

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

Development of HVPE-Grown III-V Solar Cells Passivated with AlInP

Jacob T. Boyer, Kevin L. Schulte, Aaron J. Ptak, John Simon National Renewable Energy Laboratory, Golden CO PVSC 49 - Philadelphia, PA

Outline

What is needed to produce III-V PV at low cost?

 \rightarrow Hydride Vapor Phase Epitaxy (HVPE) can address these

HVPE enables low-cost precursors

- Hot wall, atmospheric pressure epitaxial deposition
- Group V via hydride; Group III transport via chloride
- High precursor utilization (low V/III)
- Low-cost precursors (10x lower cost than organometallics)
- High growth rates (~530 µm/h)*

*McClure et al., Appl. Phys. Lett. **116**, 182102 (2020) NREL | 4

Towards High Throughput: Future HVPE reactor scale-up plans

High R_{growth} (µm's/min!) + In-line tool design = **high throughput ≈ 70 OMVPE's!**

Stage 2: Throughput per tool: 75 wafers/h Production capacity: 2 MW/year

Benefits of Al-containing III-V materials

- Al greatly expands III-V As/P material palette
- AlInP enables widest E_G @ GaAs lattice constant
- AlGaInP has large region of tunable

Need for AlInP – Passivated Solar Cells

Outline

- **1 Need for AlInP in Hydride Vapor Phase Epitaxy (HVPE)**
- **2 Challenges and Solutions for AlInP growth in HVPE**
- **3 Developing HVPE-AlInP for Solar Cells**
- **4 Assessing Passivation of AlInP in 1J GaAs Solar Cells**
- **5 Implementing AlInP in 2J GaInP/GaAs Solar Cells**
- **6 Progress of HVPE-Grown PV**
- **7 Conclusions & Future Directions**

Challenge of Growing Al-Containing Materials by D-HVPE

Al(Ga)InP thought to be impossible by HVPE

"Likewise, **(HVPE) growth of all Al** containing alloys is also **practically impossible** due to the chemistry of the chlorides of Al, the large Al distribution coefficient and the extremely reactive nature of Al chlorides. Thus, it was recognized that AlGaInP alloys would be grown only using either molecular beam epitaxy (MBE) or organometallic vapor phase epitaxial (OMVPE)..." Yuan and Stringfellow, et al., J. Appl. Phys. **57**, 1380 (1985)

Kumagai *et al*. phys. stat. sol. (c) 0, No. 7, 2498 – 2501 (2003) Schulte et al., *ACS Appl. Energy Mater*. **2**, 8405-8410 (2019) 科答

 $A|Cl₃ - A$ Less Reactive Al Precursor

AlCl₃ - 'good' precursor \rightarrow low reactivity with reactor quartz AlCl - 'bad' precursor \rightarrow high reactivity with reactor quartz \rightarrow Can contribute to Si and O impurities

NATIKONAL RENEWABLE ENERGY LABORATORY

Solution: Generate AlCl₃ without AlCl at lower temperature

Molar fraction of Al-chlorides generated from HCl

Ex-Situ AlCl₃ Source

- React Al and HCl @ 400°C to favor AlCl_3 generation
- 4 orders of magnitude less AlCl

M. Pons et al. Journal of Crystal Growth 468 (2017) 235–240236

Solution: Generate AlCl₃ without AlCl at lower temperature

Ex-Situ AlCl₃ Source

Generate $AICI₃$ just above reactor at colder temperature

Al ampoule renovated – closer to reactor for easier operation with less maintenance

Solution: Use Uncracked Hydrides and AlCl₃ to Grow AlInP

Hydride-Enhanced Growth Regime Enhances Growth *Kinetics* $\frac{1}{2}$ or $\frac{1}{2}$ from thermodynamics predicts $\frac{1}{2}$ is too stable to $\frac{1}{2}$ Thermodynamics predicts AlCl₃ is too stable to grow AlInP

Schulte et al., *ACS Appl. Energy Mater*. **2**, 8405-8410 (2019)

Solution: Use Uncracked Hydrides and AlCl₃ to Grow AlInP

Verified that we have wide bandgap material commensurate with Al(Ga)InP!

Outline

- **1 2 3 4 5 Need for AlInP in Hydride Vapor Phase Epitaxy (HVPE) Challenges and Solutions for AlInP growth in HVPE Developing HVPE-AlInP for Solar Cells Assessing Passivation of AlInP in 1J GaAs Solar Cells Implementing AlInP in 2J GaInP/GaAs Solar Cells**
	- **6 Progress of HVPE-Grown PV**
	- **7 Conclusions & Future Directions**

AlInP in HVPE-Grown PV Device Structures

AlInP window requirements:

- Smooth morphology for inverted growth
- Doping to $n = 5 \times 10^{18}$ cm⁻³ or higher

Surface Morphology

- Smooth morphology good for inverted devices (grown before active layer)
- R_q : 1.66 nm from 5x5 µm atomic force micrograph

Carrier Concentration

• *N*-type doping at 5 x 1018 cm-3 achieved with H_2 Se

Towards Implementing AlInP in PV Devices

• Achieved smooth AlInP with target doping for use as window layers

Dynamic Secondary Ion Mass Spectrometry

- Significant [Si] and [O] observed in AlInP
- AlInP growth has minimal effect on other layers
- Less [O] in thinner layers surface segregation likely_{NREL} | 18

Outline

GaAs Solar Cells with AlInP Passivation

- Unchanged EQE at long wavelengths demonstrates equivalent passivation ability of AlInP
- Short wavelength EQE accounts for J_{SC} boost

GaAs Solar Cells with AlInP Passivation

- GaInP previously demonstrated good passivation; no O or Si impurities
- AllnP passivation improves J_{SC} & η; no change in V_{OC} & FF

