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Abstract— A hybrid PV plant (HPP) combines a photovoltaic 

(PV) plant with a battery energy storage system (BESS), which is 
considered a promising step towards the future of renewable 
power plants by the U.S. Department of Energy. When the 
renewable penetration reaches a significant level, a hybrid PV 
plant can bid in as a controllable thermal plant in the future 
electricity market. In this study, a bidding and BESS scheduling 
model is proposed for the HPP. The robust optimization (RO) 
technique has been utilized to identify the worst-case scenario of 
uncertainties during the bidding process. To address the overly 
conservative issue of the single-stage RO, we have decoupled the 
BESS schedule for arbitrage and PV capacity firming by a two-
stage RO formulation. By comparing the output of single-stage 
RO and two-stage RO, the two-stage RO bids and schedules in a 
more aggressive manner, which increases the income of HPP. 
Also, the penalty of under-generation is considered in our model 
so that the day-ahead bidding decision and arbitrage schedules 
can be adjusted based on the potential UNDER-GENERATION 
penalty. Because the proposed model is non-convex and contains 
multi-stages, the Column-and-Constraint Generation (C&CG) 
algorithm is applied to the model as the solution. The proposed 
model has shown better economic performance compared to a 
state-of-art single-stage bidding method in case studies. 

Index Terms— Hybrid PV plant, bidding model, BESS 
scheduling, two-stage robust optimization, C&CG algorithm 

I. INTRODUCTION 

To have a seamless transformation towards a carbon-free 
energy system, the number of thermal power plants needs to 
be significantly reduced. Future renewable generation plants 
must also take some responsibility for system balancing. A key 
difference between traditional thermal plants and PV plants is 
their generation reliability. The output of a thermal power plant 
is usually viewed as deterministic if a schedule has been made. 
On the contrary, the output of a PV plant still contains 
uncertainty, and therefore more likely to encounter an under-
generation penalty. The constant uncertainty poses a great 
challenge for PV plants in achieving optimum market behavior. 
The concept of A hybrid PV plant (HPP) combines a plant-
controlled BESS with a PV plant to eliminate the generation 
uncertainty [1]. Under this context, this paper studies the day-
ahead bidding method of an HPP, and the BESS scheduling 
method cooperates with the bidding decision. 

In this study, the HPP is considered a price-taker in the 
power market, which assumes its limited capacity compared to 
the thermal power plants. As a price-taker, the major difficulty 
in achieving optimal bids and schedules comes from the 
uncertainties of the day-ahead market information and the PV 
generation. 

One feasible approach to address uncertainties is to use the 
stochastic programming technique, which characterizes 
uncertainties with prepared scenarios. Stochastic 
programming-based bidding methods calculate the bidding 
incomes of a set of uncertainty scenarios and maximize those 
incomes' expectations [2]-[4]. This approach considers 
uncertainties in the modeling process to some extent, but its 
performance relies heavily on the quality of prepared scenarios 
[5]. An alternative roadmap uses RO to characterize the 
uncertainty as a prepared uncertainty set. The formulation 
methodology of robust bidding models has been introduced 
[6]-[9]. The main idea is to maximize the income of a power 
plant under the worst-case scenario of the market uncertain set. 
However, the solution of RO-based methods is often 
considered overly conservative. While this issue may be 
addressed by reducing the conservative level of uncertainty 
sets, the uncertainty set's representativeness to uncertainties 
will decrease. 

In addition, hybrid PV power plants also need to conduct 
scheduling for the BESS operation. The BESS schedule should 
cooperate in the bidding decision. We consider two BESS 
applications in an HPP: arbitrage and PV capacity firming. 
These two applications are generally executed within two days 
in the following time sequence. During the bidding day, the 
arbitrage schedule will be first determined. For example, a 
BESS will be scheduled to store energy when the electricity 
price is low and discharge the stored energy when the price 
goes high. Based on the arbitrage schedule, the day-ahead bid 
decision for the HPP can be made and sent to Independent 
System Operator (ISO). During the transaction day, the under-
generation will be revealed, which is based on the bid. Then, 
capacity firming can be conducted by discharging stored 
power to compensate for the under-generation.  

