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The energy transition will require a rapid deployment of renewable energy (RE)
and electric vehicles (EVs) where other transit modes are unavailable. EV bat-
teries could complement RE generation by providing short-term grid services.
However, estimating the market opportunity requires an understanding of
many socio-technical parameters and constraints. We quantify the global EV
battery capacity available for grid storage using an integrated model incor-
porating future EV battery deployment, battery degradation, and market
participation. We include both in-use and end-of-vehicle-life use phases and
find a technical capacity of 32-62 terawatt-hours by 2050. Low participation

rates of 12%-43% are needed to provide short-term grid storage demand
globally. Participation rates fall below 10% if half of EV batteries at end-of-
vehicle-life are used as stationary storage. Short-term grid storage demand
could be met as early as 2030 across most regions. Our estimates are generally
conservative and offer a lower bound of future opportunities.

Electrification and the rapid deployment of renewable energy (RE)
generation are both critical for a low-carbon energy transition’. They
also address many other environmental issues, including air pollution.
However, the variability of critical RE technologies, wind and solar,
combined with increasing electrification may present a challenge to
grid stability and security of supply*. There are several supply-side
options for addressing these concerns: energy storage, firm electricity
generators (such as nuclear or geothermal generators), long-distance
electricity transmission, over-building of RE (resulting in curtailment
in periods of lower demand), and power-to-gas® (in approximate
ascending order of today’s estimated cost). Demand-side management
is also vital in shifting and flattening peak demand*. Given rapid cost-
declines, battery storage is one of the major options for energy storage
and can be used in various grid-related applications to improve grid
performance. Cost declines in batteries have been the major driver for
electric vehicle (EV) cost reductions. Given that many batteries will be
produced for light-duty transport these could offer a low-cost and
materially-efficient approach for short-term electricity grid storage
requirements’.

EV batteries can be used while in the vehicle via vehicle-to-grid
approaches, or after the end of vehicle life (EoL) (when they are
removed and used separately to the chassis in stationary storage).
“Smart” vehicle-to-grid charging can facilitate dynamic EV charging
and load shifting grid services. EVs can also be used to store electricity
and deliver it back to the grid at peak times®. These opportunities rely
on standards and market arrangements that allow for dynamic energy-
pricing and the ability of owners to benefit from the value to the grid.
Value to the grid can include deferred or avoided capital expenditure
on additional stationary storage, power electronic infrastructure,
transmission build-out, and more®. When the remaining battery capa-
city drops to between 70-80% of the original capacity, batteries gen-
erally become unsuitable for use in EVs’. However, these batteries at
vehicle EoL (hereafter termed retired batteries) may still have years of
useful life in less demanding stationary energy storage applications
and represent substantial value to the grid®.

The utilisation of EV batteries could improve the flexibility
of supply while reducing the capital costs and material-related
emissions associated with additional storage and power-electronic
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infrastructure. However, the total grid storage capacity of EV bat-
teries depends on different socioeconomic and technical factors
such as business models, consumer behaviour (in driving and
charging), battery degradation, and more”'°. Previous global-level
studies, including those on vehicle-to-grid capacity>"'* and retired
battery capacity’”” are informative. However, they rarely consider
several important factors that determine storage opportunity, such
as non-linear, empirically-based battery degradation and neglect the
impact of battery chemistry altogether;"*'® geographical and/or
temporal temperature variance (which impacts battery degradation);
and, driving intensity by vehicle type in different countries/regions
(which constrains the total capacity available during the day). Addi-
tionally, consumer participation in the vehicle-to-grid market and
utilisation of retired batteries in the second-use market impact the
actual grid storage capacity'®, both of which are important but rarely
quantified.

Here we link three models and databases to assess the global grid
storage opportunity of EV batteries by 2050 for both vehicle-to-grid
applications and EoL opportunities (see Fig. 1, Methods, and Supple-
mentary Fig. 1). We cover the main EV battery markets (China, India,
EU, and US) explicitly, and combine other markets in a Rest of the
World region (RoW). We first use a dynamic battery stock model to
estimate future battery demand as part of transport fleets per region
(Supplementary Fig. 2). The model incorporates two EV fleet devel-
opment scenarios based on the IEA’s (International Energy Agency),
stated policy (STEP) and sustainable development (SD) scenarios. The
STEP scenario incorporates existing EV policies only, while the SD
scenario is compatible with the climate goals of the Paris agreement
and sees a larger EV fleet. The scenarios include two battery chemistry
sub-scenarios to capture different technological paths: one dominated

by lithium nickel cobalt oxides (NCX, with an “X” denoting manganese
or aluminum, i.e., NMC/NCA) and another dominated by lithium-ion
phosphate or (LFP). Market shares of NCX and LFP batteries are
assumed to reach 98% and 2% in the NCX path by 2050, respectively,
and 40% and 60% in the LFP path (see Supplementary Fig. 3 for detailed
market shares over time).