 \vert 21

Outline

1 2 3 4 5 6 7 Need for AlInP in Hydride Vapor Phase Epitaxy (HVPE) Challenges and Solutions for AlInP growth in HVPE Developing HVPE-AlInP for Solar Cells Assessing Passivation of AlInP in 1J GaAs Solar Cells Implementing AlInP in 2J GaInP/GaAs Solar Cells Progress of HVPE-Grown PV Conclusions & Future Directions

Unpassivated GaInP/GaAs (2J) Solar Cells

• Without AlInP, use thin 30 nm emitter to optimize current collection, lose R_{sheet}

AlInP Passivated GaInP/GaAs (2J) Solar Cells • Passivated 2J: → 28.0% efficiency, certified AM1.5G

NREL | 24

GaInP/GaAs (2J) Solar Cells with AlInP Passivation

Subcell IQE

- AlInP improves top cell current potential by 1.3 mA/cm2
- Bottom cell is unchanged, no effect on layers grown after
- Slope suggests some parasitic absorption from TJ **– add Al to future 2J**

Adding passivation improves top cell current at **all wavelengths**

GaInP/GaAs (2J) Solar Cells with AlInP Passivation

Subcell Electroluminescence (EL)

• AllnP Passivation improves top cell V_{OC} by 40 mV – **majority of V_{oc} boost**

GaInP/GaAs (2J) Solar Cells with AlInP Passivation

J-V @ diode turn on

• Increased emitter thickness possible with AlInP passivation

 \rightarrow Fill factor improvement due to reduced R_{series} and R_{sheet}

GaInP/GaAs (2J) Solar Cells with AlInP Passivation • Jsc, Voc, FF improved with AlInP passivation → 28% efficiency, certified AM1.5G

Outline

- Initial demonstration of AlInP within PV by HVPE reaches 26%(1J)/28%(2J)
- Add Al to other layers, top cell BSF and tunneling diode
	- *Shoji et al. already demonstrated V*_{OC} boost by using AlGaInP BSF
- Optimize GaInP with passivation

Y. Shoji, et al., *Solar RRL*, p. 2100948, Dec. 2021

Pathways toward higher n • Room to expand upon this initial demonstration with AlInP

[1] Y. Shoji, et al. *Prog Photovolt Res Appl*, pip.3454, Jul. 2021 [2] Y. Shoji, et al., *Solar RRL*, p. 2100948, Dec. 2021

Learning curve of PV grown in D-HVPE

• Steady progress in D-HVPE-grown PV

• AlInP enables further growth

Conclusions & Further Directions

- *Incorporate Al in other layers within PV structure to increase transparency*
- *Understand origin and incorporation of O/Si impurities*
- *Exploring Al generation temperature, carrier flow rates, V:III, etc.*
- Initial demonstration of HVPE-PV with AlInP reaches 26% (1J Record) and 28% (2J) with room to improve
- Current AlInP material yields the anticipated cell improvements without any degradation or barriers to further development
- **→ Addresses last major barrier to achieving D-HVPE-grown PV at parity efficiency with state of the art III-V PV**

Current HVPE team at NREL

Anna Braun

Dennice Roberts John Simon

- The authors would like to acknowledge David

Guiling for materials growth and Evan Wong

for cell processing.

 This work was authored in part by the National
 QUESTIONS Guiling for materials growth and Evan Wong for cell processing.
- This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The information, data, or work presented herein was funded by the DOE's Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number 34358. NREL acknowledges support from the Operational Energy Capability Improvement Fund (OECIF) of the U.S. Department of Defense (DOD). The authors wish to thank R. Darling of the Office of the Undersecretary of Defense for Acquisition and Sustainment, Arlington, VA, USA for guidance and support. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government.

www.nrel.gov / jboyer@nrel.gov

NREL/PR-5900-82749

CINREI **Transforming ENERGY**

Using Uncracked Hydrides and AlCl₃ to Grow AlInP

- Uncracked PH_3 raises the thermodynamic driving force of growth, especially for $AICI₃$
- Difference in growth from InCl vs. AlCl₃

• *However,* kinetics enable near unity $[A|Cl₃]/[InCl]$ to grow LM Al₅₃In₄₇P

Y. Shoji, et al., *Solar RRL*, p. 2100948, Dec. 2021

Learning curve of PV . Many PV grown in D-HVPE

• Many PV architectures demonstrated

Challenges of Growing AlInP in HVPE

Al Precursor Reactivity with Quartz

- AlCl reacts strongly with quartz (SiO₂) **reactor**
- $\overline{A|Cl_3}$ has low reactivity with quartz at typical growth temperatures

Precursor Growth Thermodynamics

- AICI: large driving force for growth
- \rightarrow AlP predeposition
- AICI₃: small driving force for growth
- **needs kinetic boost**
- **InCI:** far from either AlCl or AlCl₃
- \rightarrow **theoretically impossible to grow AlInP**

Schulte et al., *ACS Appl. Energy Mater*. **2**, 8405-8410 (2019)

Deposition Temperature (°C)

Molar fraction of Al-chlorides generated from HCl

<u>Ex-Situ AlCl₃ Source</u>

- Generate $AICI₃$ just above reactor at colder temperature
- React Al and HCl $@$ 300 400 $°C$ to favor AlCl_3 generation
- 4 orders of magnitude less AICI

M. Pons et al. Journal of Crystal Growth 468 (2017) 235–240236

Solution: Hydride Enhanced Growth to Enhance Kinetics

 \rightarrow Apply hydride enhanced growth kinetics to growth of Al - materials!

Shaw, D.W., *J. Electrochem. Soc.* **117**(5) pp. 683-687, (1970).

Demonstrating Growth of AlGaAs via AlCl₃ & Uncracked AsH₃