In our problem, a bidding model is expected to output the 
next day's hourly bidding strategy for the HPP and operational 
schedule for BESS by taking the forecasted day-ahead PV 
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generation and market price as inputs. Ref. [8], [9] proposed 
robust bidding models that considered day-ahead BESS 
scheduling. However, they are based on the single-stage RO 
formulation, which assumes the capacity firming and arbitrage 
are scheduled at the same time in the day-ahead market. The 
solution of the single-stage RO tends to be overly conservative 
[10]. To address this issue, a bidding model based on the two-
stage robust formulation is proposed in this study. BESS 
schedules of arbitrage and PV capacity firming are decoupled. 
We also assume capacity firming is conducted after the 
arbitrage is scheduled and the uncertainty is revealed. Based 
on this assumption, the worst-case scenario of PV uncertainties 
can move to a more aggressive point [10]. Thus, our model can 
increase the HPP’s income without changing the conservative 
level of the PV uncertainty set. Moreover, we notice that the 
execution of arbitrage and capacity firming have different 
objectives. To merge them within one model, we involve the 
calculation of the under-generation penalty to bridge their 
multi-objectives. Thus, the day-ahead bidding decision and 
arbitrage schedules can be adjusted based on the under-
generation penalty received on the transaction day. 

Our contributions can be summarized as follows: A two-
stage robust bidding (TSRB) model is proposed for HPP to 
simulate the bidding operation process from arbitrage to PV 
capacity firming, and integrate the under-generation penalty 
into the day-ahead scheduling. The proposed TSRB model 
increases the income of HPP compared to a state-of-art single-
stage bidding model. 

The rest of this paper is structured as follows: The 
formulation of the TSRB model is introduced in Section II. 
Then, the C&CG algorithm is applied to solve the proposed 
TSRB model in Section III. Case studies to verify the proposed 
model are demonstrated in Section IV. Finally, we conclude 
our work in Section V. 

II. PROBLEM FORMULATION 
This section introduces the two-stage model (TSRB) to 

calculate BESS's optimal bidding decisions and schedules for 
the HPP. To provide a more intuitive view, a proposed two-
stage operation for future HPPs is as shown in Fig. 1. Then, the 
TSRB model is formulated to simulate this operational process. 
And the solution method of the TSRB will be described in the 
next section. 

The flow chart in Fig. 1 demonstrates the process from 
submitting bids to delivering power to the grid. The simulated 
process lasts for two days; the first day is the bidding day and 
the second day is the power transaction day. On the first day, 
the PV generation and market pricing uncertainty sets are 
collected as the initial conditions. The HPP first schedules the 
charge/discharge of the plant-controlled BESS for arbitrage 
during the power transaction. A bidding decision will then be 
submitted to the ISO based on the arbitrage schedule. At this 
point, the first day’s bidding income can be calculated. We 
simulate the transaction day to capture the possible under the 
generation charge. The RO technique is applied to identify the 
worst-case scenario of PV generation, which will lead to the 
heaviest under-generation penalty. Capacity firming is 
scheduled to reduce the under-generation penalty by reserving 
power in BESS for the next-day operation. Therefore, the 

penalty reduction based on the original under-generation 
penalty can also be calculated. By merging the arbitrage and 
capacity firming schedules, we can obtain the total BESS 
schedules. 

A proposed two-stage model captures the two-day bidding 
and operation process. The objective of the model is to 
maximize the income of the HPP. The detail of the proposed 
model is as follows: 

A. Bidding Day Calculations (Stage I) 
The output of the model includes optimal hourly bid power 

Pt
bid  and schedules of BESS. BESS schedules have been 

decoupled into two application-oriented variables. For each 
hour t in a day, PB,t

arb+/PB,t
arb-  denote the arbitrage-oriented 

charge/discharge of BESS, and PB,t
firm+/PB,t

firm-  denote the 
firming-oriented charge/discharge. In parallel, we also 
decouple the energy level of BESS Et  into two variables, 
Et

arb and Et
firm, which have the following relationship: 

Et = Et
arb + Et

firm. (1) 

We assume the power generated by PV can be used for 
selling to the market PPV,t

sell  or charging the BESS. Therefore, on 
the bidding day, we have the following: 

0 ⩽ PPV,t
sell + PB,t

arb+ ⩽ 𝑃𝑃PV,t, (2) 
where 𝑃𝑃PV,t is the upper boundary of PV generation. We also 
assume the hourly bid power Pt

bid  can come either from PV 
generation or the discharge of BESS: 

Pt
bid = PPV,t

sell + PB,t
arb-. (3) 

The BESS has its rated power PB
Rate. In line with [6], [9], 

binary variables ut
+ and ut

-  are used to control the 
charge/discharge mode of the BESS: 

0 ⩽ PB,t
arb+ ⩽ PB

Rate⋅ut
+, (4) 

0 ⩽ PB,t
arb- ⩽ PB

Rate⋅ut
-, (5) 

ut
+ + ut

- ⩽ 1, ut
+, ut

-∈{0,1}. (6) 
The energy level of BESS has the following constraints: 

Et
arb = Et-1

arb + PB,t
arb+⋅ηc − PB,t

arb-⋅
1
η𝑑𝑑

, (7) 

0 ⩽ Et
arb ⩽ Emax. (8) 

where ηc/η𝑑𝑑 denote the charge/discharge efficiency of the 
BESS, and Emax is the capacity of the BESS. 