These estimates of future demand are linked to an EV driving and
charging behavior model for small, mid, and large-size BEVs (battery
electric vehicles) and PHEVs (plug-in hybrid electric vehicles) based on
daily driving distance distributions for different regions (Supplemen-
tary Figs. 4-6). EV use behavior, battery chemistry, and temperature in
each region are combined with the latest battery degradation data for
NCX*" and LFP'* chemistries to account for region- and chemistry-
specific battery degradation (Supplementary Fig. 7).

We first analyze the technical capacity for short-term grid storage
from vehicle-to-grid and second-use. We then analyze the impact of
different factors on the real-world capacity. For example, we analyse in
detail the impact of different rates of EV owner participation in vehicle-
to-grid markets as well as the impact of different utilisation rates of
retired EV batteries in stationary storage (see Fig. 1 and methods for
further details). Finally, we compare the technical and real-world short-
term storage capacities against scenarios for future storage require-
ments from the literature.

We focus here on short-term energy storage since this accounts
for the majority of the required storage capacity’ and EV batteries are
not well suited for longer-term, seasonal storage due to self-
discharging over time. Short-term energy storage demand is typi-
cally defined as a typical 4-hour storage system, referring to the ability
of a storage system to operate at a capacity where the maximum power
delivered from that storage over time can be maintained for 4 hours.
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Fig. 1| Model framework linking EV use model, battery degradation model, and
dynamic battery stock models. See legend for use of colours. Square, white boxes
indicate model outputs. Please see details for the model framework in the methods

section. USDOE US Department of Energy, FASTSim Future Automotive Systems
Technology Simulator, NREL National Renewable Energy Laboratory, IEA Interna-
tional Energy Agency, SoH State of Health.
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Fig. 2 | Total technical capacity for EV batteries and comparison to grid storage demand. a STEP-NCX scenario. b SD-NCX scenario. ¢ STEP-LFP scenario. d SD-LFP
scenario (see details in Supplementary Table 1). IRENA = International Renewable Energy Agency.

For example, the 4-hour storage capacity of batteries that together
deliver a maximum of 0.25 GW until depletion will be 1 gigawatt hour"
(GWh). The short-term storage capacity and power capacity are
defined based on a typical 1-time equivalent full charging/discharge
cycle per day (amounting to 4 hours of cumulative maximum dis-
charge power per day). This 4-hour threshold is chosen as it is required
by some jurisdictions such as the California Public Utilities Commis-
sion and New York Independent System Operator®’, energy system
analysts anticipate this threshold as the most important to markets”,
and is often the length of time used in the literature®.

We compare our results against storage requirements reported in
the IRENA (International Renewable Energy Agency) Planned Energy
and Transforming Energy Scenarios (with a warming of “likely 2.5°C”
and “well below 2 °C” in the second half of this century, respectively)?,
along with two Storage Lab scenarios (Conservative and Optimistic)®.
Both Storage Lab scenarios result in a warming of “well below 2 °C” by
2100, but differ in the role for grid storage please see Supplementary
Table 1 for more). These scenarios report short-term grid storage
demands of 3.4, 9, 8.8, and 19.2 terawatt hours (TWh) for the IRENA
Planned Energy, IRENA Transforming Energy, Storage Lab Con-
servative, and Storage Lab Optimistic scenarios, respectively. When
assuming a 4-hour storage period for this capacity, this results in
power demand of 850-4800 GW, or, 2500 GW when assuming an
average storage capacity demand of 10 TWh.

Results

Total technical capacity

We define technical capacity as the total cumulative available EV bat-
tery capacity in use and in second use at a specific time while con-
sidering battery degradation and the capacity needed to meet driving
demand. Globally, the SD scenario sees a total technical capacity twice
that of the STEP scenario due to the larger fleet size (see Supplemen-
tary Fig. 8 and Note 1). Globally, the LFP scenario sees a slightly higher
cumulative capacity than the NCX scenario, due to different battery
market shares and the lower degradation of LFP across most countries/
regions (see Supplementary Data 1 for a full comparison). Compared to
the SD-NCX scenario, The SD-LFP scenario sees 2.6 TWh of higher
technical capacity for China, EU, US, and RoW by 2050 compared to
the SD-NCX and a 0.05 TWh lower technical capacity for India (see
Supplementary Note 2). These capacity differences are small com-
pared to the total technical capacity. As shown in Fig. 2, the SD-LFP
scenario has a technical capacity 48% higher by 2030 and 91% higher
than the STEP-NCX scenario by 2050 (3.8 TWh and 2.6 TWh in 2030
and 32 TWh and 62 TWh in 2050, respectively).

Under all scenarios, cumulative vehicle-to-grid and second-use
capacity will grow dramatically, by a factor of 13-16 between 2030 and
2050. Putting this cumulative technical capacity into perspective
against future demand for grid storage we find that our estimated
growth is expected to increase as fast or even faster than short-term
grid storage capacity demand in several projections>* (Fig. 2). Tech-
nical vehicle-to-grid capacity or second-use capacity are each, on their
own, sufficient to meet the short-term grid storage capacity demand of
3.4-19.2 TWh by 2050. This is also true on a regional basis where
technical EV capacity meets regional grid storage capacity demand
(see Supplementary Fig. 9).

