink boxes, respectively. The
mean of the FCI is presented as a dashed line and listed at the bottom (first row denotes upregulation FCI and second row denotes downregulation FCI).
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quantitative results are presented in Fig. 3C, in which the FCIs of each pathway gene
are statistically analyzed. AcsA’s FCI in upregulation is 0.12, 2- to 3-fold higher than
that of most other genes (FCI, 0.04 to 0.06, Fig. 3C). However, note that the trade-off
between performance and robustness will be a constraint to overexpress AcsA. As
mentioned above, a higher AcsA activity results in much more likelihood of system fail-
ure (Fig. 3A). In comparison, AADC is also among the best ways to improve IPA flux
(FCIaadc, 0.13; Fig. 3B and C), while its overexpression will not apparently increase the
risk of system failure (Fig. 3A). Thus, it indicates that AADC could be a new engineering
target, upregulation of which might enhance IPA productivity, but without robustness
concerns.

In silico analysis revealed a quantitative requirement of pathway enzymes. We
next carried out computational modeling for analyzing pathway enzymes’ minimum
quantities that could afford unit IPA flux. Specifically, we sought the solution of the
nonlinear optimization problem (18, 20) as described in equation 2 (see Materials and
Methods). Kinetic parameters used in the enzyme-level expression are listed in Tables
S2 and S3. It should be noted that this computational analysis takes both thermody-
namic and enzyme kinetic constraints into account, thus providing a comprehensive
description of fundamental enzyme requirements for maintaining a functional path-
way, here, WLP for the conversion of CO2 to IPA (for modeling results see Table S4).

To consider a more realistic scenario, we must account for all important carbon
fluxes generating IPA through acetyl-CoA. We analyzed the enzyme requirement from
both the WLP and the glycolytic pathway toward IPA production, the relative flux
between which would tailor the thermodynamic driving force and the metabolic out-
comes. For example, higher WLP flux relative to glycolytic flux would hold a more neg-
ative thermodynamic potential and stronger CO2-fixing capabilities but produce less
energetic currency ATP as a coproduct. The minimal enzyme protein requirement per
unit IPA flux corelates with the ratio of WLP to glycolytic flux. Specifically, the larger
amounts of enzymes will be needed when IPA is derived more from the WLP. This out-
come aligns with the fact that rate-determining steps in the WLP would need higher
enzyme quantities to compensate for the less efficient catalysis. Such a case was mir-
rored in AcsB and Fhs, where input kcat 2.1 and 1.4, respectively, led to 2.0 � 106 g/(mol
s21) of protein requirement, the top two among the WLP enzymes when the WLP dom-
inates the flux for IPA synthesis (WLP/Embden-Meyerhof-Parnas [EMP] ratio equals 10).
Interestingly, this protein cost analysis corroborated the proteome of C. ljungdahlii, in
which AcsB and Fhs were also shown to be the most abundant proteins in the WLP
(Fig. 4B).

The predictivity of the modeling outcome convinced us to focus on the engineered
pathway more explicitly. As shown in Fig. 4A, under various mixotrophic conditions,
heterologous enzymes in the synthetic IPA pathway require 2.9 � 106 – 4.6 � 106 g/
(mol s21) of protein, in which AACT accounts for 18.7 to 32.9% of total pathway protein
cost, while AADC accounts for 18.4 to 32.4% of the pathway enzyme protein cost, fol-
lowed by another heterologous enzyme (ACAT). The lower requirement of the ACAT
enzyme than AACT and AADC is probably due to its better kinetic properties. We fur-
ther compared the outcomes with the proteome data collected from the pathway host
(Fig. 4B).

As shown in Fig. 4B, ACAT and AADC both were detected in the proteome of the
engineered strain, while AACT was not measurable in proteomics. We inferred that
AACT should be expressed due to its necessity in amount for IPA production. However,
it was shown to have an inappreciable expression, which suggests a potential target
for genetic engineering in the next engineering cycle.