 
Fig. 1.  Proposed two-stage operation for future HPPs. The TSRB 

model is to simulate this operation and maximize {Bidding Income - 
Penalty of Under-Generation + Penalty Reduction}. 
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The first-day bidding income under the worst-case price 
uncertainty can be calculated as follows: 

income1 = min
λt∈Ξt

λ
� λt⋅Pt

bid

t∈T

-� cB⋅(PB,t
arb++PB,t

arb-)
t∈T

(9) 

where λt is the uncertain price ($/MW) within the uncertainty 
set Ξt

λ. We also consider the operational cost of BESS in (9), 
cB is the coefficient of BESS operational cost ($/MW). 

B. Power Transaction Day Calculations (Stage II) 
In the simulated transaction day, we introduced the slack 

variables PB,t
adjust and PPV,t

UG  to balance the scheduled PV output 
and actual PV generation PPV,t.  

(PPV,t
sell − PPV,t

UG ) + (PB,t
arb+ − PB,t

adjust) + PB,t
firm+ ⩽ PPV,t. (10) 

PPV,t
UG  denotes the under-generation of the HPP, which has: 

PPV,t
UG ⩽ PPV,t

sell . (11a) 
PB,t

adjust denotes the adjustment to the arbitrage schedule (charge 
curtailment) based on worst-case under-generation, which has: 

PB,t
adjust ⩽ PB,t

arb+. (11b) 
The firming-oriented charge/discharge of BESS is also and 
controlled by ut

+ and ut
-, because a BESS is unable to charge 

and discharge simultaneously at time t: 
0 ⩽ PB,t

firm+ ⩽ PB
Rate⋅ut

+ (12) 
0 ⩽ PB,t

firm- ⩽ PPV,t
UG (13) 

0 ⩽ PB,t
arb+ − PB,t

adjust + PB,t
firm+ ⩽ PB

Rate (14) 
0 ⩽ PB,t

arb- + PB,t
firm- ⩽ PB

Rate⋅ut
- (15) 

Constraints (14)-(15) guarantee the charge/discharge of BESS 
are limited by the rated power. Also, the energy level of BESS 
is limited by its capacity: 

Et
firm = Et-1

firm + (PB,t
firm+ − PB,t

adjust)⋅ηc − PB,t
firm-⋅

1
η𝑑𝑑

, (16) 

0 ⩽ Et ⩽ Emax. (17) 
The worst-case under-generation penalty that considers the 

capacity firming and the operational cost can be calculated as 
follows: 
              penalty2 = max

ρt∈Ξt
ρ∑ ρt⋅(PPV,t

UG -PB,t
firm-)t∈T  

+∑ cB⋅(PB,t
firm++PB,t

firm--PB,t
adjust)t∈T .        (18) 

where ρt  is the uncertain under-generation penalty ($/MW) 
within the uncertainty set Ξt

ρ . The total under-generation 
penalty is calculated based on the difference of under-
generation power and the reserved power by BESS for 
capacity firming. The under-generation power is all caused 
by PV as the BESS discharge is not uncertain. 

C. The Objective Function Bridges Two-Stage 
The objective is to maximize the worst-case net income: 

max
PPV,t

sell , PB,t
arb+, PB,t

arb-,

Et
arb, ut

+, ut
-, Pt

bid

income1+ min
PPV,t∈Ξt

PV
max

PPV,t
UG , PB,t

adjust,PB,t
firm-, 

 PB,t
firm+, Et

firm, Et

− penalty2(19) 

D. The Proposed Two-Stage Robust Bidding Model 
The two-stage bidding model is formulated as follows. For 

ease of expression, the model is written in a compact form: 
min

q
 kTq + max

PPV∈ΞPV
min

x∈ℱ(q,PPV)
 cTx (20a) 

s.t. Nq ≥ g, (20b) 
ℱ(q, PPV) = {x:  Gx ≥ h − Eq − MPPV}. (20c) 

where x = [PPV
UG, PB

adjust, PB
firm-, PB

firm+, 𝑬𝑬firm, E]T , and q =
[PPV

sell, PB
arb+, PB

arb-, Earb, u+, u-, Pbid]T. (20b) is used to denote 
constraints (2)-(8). (20c) is the matrix expression of constraints 
(1), (10)-(18). Note that we have x ∈ ℱ(q, PPV) , which 
assumes when solving the second-stage variable x, the first-
stage variable q is determined, and the uncertain variable PPV 
is revealed. This assumption is the key to addressing the overly 
conservative issue of the single-stage RO formulation.  