Vehicle-to-grid opportunities and limitations

Examining the vehicle-to-grid opportunity alone, we find that 21%-26%
of the global theoretical battery capacity (i.e., on-board EV battery
capacity of the entire EV fleet without considering battery degrada-
tion) could be available for vehicle-to-grid services by 2050 (Fig. 3a).
The most important limiting factor is the battery capacity required to
meet consumer driving demands®***. Driving demand can limit the
available capacity by 57%-63%. PHEVs, which make up around 11% of
the theoretical capacity in 2050, are not considered for vehicle-to-grid
as they have a low storage potential due to low capacities. On average,
just 5% of the theoretical capacity is lost due to battery degradation by
2050. These losses vary between 7% in India and 4% in RoW due to
differences in regional factors such as use conditions and temperature
(for full regional results see Supplementary Fig. 10). Overall, taking
these factors into account yields an estimated technical vehicle-to-grid
capacity of 18-30 TWh by 2050 (see Fig. 3).

However, there are other factors that may limit real-world avail-
able storage capacity, primarily the vehicle-to-grid participation rate.
Not all EV consumers will necessarily participate in the market and the
participation rate is defined as the percentage of the technical vehicle
to grid capacity connected to the grid, as shown in Fig. 3b. Participa-
tion rates of 38% and 20% are required to satisfy short-term storage
demands of 10 TWh in 2050 (for STEP-NCX and SD-NCX scenarios,
respectively). In practice, it is likely that EVs with high battery capa-
cities and low degradation will be used for providing vehicle-to-grid
services since these will provide the highest revenue for EV owners*
(the full battery capacity distributions by 2050 across countries/
regions are available in Supplementary Figs. 11-15).

Impacts of deploying second-use batteries in stationary storage
Over time EV batteries degrade to the point they cannot be used to
power vehicles”, generally when the battery’s relative State of Health
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(SoH) drops below 70%-80% (defined as actual capacity as percentage
of original capacity). The relative SoH could fall even lower if a con-
sumer is willing to accept relatively poor battery health and shorter
ranges®. Given their economic, value, size, and end-of-life regulations,
we assume all batteries will be collected”. This is reasonable given that
today’s lead-acid batteries achieve a near 100% collection rate*® and
modern EV batteries are of much higher economic value.

Once collected, batteries are health tested to determine if they
can be used in a less critical second-use application, or if they should
be recycled®. Given the technical and economic feasibility of retired
batteries for second-use®, we consider batteries with an SoH of 70%
and higher only for second-use (a threshold often used in the
literature®). Under this assumption, 74% of retired NCX batteries can
be repurposed for second-use globally, while 26% goes to recycling by
2050. Regional differences can be significant due to the impact of
temperature on NCX battery degradation (see Supplementary Fig. 21
and Supplementary Data 1). In contrast, nearly all LFP retired batteries
can be repurposed.

Business models are still developing, and repurposing is highly
dependent on the technical specifications and market requirements
of second-use applications®. Since battery disassembly is costly®,
battery repurposing will likely happen on the pack level instead of
modules and cell level. Repurposing will consist mainly of rebalan-
cing and reconnecting the retired battery packs. There is no strong
technical reason to model a capacity difference before and after the
repurposing.

Using these assumptions we find that 2.1-4.8 TWh of retired
batteries are estimated to become available as annual technical
second-use capacity globally in 2050, as shown in Fig. 4a. The cumu-
lative technical second-use capacity is expected to reach 14.8-31.5
TWh by 2050 when assuming second-use batteries have a lifetime of
10-years™ (Fig. 4b). The actual second second-use lifespan is uncertain
due to uncertainties surrounding the retired battery SoH, use condi-
tions, among other factors. Another uncertainty is the further battery
degradation during secondary use, which is difficult to model due to
complicated degradation mechanisms of retired batteries®. Further
research into degradation and second-use life span is required to
improve estimates of technical second-use capacity. If the 10TWh
global, short-term storage requirements are met with second-use
batteries alone, then a 68% utilisation rate of retired batteries would be
needed in the STEP-NCX scenario (14.8 TWh technical capacity) and
utilisation rate of 32% in the SD-LFP scenario (31.5 TWh technical
capacity).

Combining vehicle-to-grid participation rate and second-use
utilisation rates

The global technical capacity for short-term grid storage of EV bat-
teries grows rapidly in all scenarios. However, the real-world available
capacity depends strongly on the vehicle-to-grid participation rate and
the second-use utilisation rates. We show the real-world available
capacity as a function of these rates in Fig. 5 (for the STEP-NCX sce-
nario, please see Supplementary Figs. 26-28 for other scenarios).
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Participation and utilisation rates of 50% for vehicle-to-grid and sec-
ond-use, results in a real-world capacity of 25-48 TWh by 2050, far
higher than the short-term storage requirements estimated from the
literature. Changes in vehicle-to-grid participation rates of 23-96%>**’
by 2050 could influence this real-world capacity by as much as -24% to
+21%. When second-use utilisation rates vary from 10%-100%, the real-
world capacity varies between -41% and 12%. Taken together, vehicle-
to-grid participation rate and second-use utilisation rate could alter the
real-world capacity in 2050 by -61% to +32%.