The next iteration of fine-tuning of the pathway led to a 2.8-fold increase in
IPA production. As analyzed above, we selected AADC and AACT as the targets for addi-
tional overexpression collectively. AADC was recommended by metabolic robustness anal-
ysis (Fig. 3A) as well as flux control analysis (Fig. 3B and 3C). AACT was selected because it
was suggested as a key gene for IPA synthesis by protein cost analysis (Fig. 4A) but was
not detected in the proteome of the first-generation IPA strain (Fig. 4B). For AACT
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overexpression, we considered a different gene option, atoAD, which was reported to
encode a potentially better enzyme to catalyze the same reaction of AACT, as this gene
product was shown to have a much lower Km (53.1 mM) for acetate than ctfAB (1,200 mM)
and has been shown to yield higher IPA titer in other microbial chasses (19, 25, 26). Thus,
we transformed constructs to determine whether overexpression of atoAD versus ctfAB
was better at producing IPA (Fig. 2). The aadc was coengineered into both constructs.

The fermentation data showed that the construct with ctfAB and aadc produced 2.7 g/L
IPA, while atoAD plus aadc produced 1.7 g/L IPA, both of which exceeded the highest titer
of the first-generation engineered strain (,1 g/L) (Fig. 2). These results implied that (i) ctfAB
and aadc overexpression are indeed able to increase IPA flux, as higher amounts of IPA were
produced than in the parental strain, consistent with the prediction by systems biology and
modeling analysis, and (ii) the atoAD overexpression is inferior to the ctfAB overexpression.
Despite a lower Km of atoAD for acetate, which may lead to a lower enzyme amount for ca-
talysis, the acetogenic host can maintain acetate at a high level, thus satisfying optimal

FIG 4 (A and B) Computational enzyme cost analysis (A) and experimental proteomics analysis (B) of the IPA synthesis pathway. (A) Enzyme protein costs denote
the minimum enzyme mass required to support unit metabolic flux through the pathway and are estimated under various mixotrophic conditions represented
by different ratios of pathway flux through the WLP and the Embden-Meyerhof-Parnas (EMP) pathway. Enzymes in the EMP pathway are labeled in orange,
enzymes in the WLP are labeled in green, enzymes overexpressed for IPA synthesis in this study are labeled in red, and other enzymes are in blue. (B) Bar height
denotes the abundance of enzymes in total protein measured by proteomic assay. IPA denotes the IPA v2 strain in which the IPA pathway was integrated into
the genome. IPA_ctf denotes IPA v3-2, where the strain has an additional ctfAB gene introduced. Auto denotes an autotrophic condition in which cells were
grown on the WLP by using syngas. Hetero denotes a heterotrophic condition in which cells were grown on fructose.
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working conditions for ctfAB. A much higher acetate concentration presumably resulted in
competitive substrate inhibition as reported for atoAD (26).

To verify the dosage increase of pathway enzymes, another set of proteomics data
was generated on the baseline IPA strain with the overexpression of CtfAB and AADC
(Fig. 4B, IPA_ctf). In comparison to the IPA baseline strain where CtfAB was detected,
we identified much improved protein abundance of CtfAB, showing the direct out-
come of our genetic engineering efforts. This result aligns with improved IPA titer (2.7
g/L). Overall, based on these engineering efforts, the new IPA strain has successfully
achieved a 2.8-fold increase in IPA production. This progress validates that strain devel-
opment of C. ljungdahlii can be directed by thermodynamic and kinetic models.