III. SOLUTION METHOD 
This section applies C&CG algorithm [10] to solve the 

proposed model (20). While (20) is a two-stage model, the two-
stage decision variables q and x are not independent. The 
C&CG algorithm is to obtain a combination of [q, x]T that 
achieves the objective in (20a) and subjects to (20b)-(20c). 

To this end, the C&CG algorithm decomposes (20) as a 
master problem (MP) and a subproblem (SP). MP searches the 
optimal two-stage solution in the solution space, and SP 
conducts the optimal cut by generating constraints for MP, 
which progressively narrows the solution space. The optimal 
two-stage solution can be reached by alternately solving MP 
and SP [10]. The MP of (20) is as follows: 

(MP)   min
q, 𝜂𝜂∈ℝ+, xk

 kTq + η (21a) 
s.t.   (20b), (21b) 

η ≥ cTxk, k ∈ K (21c) 
Gxk ≥ h − Eq − MPPV

∗k, k ∈ K (21d) 
where η is introduced to characterize the optimal solution of 
the second-stage model. k ∈ K  is the iteration index of the 
solution. PPV

∗k ∈PV is the critical scenario of PV generation 
identified by solving SP in k-th iteration. With the optimal q∗ 
searched from MP, SP can be written as follows: 

(SP)   𝒬𝒬(q∗) = max
ξ∈ΞPV

min
x

 cTx (22a) 
s.t.   Gx ≥ h − Eq∗ − MPPV, (22b) 

The “max-min” objective can be transferred to a “min” 
objective in (22a) using Karush–Kuhn–Tucker (KKT) method.  

The solution process of the C&CG algorithm is as shown 
in Fig. 2. The iteration in Fig.2 ensures that the first-stage 
schedule can be adjusted according to its impact on the second 
stage, even though we assume the first-stage schedule is 
determined when solving the second-stage model. 

 
Fig. 2.  Solve the TSRB model using C&CG algorithm. 
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IV. CASE STUDIES 

A. General Setting and Assumptions of the Experiments 
In the following case studies, PV and market information 

datasets have been used. We assume the tested HPP locates 
near the New York Metropolitan area. The PV data of the 
corresponding location is from the NREL's Solar Power Data 
(six-month, 184 days) [11]. The market data is downloaded 
from NYISO [12]. We understand the current PV systems bid 
in the market with zero cost and no under- generation charge, 
which is likely to change in the future market. Without going 
too far into the future market design topic, we use the under-
generation charge from the NYISO service tariff [13] for 
thermal power plants in our study. The HPP is assumed to have 
a PV farm rated 21 MW and a 10 MW/ 10 MWh BESS on site. 
The setting of related parameters mentioned in the modeling 
section is given in Table I. To maintain the initial storage level, 
the BESS is assumed to be recharged at midnight using the 
energy from the forward market with an affirmatory and 
constant charging cost. Because the amount of recharge is 
constant, we do not show this recharge in the following figures. 
The uncertainty sets in this work are generated using the same 
method as ref. [9]. 

B. Study of a Representative One-Day Case 
We selected a partially cloudy day to explain the results of 

the algorithm. The input of the proposed model is as shown in 

Fig. 3, which includes one-day uncertainty sets of PV 
generation and market information. Based on these uncertainty 
sets as input, the proposed model outputs bids and the self-
schedule of the HPP, as shown in Fig. 4. The outputs contain 
the schedule of selling PV-generated power and stored power 
in BESS for arbitrage. Combining these two items, we can 
obtain the bid decision submitted to the ISO. To achieve the 
maximum income, BESS is scheduled to charge at 8:00-9:00 
and 14:00-15:00, which are the points with the lowest market 
prices within hours of nonzero PV production. Also, the stored 
power is scheduled to sell at 10:00-11:00 and 19:00-20:00, 
which are the points with the highest market prices within 
hours of nonzero PV production. In parallel, BESS also has 6.9 
MW reserved power for capacity firming at 10:00-11:00. Also, 
the TSRB model guarantees the energy level of BESS is within 
the feasible range. In this one-day case, we found that the 
lowest energy level decreases to 0 at 19:00-20:00. 

To study the performance of the proposed TSRB model, 
our problem is also formulated as a single-stage robust bidding 
(RB) model based on the similar formulation in [7]-[9]. The 
TSRB model and the single-stage RB model have been 
compared based on the same input; the result is as shown in 
Fig. 5. 