We could see many different combinations of vehicle-to-grid and
second-use to meet the short-term grid storage demands by 2050
(3.4-19.2 TWh). Without any second-use batteries in stationary sto-
rage, grids would require vehicle-to-grid participation rates of a
modest 12-43%. If we assume that only half of second-use batteries are
used on the grid (with others used off-grid, for other EV or storage
purposes, etc.), the required participation rate of vehicle-to-grid drops
to below 10%.

The required market participation rates depend on EV fleet and
battery chemistry scenarios but also are influenced by other factors,
such as battery capacity per vehicle. To investigate the impact of our
capacity assumptions we investigate a scenario where all BEVs are
equipped with a smaller 33kWh battery (instead of 33, 66, and 100 kWh
battery per vehicle for small, mid-size, and large BEVs globally, see
methods for more details). Even in this extreme case, EV batteries can
still meet global, short-term grid storage demand by 2050 with parti-
cipation rates of 10%-40% in vehicle-to-grid and with half second-use
batteries used as stationary storage (see Supplementary Table 4).

Discussion

Previous research has suggested that large EV fleets could exert
additional stress on grid stability (e.g., if the majority of EVs are
charged at grid peak time)*®. Our findings reveal a different perspective
that EV batteries could promote electricity grid stability via storage
solutions from vehicle-to-grid and second-use applications. We esti-
mate a total technical capacity of 32-62 TWh by 2050. This is

significantly higher than the 3.4-19.2 TWh required by 2050 in IRENA
and Storage lab scenarios.

The real-world capacity depends on participation rates for
vehicle-to-grid and utilisation rates for second-use of batteries. Par-
ticipation rates may vary regionally depending on future market
incentives and infrastructure, along with other factors®. The STEP-
NCX scenario presented in Fig. 5 has the lowest technical capacity (32
TWh compared to 62 TWh in the SD-LFP scenario) which already
easily meets requirements at participation rates of 40%-50% for
vehicle-to-grid and with around half second-use batteries used as
stationary storage. At a regional level, even lower participation rates
may still contribute significantly to grid stability. Overall, EV batteries
could meet short-term grid storage demand by as early as 2030 if we
assume lower storage requirements from the literature and higher
levels of participation and utilisation. By 2040-2050 storage
demands are met across almost all scenarios and even low partici-
pation and utilisation rates.

Harnessing this potential will have critical implications for the
energy transition and policymakers should be cognizant of the
opportunities. The participation rate of EV users in the vehicle-to-
grid market is crucial and the government can play an important role
in incentivization. This can include market-based efforts such as
micro-payments for services to the grid, or regulations to require
the connection of commercial fleets to the network while at
depots. Further regulations will be required to ensure the required
hardware and software solutions for EV integration. This may
include smart controllers for consumers in order to facilitate easy
market participation and communication of benefits to EV users®.
Strong re-use regulations will also be necessary to ensure that bat-
teries are recovered at EOL and easily integrated into the grid*.
Finally, policymakers and researchers should aim to understand EV
user behavior over time in order to tackle the key factors preventing
EV users from participating in vehicle-to-grid (which may include
concerns surrounding battery degradation).

As we include a broader set of limitations for the total opportunity
of EV storage our results are difficult to compare with other literature.
Our estimated global EV fleet capacity in 2050 (68-144 TWh) is con-
siderably higher than the estimate from IRENA (7.5-14 TWh)2 This is
due to the IRENA’s very conservative scenarios on future EV fleet size
and battery capacity per vehicle. The IRENA scenario also does not
consider the availability of EV fleet capacity for grid services. While a
different IEA estimate does not extend beyond 2030" it does highlight
the importance of including battery degradation in analyses, which we
include for our projection to 2050 (Fig. 4).

We note several limitations in our approach that could be
improved as data availability improves. For example, while we include
battery degradation by using state-of-art data, future battery degra-
dation is highly uncertain and depends on further technological
breakthroughs both in battery chemistry such as Na-ion, Li-Air, and Li-
Sulphur*' along with developments in battery management systems.
Further, while we derived driving behaviour from empirical data,
future changes in driving habits are uncertain and dependent on var-
ious factors such as EV-related infrastructure. Vehicle chargers
increase in power output over time and 50 kW charging and above is
already common across many countries*. Frequent fast charging
could lead to faster degradation, especially in hotter/colder climates®.
This challenge may be addressed by future technology improvements
to battery materials**, electrode architectures, and optimized synergy
of the cell/module/pack system design®. A further limitation is that we
compare technical and real-world available vehicle-to-grid capacity
with an average 4-hour storage requirement as provided in the sce-
narios by IRENA and Storage Lab. This omits potential differences in
storage requirements at shorter time scales (seconds/minutes).
Improved modelling and data can overcome this gap. It is however
likely that the technical vehicle-to-grid capacity will be sufficient given
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low vehicle utilisation rates of just 5% for many regions*¢. Additionally,
the development of smart charging infrastructure and grid digitization
is likely to provide additional flexibility for matching electricity
demand and supply”’.