The rationally engineered strain has good potential for IPA production under
various gas-fermenting conditions. Next, we found that the rationally engineered
strain (IPAv3-2) is metabolically flexible in various environments and may have excep-
tional IPA production potentials, for example, under the mixotrophic and autotrophic
growth condition. Mixotrophic growth by acetogens allows for improved carbon conver-
sion due to their ability to coutilize both sugars and gaseous carbon simultaneously (7).
We investigated if improved IPA titers can be achieved by growing C. ljungdahlii IPA v3-2
strain with 20 g/L fructose supplemented with a syngas mixture containing 50%/30%/
20% CO/CO2/H2 in the headspace. Cells were grown for 7 days, and products were ana-
lyzed. Mixotrophic growth produced a good number of cells, with the highest optical
density of 3.48 achieved at day 3 (Fig. 5). Also, mixotrophic growth showed an improve-
ment of final IPA titers, which were 74 6 1.3 mM (4.44 6 0.078 g/L). Acetate was the
major product, which reached 117 mM, after 7 days. Both ethanol and 3-hydroxybuty-
rate (3HB) were produced by the culture, which reached titers at around 50 mM and
12 mM, respectively. Overall, mixotrophic growth showed a high carbon yield for all
products (acetate, ethanol, IPA, and 3HB), accounting for 83% carbons from fructose.
This number exceeds the theoretical maximum of the glycolytic EMP pathway (66.7%),
aligning with the fact that CO2 released from the EMP pathway was effectively recycled
by the carbon-fixing WLP. Compared to all other fermentation products, the proportion
of IPA reached 31% of the total by the end of the experiment, indicating that pathway
engineering has led IPA to become the equivalently largest carbon sink in this biocata-
lytic process, comparable to the natural acetogen’s product (acetate, 32%).

To further investigate the rationally engineered strain in a syngas-fermenting environ-
ment, we inoculated the IPA v3-2 into YT medium (containing Yeast extract and Tryptone

FIG 5 Fermentation kinetics of the IPA v3-2 strain grown under the mixotrophic condition with 20 g/L fructose fed in the medium as
well as 6 lb/in2 syngas (CO/CO2/H2) in the headspace.
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but without fructose feeding) and performed a fermentation experiment in a 2-L bioreac-
tor. This gas fermentation system has recently achieved a high-titer production of nonna-
tive 3-hydroxybutyrate from C. ljungdahlii (27). Sparged with a constant syngas mix (CO/
CO2/H2: 70%/20%/10%), the fermentation results were recorded daily and are shown in
Fig. 6. Host cells underwent an initial ;100-h lag growth phase and then grew exponen-
tially, reaching the highest optical density (OD) of around 4 to 5 at day 13. Associated with
cell growth, the IPA production reached the maximum at day 12, demonstrating a peak ti-
ter (Titermax) of 39.7 mM (2.39 g/L). In terms of carbon partitioning, IPA accounted for up to
29% of carbon molarity of all products. This value was defined as the maximum carbon
proportion during the fermentation (C-Proportionmax). In addition, acetate production con-
tinued over time and reached its highest level (80.1 mM; C-Proportionmax, 34%) at the end
of fermentation. This result is in line with the fact that acetogenic bacteria require steady
acetate production to compensate for the bioenergetics limit. Interestingly, we also
observed a significant amount of ethanol being produced in the process (Titermax, 82 mM;
C-Proportionmax, 35%). This phenotype was not typically consistent with a native C. ljung-
dahlii strain in which ethanol was only moderately generated as a secondary product. Our
results imply that the redox status might have been changed substantially in the engi-
neered strain. Ethanol production may have been selected to balance electron flow and
carbon metabolism. Conclusively speaking, although strain development will be further
pursued, our rational design has provided a solid platform for converting syngas to value-
added alcohols.

DISCUSSION

Gas fermentation for the production of nonnative chemicals has received significant
attention in recent years. This has led to remarkable progress in strain development (9, 12),
but improvements are still needed to make the process industrially viable. As acetogens
are difficult to rapidly engineer and test on syngas, tools are needed to generate informed
approaches for strain engineering. Recently, Liew et al. described methods to overcome
technical hurdles in Clostridium autoethanogenum, to achieve carbon-negative production
of acetone and IPA at industrially relevant selectivity and scale (12). The pronounced
approaches they used for strain engineering include combinatorial library construction
and iPROBE (in vitro prototyping and rapid optimization of biosynthetic enzymes), which
were particularly useful in screening candidate enzymes for pathway optimization. In com-
parison, we adopted a model-driven strain redesign approach for rational engineering,
which allowed for significant improvements in our iterative IPA-producing strains. In this