Because the two-stage formulation in the TSRB model is 
designed to weaken the overly conservative issue that appeared 
in single-stage RB models, we plotted out the worst-case PV 
output as identified by the single-stage RB model and TSRB 
model in Fig.5 (top). It is observed that the worst-case scenario 
of PV uncertainty identified by the TSRB model is more 
aggressive compared to the result identified by the single-stage 
RB model at 8:00-9:00, 10:00-11:00, and 14:00-15:00. 
Because RO calculates the optimal solution under the worst-
case scenario of uncertainties, the worst-case PV outputs are 
equal to the scheduled PV outputs in the solution. Therefore, 
the worst-case PV output can be calculated as follows: 

PPV,t
output = PPV,t

sell + PB,t
arb+ − PB,t

adjust + PB,t
firm+. (23) 

The worst-case PV output is aggressive at 10:00-11:00 because 
the BESS has reserved power for firming at this time, and this 
is a point with one of the highest market prices within hours of 
nonzero PV production. Also, the worst-case PV output is 
aggressive at 8:00-9:00 and 14:00-15:00 because these are the 
best time to charge the BESS (with the lowest under-
generation penalties within hours of nonzero PV production). 

Fig.5 (bottom) shows the hourly bids by the single-stage 
RB and the TSRB models, respectively. It can also be observed 
that the TSRB model bids more power at 8:00-9:00, 10:00-

 
Fig. 5.  Scheduled PV outputs (left) and hourly bids (right) of the 
representative day. 
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TABLE I. PARAMETERS SETTING 

 Meaning of Parameters Value 

ηc/η𝑑𝑑 Charge/discharge efficiency of BESS 98% 
E1 The initial BESS storage level 50% 

cB Rate of BESS operational cost ($/MW) 0.5 [14] 
tolerance Tolerance of |UB-LB| in C&CG 10-6 

 

 
Fig. 3.  Market (left) and PV (right) data and uncertainty sets in the 
representative day. 
 

 
Fig. 4.  Bid and schedule results of the representative day. 
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11:00, and 13:00-15:00, respectively. The TSRB model bids 
more power at 8:00-9:00 and 13:00-15:00 are simply because 
the single-stage RB model schedules to charge the BESS with 
all PV generation at these three points. Because the worst-case 
PV output is elevated at 10:00-11:00, the TSRB model bids 
more power at this time. 

C. Economic Performance in Six-Month Case 
This subsection compares the economic performance of the 

proposed TSRB model and single-stage RB model. To this end, 
the two models were applied to conduct continual bids based 
on six-month PV and market datasets [11], [12]. The day-
ahead calculated incomes and the simulated transaction day 
incomes earned by the HPP each month are shown in Fig. 6. 
For both methods, the day-ahead calculated incomes are the 
minimum guaranteed incomes. As observed in Fig. 6, 
simulation validated incomes are higher than their 
corresponding day-ahead calculated incomes. Apart from this, 
the significant economic advantage of the proposed TSRB 
model was observed each month in both day-ahead calculated 
and simulation validated incomes, compared to the single-
stage RB model. 

To sum up, the total six-month incomes of the TSRB model 
and single-stage RB model are compared in Table II. It is 
observed that the TSRB model has achieved 17.23% (day-
ahead calculated) and 10.88% (simulation validated) income 
improvement compared with the single-stage RB model. 

V. CONCLUSION 
In this study, a two-stage robust bidding and scheduling 

model is proposed for future HPP operation. Different from 
other works, the BESS schedule for arbitrage and PV capacity 
firming are decoupled. A two-stage formulation is used to 
simulate the execution of arbitrage and capacity firming that 
follows their time sequence. Using the proposed formulation, 
we observed that the worst-case scenario of uncertainties can 
be moved to a more aggressive point from the case studies. As 
a result, the income can be increased based on the more 
aggressive worst-case uncertainties. To bridge the multi-
objectives of BESS arbitrage and capacity firming, the 
calculation of the under-generation penalty is also included in 
our model. The C&CG algorithm is applied to calculate the 
optimal solution that applies to two-stage objectives in the 
proposed TSRB model. In case studies, we have shown the 
proposed TSRB model can achieve over 10% improvement 
compared with a state-of-art robust bidding model. 
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Fig. 6.  Six Months Incomes of the HPP. 
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TABLE II. COMPARE SIX-MONTH INCOMES 

 Day-ahead 
Calculated Income 

Simulated Income After 
the Transaction Day 

RB ($) 408,669.3 475,745.1 
TSRB ($) 479,061.5 527,510.6 

Outperform 17.23% 10.88% 

 