A final limitation is that we assume that the rated capacity per
vehicle remains the same in the future and that a small number of large
BEVs might provide large actual vehicle-to-grid capacity (Fig. 3). These
capacities may change further in the future due to policy incentives,
vehicle design, consumer preferences, charging infrastructure, among
other factors. Further, the transportation system could see radical and
fundamental changes. A significant and rapid shift away from private
car use to mass transit, a move to shared electric vehicles, autonomous
driving, and the success of battery swap systems*® could all alter the
available capacity by 2050.

In this study, we build a model framework to combine the EV use
model, battery degradation model, and dynamic battery stock model.
The model framework combines datasets on the real-world daily
driving distance (in the EV use model), battery degradation test data-
sets (in the battery degradation model), and future EV and battery
market data (in the dynamic battery stock model). The framework
allows a structured use of diverse data to build a consistent perspec-
tive on future battery capacity. Within this model framework, this
study provides a more complete understanding of the energy storage
capacity available from EV batteries over time in real-world conditions
and use. Results reveal a substantial opportunity for EV battery storage
to support the stability and flexibility of renewable energy transition,
even under modest consumer participation rates. To harness this
opportunity, regulations and innovative business models will be nee-
ded to incentivize participation.

Methods

Model overview

We develop an integrated model to quantify the future EV battery

capacity available for grid storage, including both vehicle-to-grid and

second-use (see Supplementary Fig. 1 for an overall schematic). The
integrated model includes three sub-models:

(1) A dynamic battery stock model” to estimate total future EV bat-
tery stock and the retired batteries at vehicle EoL. This model
considers EV fleet (i.e., battery stock) development and EV life-
span distribution (Supplementary Fig. 2), as well as future chem-
istry development (see Supplementary Fig. 3 for detailed battery
market shares by chemistry).

(2) An EV use model which includes behavioral factors such as EV
driving cycle and charging behavior (changing power, time, and
frequency), based on daily driving distance data for small/mid-
size/large BEVs and PHEVs (Supplementary Figs. 4-6).

(3) A battery degradation model based on the latest battery degra-
dation test data, to estimate battery capacity fading over time
under different EV use, battery chemistry, and temperature con-
ditions (Supplementary Fig. 7).

Dynamic battery stock model

We build on results and methods from the study” where we built a
global dynamic battery stock model to quantify the stock and flows of
EV batteries. We model future EV fleet development (i.e., battery stock)
until 2050. We determine the retired battery availability based on
battery stock development and EV lifespan distribution (which is
assumed to determine the time when EV batteries are retired). Battery
degradation does affect the technical performance (such as driving
distance capability) of EVs, thus influencing consumers’ choice of time
when EVs come into EoL. Here, for model simplicity, we assume bat-
teries will be retired only when EVs come into EoL. While for EV
battery capacity, we use an average capacity of 33, 66, and 100 kWh for
small/mid-size/large BEVs, and 21, 10, and 15 kWh for small/mid-size/
large PHEVs.

We use two EV fleet scenarios until 2030 from the IEA: the stated
policies (STEP) scenario and the sustainable development (SD) sce-
nario. We further extend these two scenarios to 2050 based on a
review of EV projections until 2050. We use the EV fleet share across
5 main EV markets (China, India, EU, US, and RoW) from the IEA until
2030, and keep the EV fleet share by countries/regions in 2030-2050
the same as the year 2030 due to lack of reliable data after 2030 (see
Supplementary Data 1 for EV fleet scenarios by countries/regions).
Further, we include 56 cities in China, 9 cities in India, 32 cities in EU,
53 cities in US, and 9 cities in RoW. We compile future EV sales share
among 159 cities globally in STEP scenario and SD scenario based on
future EV fleet projections by counties/regions from the IEA* and
other data sources*~° (see Supplementary Data 1).

We consider battery market shares by chemistry based on the
market share projections until 2030 from Avicenne Energy” a spe-
cialist consulting firm, and potential trends until 2050 from battery
technology roadmaps®>>* and commercial activities®*°. Current
battery technology roadmaps issued by the US*?, EU*’, and China®*
focus on the development of high-energy Lithium Nickel Cobalt
Manganese Oxide (transition to low cobalt and high nickel content)
and Lithium Nickel Cobalt Aluminum-based chemistries. NCM and
NCA batteries will likely make up the majority of next-generation EV
Lithium-ion batteries. Future battery chemistry is uncertain after
2030. Existing Lithium Iron Phosphate batteries could also dominate
the EV market, as indicated by recent commercial activities®*®. LFP
battery manufacturers intend to improve the specific energy of
LFP batteries to compete with NCM batteries*. Large-scale
deployments of LFP may help avoid potential material supply
shortage and price spikes associated with NCM and NCA batteries”.
To encompass these market uncertainties, two battery chemistry
scenarios are developed, including an NCX scenario (with X repre-
senting Manganese or Aluminum), and an LFP scenario. The market
shares of NCX and LFP are assumed to reach 98% and 2% in the NCX
path by 2050, and 40% and 60% in the LFP path (see Supplementary
Fig. 3 for detailed battery market shares by chemistry in two
scenarios).