FIG 6 Time course of the IPA v3-2 strain grown autotrophically in a 2-L gas-fermenting bioreactor sparged with syngas (CO/CO2/H2). Shown on the left are
the cell OD600 and production of IPA, acetate, ethanol, and 3-hydroxybutarate over time. Shown on the right are the changes of carbon molar yield in the
products.
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study, we used thermodynamics analysis, enzyme protein cost analysis, and proteomics to
inform strain redesigns and optimizations for increasing IPA production in the gas-fer-
menting organism C. ljungdahlii. A key finding in this contribution is that we predicted
that AACT and AADC are the two key IPA rate-limiting reactions along the central metabo-
lism and the IPA pathway. Overexpression of these enzymes indeed leads to an increase in
the downstream IPA flux. These studies indicate that our developed computational work-
flow for the integration of thermodynamics, enzyme kinetics, and ensemble modeling for
C. ljungdahlii is a valuable method to pinpoint key enzyme expressions for the optimiza-
tion of the IPA flux. Currently, this work solely considered IPA and the primary pathways in
the central metabolism of the acetogen (e.g., WLP and the EMP pathway). Given a simpli-
fied central metabolic pathway, we can obtain reasonable flux control coefficients (FCCs)
that actively increase the flux of the product IPA. Probing how they all interact at the ge-
nome-scale level will provide more information for realistic future strain designs that are
physically capable of growing under real conditions. The insights gained from this rela-
tively smaller model provide us with the ability and understanding to expand further onto
a genome-scale metabolic model for a much broader analysis of how FCCs could affect
the production of IPA in the context of the entire genome.

Also, as a next step, we are interested in developing more effective genome engi-
neering tools that can precisely and quantitatively modify the target pathway enzyme
levels. Comparing the optimization goal provided by computational modeling and re-
alistic enzyme expression levels in the -omics data sets (e.g., as shown in Fig. 4), there
is still adequate space for the pathway enzymes to be iteratively improved. Better engi-
neering strategies and tools for gas-fermenting microbial chasses will accelerate the
process toward this goal. The tools developed in this study are applicable to a diverse
array of microbes yielding various targeted products, hence affording a broader impact
in the field of biofuels and bioenergy production.

MATERIALS ANDMETHODS
In silico analysis. Pathway thermodynamics and enzyme protein cost analysis. Thermodynamics

and enzyme protein cost analysis were applied to assess the feasibility and protein requirement of the
designed metabolic pathway. Pathway feasibility was evaluated by solving a max-min driving force
(MDF) problem which seeks to maximize the Gibbs energy change, DG9, of the most thermodynamically
unfavorable reaction by tuning the concentrations of intermediates. The problem is defined as (18):

max
lnðcÞ minð2DG0

1;2DG0
2; . . . ;2DG0

mÞ
s:t: DG0 ¼ DG00 1 R � T � S � lnðcÞ

lnðcminÞ # lnðcÞ # lnðcmaxÞ
(1)

where m is the number of pathway enzymes, c is the vector of involved metabolite concentrations with
upper bounds and lower bounds as cmin and cmax, respectively, and S is the stoichiometric matrix of the
pathway reactions.

In contrast, enzyme protein cost analysis aims to estimate the minimal protein mass required to sup-
port a unit pathway flux by solving a nonlinear optimization problem (18, 20):

min
lnðcÞ K ¼

Xm
i

ðMWi � EiÞ

vin
s:t: lnðcminÞ # lnðcÞ # lnðcmaxÞ

(2)

where K is the enzyme protein requirement, vin denotes influx to a pathway, MW is the enzyme molecu-
lar weight, and E is the expression of the reaction enzyme level derived from a common modular rate
law (28) and Haldane relationship (29).

The calculation was performed using our previously developed pathway analysis tool, PathParser
(18). The thermodynamic and kinetic parameters of enzymes in the WLP and EMP-based IPA biosynthe-
sis pathway are listed in Tables S2 and S3. The standard Gibbs free energies (DG9m) were searched in the
eQuilibrator database (30). DG9m of the fructose phosphotransferase (PTS) system was estimated using
equilibrator-api (31). Michaelis constants (Km), catalytic rate constants (kcat), and enzyme molecular
weights (MW) of C. ljungdahlii, Moorella thermoacetica, Acetobacterium woodii, Clostridium formicoaceti-
cum (32), and E. coli were preferentially chosen from BRENDA (33). If no data are available, default values
of 200 s21, 0.2 mM, and 40 kDa were used, respectively. These numbers were assigned for metabolic
modeling (8, 20). Their validity is based on statistical analysis of a large number of known metabolic
enzymes in the BRENDA database. In MDF optimization of the WLP-based IPA synthesis pathway, con-
centrations of involved metabolites were constrained to vary between 1 mM and 10 mM. For enzyme
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protein cost estimations under various mixotrophic conditions, a series of split ratios 10, 5, 2, 1, 0.5, 0.2,
and 0.1 were assigned to the WLP- and EMP-producing unit amount of IPA. Upper bound metabolite
concentration constraints were relaxed to 100 mM for appropriate solutions with physiological signifi-
cance. The above-described linear programming and nonlinear programming problems were both
solved using an open-source Python optimization package, openopt.

Metabolic robustness analysis. Pathway robustness and flux changes against enzyme perturba-
tions were evaluated using an ensemble modeling approach combined with the continuation method
(13). First, an ensemble of models was generated with log-uniformly sampled kinetic parameters from
the feasible spaces, which meanwhile is subjected to the same flux distribution of the reference state
(34, 35). Then the continuation method was used to simulate the system response to enzyme expression
perturbations. The dynamic system of metabolite concentrations can be expressed as:

dc
dt

¼ fðc; EÞ ¼ ST � vðc; EÞ (3)

where f denotes the derivative of the concentrations with respect to time, which is a function of metab-
olite concentrations C and enzyme levels E. At the metabolic steady state, C is constant, and the deriva-
tive of C with respect to t equals zero. Accordingly, the derivative of f(c, E) with respect to E equals zero
too, which yields (13, 18):

dcSS
dE

¼ 2
@f
@cSS

� �21

� @f
@E

(4)

where cSS denotes metabolite concentrations at the steady state. The Jacobian matrix @f
@cSS

determines
the metabolic robustness of a pathway in which a system failure occurs if the real part of any of the
Jacobian eigenvalues pass through zero.

The above-described differential equations are solved along with up- and downregulation of
enzyme levels until system failure happens, and the number of models is counted to calculate the prob-
ability of system failure for each enzyme at various enzyme levels. When solving the equations, metabo-
lite concentrations will be updated, and pathway fluxes can be reestimated accordingly, responding to
enzyme perturbations. Robustness and flux response analysis of native WLP and the IPA pathway were
also performed using PathParser (18) with an ensemble of 100 generated models.

Experimental section. Strains, media, and chemicals. C. ljungdahlii DSM 13528 was purchased
from the Leibniz Institute DSMZ (Braunschweig, Germany). The YTF rich medium, consisting of 10 g L21

Bacto yeast extract, 16 g L21 Bacto tryptone, 4 g L21 NaCl, 5 g L21 fructose, and 0.5 g L21 cysteine-HCl,
and the defined PETC medium (ATCC 1754, American Type Culture Collection, Manassas, VA) were uti-
lized for growing C. ljungdahlii. Cell growth was monitored at 600 nm with a DU 800 spectrophotometer
(Beckman-Coulter, Brea, CA). All chemical reagents used in the growth studies were purchased from
Sigma-Aldrich, except Bacto yeast extract and tryptone, which were purchased from Becton, Dickinson.

Construction of IPA producer strains in C. ljungdahlii. Standard molecular techniques with enzymes
and Escherichia coli NEB 10-beta were from New England Biolabs (NEB). Plasmid pMTL80000 series modular
plasmids were from Chain Biotech (Nottingham, UK) and were used to generate the constructs transformed
into C. ljungdahlii. Plasmids were generated using previously established protocols (36). Briefly, amplicons
were generated by PCR, which were then ligated together using Gibson Assembly (NEB). Table 1 lists the pri-
mers used for cloning. The plasmid sequence was confirmed by sequencing and transformed into the wild-
type C. ljungdahlii.