EV use model

We use the daily driving distance (DDD) of EVs based on data from
Spritmonitor.de*, an online quality-controlled, crowd-sourced data-
base containing detailed real-world information on distances traveled,
fuel consumption, and corresponding costs. It is widely used in the
literature, including for estimation of the environmental impacts of
vehicles” and the CO, mitigation potential of EVs*, We build historical
DDD distributions for small/mid-size/large BEVs/PHEVs models, and
explore the EV driving behavior of each EV model based on the cor-
responding DDD distributions. Please see the DDD distributions of
each EV model in Supplementary Data 1. Note DDDs less than 5 km are
excluded.

Further, we compile future DDD in different countries/regions
(Supplementary Figs. 29-32) by assuming the future DDD is propor-
tional to the future energy consumption per vehicle. The future energy
consumption per vehicle in different countries/regions is estimated by
the total EV fleet energy consumption divided by future EV fleet size in
each country/region, which are both projected by the IEA%.

By comparing various DDDs in multiples of EV range, we classify 5
DDD classes to formulate driving intensity and charging behavior.
These 5 classes divided between 0% of the EV range to 200% of the EV
range (i.e., a DDD twice the range of the EV) with intervals of 0-25%,
25-33%, 33-50%, 50-100%, 100-200%. We use the mean DDD of each
class for calculations.

We assume two commuting trips between home and working
place per day on weekdays and two entertaining trips on weekends for
all countries/regions. Each trip distance is half of DDD. According to
the required trip distance, we compile the driving cycle of each trip
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(speed versus time) based on the standard US combined driving cycle
(i.e., 55% city driving and 45% highway driving, see details in Supple-
mentary Figs. 5 and 6, and Supplementary Note 1).

Charging behavior may be affected by charging infrastructure,
amongst others, on-board EV charger, consumer preferences. We
assume an immediate and slow home charging at constant charging
power to full charge for all EV sizes and types because home charging
is the major charging way (see Supplementary Data 1). We assume the
home charging power as 1.92, 6.6, 22, and 1.92 kW for small, mid-size,
large BEV, and PHEV, respectively”. We assume that due to high costs
and limited utility no consumers will install higher power charging
infrastructure at home. We further anticipate the charging behaviors
in terms of changing frequency by comparing the various DDDs in
multiples of the EV range. As driving intensity increases, the higher
charging frequency is assumed for 5 DDD classes (1x every four days,
1x every three days, 1x every two days, 1x each day, and 2x every day
respectively). For example, if the DDD of mid-size BEV (with a 312 km
EV range) increases from 75 km to 625 km, and the battery needs to
be charged more frequently from 1 time per four days to 2 times
per day.

We calculate battery SoC under three EV states: driving, char-
ging, and parked. For the battery SoC during driving, we use FASTSim
model*’, Future Automotive Systems Technology Simulator devel-
oped by National Renewable Energy Laboratory (NREL), to calculate
EV battery SoC second-by-second. The model inputs include the EV
driving cycle, EV configurations, and battery performance para-
meters (specific energy and battery capacity). We select one repre-
sentative EV model from the FASTSim model® for each EV size and
type as EV configuration (Supplementary Table 2), and NCM622 as a
representative chemistry for all EV types; because it was found that
EV configurations and battery performance parameters (such as
specific energy) had small effects on the resulting battery SoC
simulations. For battery SoC during charging, we assume the battery
SoC increases linearly under a constant charging power with a 90%
charging efficiency®. If an EV is parked, the SoC of the battery
is slowly decreasing due to losses caused by battery self-discharging.
A typical self-discharging rate of 5% per month is assumed for
lithium-ion battery®.. Self-discharging occurs due to parasitic che-
mical reactions that consume active lithium and form electro-
chemically inactive species while lithium-ion batteries are at rest.
These parasitic reactions both reduce the SoC of the cell, and also
reduce the total amount of lithium available for cycling. The impact
of self-discharge on the SoH of NCM and LFP batteries is captured in
the battery degradation model we use. Note that for the sake of
battery safety, a portion of battery capacity is unusable (15% for BEVs
and 30% for PHEVs based on the BatPac model®®), therefore we
assume the usable SoC range as 5%-90% for BEV battery and 15%-85%
for PHEV battery.

The battery temperature depends on the heat generation from
chemical reactions inside batteries, amongst others, ambient tem-
perature and environment (such as solar power radiation), battery
management system (air or liquid cooling system to control battery
temperature). The temperature can also vary from cell to cell, module
to module, and component to component in the battery pack. The
modelling of battery temperature is complicated and out of scope of
this study. Here we use city ambient temperature to represent battery
temperature, which is then used to calculate battery degradation. The
main justification for this simplification is that the degradation for
most consumer vehicles is dominated by calendar aging effects, as
light-duty vehicles are only driven for a relatively small fraction of time
throughout their life. For higher vehicle utilisation, neglecting battery
pack thermal management in the degradation model will generally
result in worse battery lifetimes, leading to a conservative estimate of
electric vehicle lifetime. As such our modelling suggests a conservative
lower bound of the potential for EV batteries to supply short-

term storage facilities. Here, we use monthly average temperature of
total 159 cities to capture the effects of geographic and temporal
temperature variance on battery degradation. The temperature data is
collected from®¢, can be found in Supplementary Data 1.