Transformation was based on previously reported protocols (37). Briefly, cultures were grown in
40 mM DL-threonine to the mid-log phase (OD, 0.4 to 0.8) and then harvested by centrifugation. Cells
were washed twice with ice-cold SMP buffer (270 mM sucrose, 1 mM MgCl2, 7 mM sodium phosphate,
pH 6) and then resuspended in SMP buffer with 10% dimethyl sulfoxide (DMSO) and stored at 280°C
until being used for transformation. Electroporation was performed in a Coy anaerobic chamber with a
Gene Pulser Xcell Bio-Rad electroporator (Hercules, CA) with the following settings: in a 1-mm cuvette,
25 mL of cells were mixed with 2 to 5 mg of DNA, pulsed at 625 kV with resistance at 600 X and a capaci-
tance of 25 mF. Cells were then resuspended in 5 mL of YTF and recovered overnight at 37°C. Cells were
plated in 1.5% agar YTF with thiamphenicol (Tm) at a concentration of 10 mg/mL. Integration of the IPA
pathway into the pyrE locus was based on previously established methods (38). Briefly, cells were subcul-
tured in YTF medium with Tm and then plated on YTF agar with Tm and 5-fluoroorotic acid (5FOA) at a
final concentration of 500 mg/mL. 5FOA-resistant single colonies were screened for genome integration
using PCR and then subcultured in YTF until Tm sensitive colonies were isolated.

Mixotrophic growth of engineered strains. Our rationally engineered strain was initially grown in
50 mL YTF plus Tm seed cultures overnight. After overnight growth, cells were inoculated into 50 mL
YTF plus Tm plus 1 g/L CaCO3 (for rough pH maintenance) using a 250-mL Duran pressure plus bottle
(DWK Life Sciences, USA) as the culture vessel. A syngas mixture containing 50%/30%/20% CO/CO2/H2

was added at 6 lb/in2 to mixotrophic bottles. Optical density and high-performance liquid chromatogra-
phy (HPLC) samples were taken daily. The syngas mixture was refilled as necessary every day to maintain
6 lb/in2 for the mixotrophic conditions.

Gas fermentation in the bioreactor. Seed cultures were prepared for the bioreactor by adding 10 mL
overnight growth of the IPA v3.2 strain to 50 mL YT medium containing thiamphenicol in a 250-mL pressure
plus bottle and pressurized to 8 lb/in2 with a syngas mix of 70%/20%/10% CO/CO2/H2. Seed cultures were
left to grow at 37°C with shaking at 250 rpm until all the syngas was consumed. IPA production was verified
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during this growth by high-performance liquid chromatography (HPLC). Once sufficient syngas had been
consumed, the seed cultures were transferred into the 2-L bioreactor. The 2-L bioreactor contained 1.7 L YT
medium with thiamphenicol and was sparged with a constant syngas mix (70%/20%/10% CO/CO2/H2) at a
rate of 300 sccm (standard cubic centimeter per minute). The pH was controlled to 5.2 with an initial stirring
speed of 300 rpm. This was increased gradually to 900 rpm as the OD increased during growth. The fermen-
tation results were recorded daily by OD at 600 nm (OD600) measurement and HPLC analysis.

Analysis of fermentation products. Fermentation liquid samples of 150 mL were extracted by sy-
ringe, filtered using Costar Spin-X 0.45-mm filters (Corning, Corning, NY), and stored at 220°C until the
experiments were completed. Fermentation products in the liquid phase (acetate, ethanol, IPA, and ace-
tone) were measured by HPLC on a 1,200 series Agilent device (Santa Clara, CA) with an Aminex HPX-
87H column using a Micro Guard Cation H cartridge at 55°C with 4 mM H2SO4 mobile phase.

Proteomemeasurement and analysis. The proteomic analysis of wild-type and IPA strains was con-
ducted following the same method as in our previous report (18). First, 10 mg of trypsin-digested pep-
tides from each sample was loaded onto a C18 capillary column coupled to a Thermo LTQ Orbitrap mass
spectrometer (Thermo Scientific, Rockford, IL). The peptide identity was analyzed at a resolution of
30,000. Dynamic exclusion was enabled in this case with the setup of a repeat count of 1, repeat dura-
tion of 30 s, and exclusion duration of 90 s. The peptide identity was obtained by searching the tandem
MS spectra using PatternLab for proteomics (39). Protein abundances were quantified based on spectral
count. Each MS spectrum represents a peptide, which can be identified by matching the experimental
MS spectrum with the theoretical spectrum based on constraints set in the data searching algorithm.
For each protein, its abundance is represented by spectral counts from all of its identified peptides. To
normalize the protein size differences and protein number differences among replicates, the normalized
spectral abundance factor (NSAF) (40) was used to compare between the control group and the experi-
mental group. The mass spectrometry data for proteomics have been deposited to the MassIVE reposi-
tory with the data set identifier MSV000088839 and the ProteomeXchange Consortium (41) with the
data set identifier PXD031695.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TABLE S1, PDF file, 0.03 MB.
TABLE S2, PDF file, 0.2 MB.
TABLE S3, PDF file, 0.1 MB.
TABLE S4, PDF file, 0.1 MB.

TABLE 1 Primers used for the PCR amplification and cloning

Primer Sequence (59–39) Note
XJL.683.f TTCGTCTTCACCTCGAGCCTGCAGGGGCATTTTCAAAGAAATAACTAG Pfdx primers
XJL.684.r TACACAATTTTTcatCTTATGTAACACCTCCTTAATTTTTAG
XJL.685.f GTGTTACATAAGatgAAAAATTGTGTAATAGTATCAGC atoB primers
XJL.690.r CTTACCTCCTCCTCCTAATTGGATAttaATTTAATCTTTCTATTACCATAG
XJL.691.f TATCCAATTAGGAGGAGGAGGTAAGATGAACTCTAAAATAATTAGATTTG ctfAB primers
XJL.692.r AGCCCTACCTCCTTTATTCGGTGCTCTAAACAGCCATGGGTCTAAGTTC
XJL.693.f AGCACCGAATAAAGGAGGTAGGGCTATGTTAAAGGATGAAGTAATTAAAC aadc primers
XJL.694.r ACGAGTCCTTTAGACTTTACTATCTTTACTTAAGATAATCATATATAACTTCAGC
XJL.738.f AGATAGTAAAGTCTAAAGGACTCGTATGAAAGGTTTTGCAATGTTAG sadh primers
XJL.739.r AGGATCCCCGGGTACCGAGTTAGAATGTAACTACTGATTTAATTAAATCTTTTG
XJL.798.f ATGACCATGATTACGAATTCGAGATGGATAATTTAGTTATAAATACATTG pyrE 300-bp primers
XJL.746.r CTCGAATTCGTAATCATGGTCATTTATCCCCTTCTTATAGTCATATTTC
XJL.747.f CTCGGTACCCGGGGATCCTCTAGGTCGAAAAAATCAATGCACGATGCAG pyrE 1,200-bp primers
XJL.747a.r CTAGAGGATCCCCGGGTACCGAGGGAACCTGATGCCGTTAAATAA
XJL.675.f accatgattacgaattcgagTTAATATGCCGACCACGTTG Clo1313_1194 primers
XJL.762.r CTAATTATTTTAGAGTTCATAGTTTTTTTCCCCCTTTAATG
XJL.763.f GACCCATGGCTGTTTAGAGGGCATTTGAAAAAATAGG Ppta primers
XJL.757.r cctttaacatGTTCATTTCCTCCCTTTAAATTTAAC
XJL.758.f ggaaatgaacATGTTAAAGGATGAAGTAATTAAAC aadc primers for V2
XJL.759.r xc
XJL.760.f gaaaaaaactATGAACTCTAAAATAATTAGATTTGAAAATTTAAG ctfAB primers for V2
XJL.761.r caaatgccctCTAAACAGCCATGGGTCTAAG
XJL.754.f gaaaaaaactATGAAAACTAAATTGATGACTTTAC atoAD primers for V2
XJL.755.r caaatgccctTCATAGATCACCCCTCTG
pyrE.KO.F AGAGGAATAATTTAGGAGGACAG pyrE 300-screen primers
seq Ec atoB R CAGATTCTATTGCTGCTGCTGC
XJL.748.r CCAGTAGAAGGATGCACC pyrE 1200-screen primers
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