Battery degradation model

Battery degradation is crucially important for determining EV battery
capacity both in use and for second-life applications, but there are still
many open research questions surrounding the importance of EV
driving habits, charging behavior, and battery chemistries on capacity
development®’. Degradation model approaches include physics-based
degradation models®® as well as machine learning models®*”° though
there is no agreed-upon best practice”. Here, to balance the com-
plexity and accuracy of the battery degradation model, we develop a
semiempirical battery degradation model based on method from™.
The model considers both calendar life and cycle life aging (Eq. (1)),
assuming a square-root dependence on time for calendar life (degra-
dation rates depend on temperature and SoC, see Eq. (2)) and a linear
dependence on energy throughput for cycle life (degradation rates
depend on temperature, Depth-of-Discharge (DoD), and Current rate
(Crate) see Eq. (3)).

q= 1- q1oss,Calendar — qLoss,Cycling (1)

-E, /1 1 afF (U, U
GLoss,Calendar szal - exp <R—7£1 <T - m)) - €Xp (F (Ta - %)) . \/E

@)

qLoss,Cycling =kCyc : (A ° DOD+B) : (C ’ Crate +D) : (G' (T - Tref)2 +H) -EFC
3

where q is the relative battery degradation, qyoss, calendar iS the relative
calendar life degradation, Qioss, cycing iS the relative cycling life
degradation, T is temperature, t is time (unit: days), EFC is equivalent
full cycles. Note R is the universal gas constant (8.3144598 ) mol* K?),
T.er is the reference temperature (298.15K), F is Faraday constant
(96485 C mol™), ke, (unit: days®?), E, (unit: ) mol® K?), and « (no unit) are
fitting parameters for calendar life degradation, and kcy. (unit: EFC?).
A, B, C, D, G, and H (no units) are fitting parameters for cycling life
degradation. The value of the anode-to-reference potential, U, (unit: V),
is calculated from the storage SoC using the Egs. (4) and (5).

Uy(xq)=0.6379 +0.5416 - exp(—305.5309 - x,) +0.044 - tanh <_ %)
01978 - tanh (%= 2O _ g g5y (e 0017
0.1978 tanh( 0.0854 ) 0.6875 tanh( 0.0529
B X, — 0.5692
0.0175 - tanh (W)
“4)

where x,, which represents the lithiation fraction of the graphite, is a
simple linear function of the SoC:”

X4(SOC) = X4 +SOC - (Xg100 — Xq4,0) 5)

where X, o is the lithiation fraction of the graphite at 0% SoC and x,, 100
is the lithiation fraction of the graphite at 100% SoC. x, o equals to
0.0085, and X,, 100 equals to 0.78.

To obtain these fitting parameters, we collect publicly available
battery degradation data, including calendar life aging and cycle life
aging, for NCM' and LFP"*"" chemistry. These data sets represent
state-of-the-art lifetime performance for each chemistry; the LFP cells
shown reach between 5000 and 8000 equivalent full cycles before
reaching 80% remaining capacity, 4000~5000 equivalent full cycles
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for NCM cells. This experimental data was then fit with the semi-
empirical model Egs. (1), (2), and (3) using a non-linear least squares
solver in MATLAB. The NCM model has no C,, dependence, due to
lack of data in the aging data set, so the parameters C and D are simply
set at 0 and 1. We first fit the calendar fade data with the time-
dependent portion of the model (qyoss, calendar, Parameters ke, E,, and
«); the parameter o is bounded between -1 and 1, with other para-
meters unbounded. The parameters for the cycling fade (A, B, C, and
D) are optimized on the cycling aging data. For both LFP and NCM, the
raw cycling fade data was processed prior to optimizing a model based
on expert judgement. For LFP, only cells with linear fade trajectories
and data for at least 5000 EFCs were used for model optimization. For
NCM, only data after 200 EFC at T>5°C and dataat q<0.85at T<5°C
was used for the optimization of the NCM cycling model parameters.
The optimized parameters for the LFP and NCM degradation models
are shown in Supplementary Table 3. Fitting results are shown in
Supplementary Fig. 33 and degradation rates are shown in Supple-
mentary Fig. 34.

Note that we assume NCA battery has the same degradation
patterns as NCM battery due to a lack of state-of-the-art open-
source data for NCA batteries. Besides cell chemistry, capacity
degradation characteristics vary with cell design, manufacturing
process, and proprietary additives®””*, which is out of scope of this
study. We use cell degradation patterns to represent battery pack
degradation without consideration of cell-to-cell and module-
module differences.

For simulation of the degradation under the EV driving loads
(battery SoC evolution over time) and during dynamic temperature
changes, the degradation model is reformulated to solve for the
degradation occurring during consecutive timesteps”. We choose a
timestep of 1 day for making SoH updates and update the SoC time-
series for each day by the current SoH. At each timestep, the tem-
perature is the average temperature during the simulation month at
city from different countries/regions. Average SoC, DoD, C;,, and the
number of EFCs is extracted from the SoC timeseries. Average SoC
refers to the time-averaged value of SoC. DoD is the difference
between the maximum and minimum values of SOC. C,, is calculated
using the absolute change of SoC per second, and then taking the
average of all C,,.s greater than O during the entire timeseries. The
number of EFCs is calculated by summing the changes to SoC over the
timeseries. Dependence of the expected degradation rate on current
SoH is incorporated by calculating a ‘virtual time™. The virtual time is
found by inverting the calendar degradation equation to solve for
time:

—E, (1 1 aF (U, U 2
Lyirtual = (qCurrent/kCal - exp (T; : (T - Tref)) - exp (i . (Ta - %) ))

(6)

The degradation change Aq during any given timestep At is then cal-
culated by the following equation:

- —E, (1 1 aF Uy Uary
39= (kew- o0 (gt (7-14) ) oo (% (7-72)) 2
"V tuirtual+At> ' At_*'kCyc : (A . DOD+B) . (C . Crate+D)

(G- (T = Toep)? +H) - AEFC
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For cycling fade, the virtual EFC does not need to be calculated, as
the degradation rate is constant with respect to the change of EFC
during any given timestep. This reformulation of the degradation
model captures the path-dependent degradation observed in real-
world battery use. See Supplementary Note 2 for modelled battery
degradation for NCM and LFP.

Available capacity from EV batteries

Vehicle EoL does not necessarily correspond to battery EoL. With
technological improvements in battery reliability and durability,
many batteries in EoL vehicles may still have years of useful life at the
end of vehicle end of life. Vehicle battery EoL is usually as defined the
time at which remaining battery capacity is between 70 and 80% of
the original capacity’. We assume an EV lifespan distribution, used in
our previous work?”, to account for EoL of EV. In our modelling
approach, the vehicle lifespan distribution determines when bat-
teries are not used in EVs any more (i.e., retired batteries). Retired
batteries may have quite different capacity under different use con-
ditions. When vehicles reach EoL due to consumer choices or other
issues before the battery pack reaches 70% relative capacity, retired
batteries will still have over 70% relative SoH and are assumed to be
used in a second-life application. When battery pack reaches 70%
relative SoH before a vehicle reaches its EoL, we assume that bat-
teries may be still be used in EVs for low distances-driving. Retired
batteries from such vehicles will have lower than 70% relative SoH
and are assumed to be recycled rather than for a second-use. We
assume any battery with a relative SoH lower than 60% is recycled
and removed from potential grid storage capacity””. However, even
batteries with a relative SoH of 60-70% have a limited economic
value and can have relatively high safety risks. (methods)*.

We define technical vehicle-to-grid capacity as the availability of
EV battery stock capacity for vehicle-to-grid application, considering
the capacity reserved for EV driving, the capacity of PHEVs that will not
participate in vehicle-to-grid due to low capacity, and capacity fade
due to battery degradation. We further define the actual vehicle-to-
grid capacity as the availability of technical vehicle-to-grid capacity for
the grid under different consumer participation rates in the vehicle-to-
grid business. Results focus on investigating under which participation
rate can actual vehicle-to-grid capacity meet grid storage demand.

The technical second-use capacity is defined as the retired bat-
teries capacity that can be repurposed (i.e., retired batteries with over
70% relative SoH). We further investigate actual second-use capacity
under different utilisation rates (i.e., not all retired batteries will be
deployed in second-use). The results are intended to determine the
required utilisation rate for the second-use battery to meet grid sto-
rage demand.

We investigate the real-world capacity as a function of both
vehicle-to-grid participation rate and second-use utilisation rates. We
further analyze the market participation rates and utilisation rates that
are required to meet short-term grid storage demand globally.

Impact of battery capacity assumptions

The model is highly influenced by the battery capacity per vehicle.
Therefore, we conduct a sensitivity analysis of battery capacity per
vehicle by assuming all BEVs are small BEVs equipped with a battery
with a capacity of 33 kWh. This assumption is based on three argu-
ments: first, small BEVs could provide most of the daily driving
demand for consumers, even though they have a lower driving range
than large BEVs equipped with a high-capacity battery. Second, the
development of widespread EV charging infrastructure, including fast
charging technology, could help to overcome the range anxiety of
small BEV owners. Third, the increasing use of small BEVs would
reduce demand for batteries and materials, along with lowering
embodied GHG emissions of those batteries.

Data availability

The datasets, including EV fleet size by country, EV sales share by cities,
and battery chemistry share, are all deposited in an Excel file (https://
doi.org/10.6084/m9.figshare.21542472.v1). These raw data are used for
the dynamic battery stock model for quantifying future battery flows.
Please see the dynamic battery stock model from this link (https://doi.
org/10.6084/m9.figshare.13042001.v4). City ambient temperature and
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its effects on battery degradation are also deposited in the Excel file,
while the code for estimating battery degradation, which is under
privacy and license, is available upon reasonable request.
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