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ABSTRACT The grid of the future will have a higher penetration of grid edge devices that enable
increased automation and grid edge intelligence. The current grid models do not account for these grid-
edge devices, and the creation of cyber-physical models for the grid is essential to understand the impact
of these devices. Although existing cyber-physical power system (CPPS) models have been developed
using a wide variety of approaches, a comprehensive review of the validity of these approaches and their
suitability for modeling the future grid has not been performed. In a CPPS, the physical layer usually
consists of the power grid and protection devices, whereas the cyber layer consists of communication,
computation, and control components. This paper provides a review on the existing approaches to model
CPPS and to characterize the inter- and intra-actions for distributed autonomous systems. The CPPS models
can then be used to perform various analyses, such as cyberattack analysis, threat analysis, and resilience
analysis. A qualitative evaluation criteria for the various modeling paradigm is discussed to help researchers
understand the trade-offs in choosing the right modeling method for their particular application.
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INDEX TERMS Cyber-physical power systems (CPPS), cybersecurity, finite state machines, graph network,
modeling techniques, system and control method, test beds.

I. INTRODUCTION15

Power grid modernization has gained significant momen-16

tum in the last decade. As part of the modernization,17

advanced communication and automation technologies are18

being deployed in power systems, and the resulting systems19

are known as cyber-physical power systems (CPPS), which20

consist of physical (the power grid) and cyber (e.g., commu-21

nication and computation systems) layers [1]. CPPS leverage22

two-way cyber-secure communication systems to improve23

the monitoring, protection, and control of power system24

components to achieve a smart grid concept with enhanced25

reliability, resilience, security, and sustainability [2], [3].26

Although advanced technologies in the cyber layer improve27

the operation and control of power systems, they can expose28
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power systems to multiple types of cyber and cyber-physical 29

attacks [4], [5]. The increase of cyber threats can jeopardize 30

the power system’s ability to provide reliable and efficient 31

power supply [6]; therefore, accurate and detailed modeling 32

of CPPS and the dependencies between the physical and 33

cyber systems in a CPPS is a necessary step toward the anal- 34

ysis, evaluation, and enhancement of the CPPS’s reliability 35

and resilience. 36

A. RELATED WORK 37

Extensive reviews on cyber-physical systems (CPS)—in par- 38

ticular, CPPS—modeling, analyses, evaluations and enhance- 39

ment methods have been conducted [7], [8], [9], [10]. The 40

authors of [7] provided a review on the architectural modeling 41

of cyber-physical systems (CPS) in general, including inte- 42

grated, distributed, and mobile systems. The work presented 43
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FIGURE 1. Paper framework.

in [8] reviewed CPPS classifications, the difference between44

cyber and physical systems, cyberattack types and impacts45

on CPPS, cybersecurity applications in CPPS, and simulation46

tools of CPPS. In [9], a review included differences between47

cyber-physical interaction models, such as graphical model-48

ing, mechanism modeling, and probabilistic modeling. Also,49

the paper discussed the different solution methods used in50

CPPS studies. The work presented in [10] focused mainly on51

CPPS test beds. The paper discussed the importance of test52

beds for cyberattack analysis and cybersecurity studies. Also,53

the paper reviewed different types of test beds, including54

offline simulation, power hardware-in-the-loop simulation,55

rapid controller prototyping, software-in-the-loop simulation,56

human-in-the- loop simulation, co-simulation, and real-time57

simulation. In [11], a review on CPPS was provided on the58

risks and weaknesses in the system caused by cyberattacks.59

The authors of [12] provided a comprehensive review on the60

role of power electronics devices in CPPS, highlighting61

the increased cyber vulnerabilities, sophisticated modeling62

approaches for the cyber and physical components, and the63

increased computational burden in obtaining solutions for64

these models.65

Though significant contributions have been provided by66

these reviews on CPPS classification and approaches, a few67

research gaps still exist. First, most existing work summarizes68

the current practices in modeling CPPS without properly69

aligning these modeling choices to CPPS characteristics.70

In other words, there are no clear evaluation criteria that 71

measure the suitability of CPPS modeling choices to the 72

requirements of their analyses. Also, these papers do not 73

consider the evolving transition of CPS in general toward 74

more distributed and autonomous environments, specifically 75

in power systems. They give additional attention to cyber- 76

related analysis, including cyberattack modeling, cybersecu- 77

rity evaluation, cyber-induced impacts, and cyber vulnerabil- 78

ities, while providing less detail on a deeper review of the 79

technical modeling challenges of CPPS; therefore, this paper 80

is tailored to address some of these gaps and provide a guide 81

the community to better understand the trade-offs and design 82

choices in creating CPPS models, especially considering the 83

transition to distributed and autonomous environments. 84

B. CONTRIBUTIONS 85

This paper provides a critical and comprehensive review of 86

existingmethods and practices for modeling CPPS. It reviews 87

CPPS layers and as well as the corresponding inter- and 88

intra-dependencies within a CPPS. This paper also evaluates 89

current modeling methods based on a well-defined set of 90

criteria that capture CPPS characteristics. This paper will aid 91

in ongoing efforts to perform detailed analysis on CPPS by 92

helping to better understand modeling trade-offs and choices. 93

The papers selected for this literature survey are based on 94

Kitchenham’s guidelines [13], with the primary objective to 95

provide a framework/background to appropriately position 96
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new research. In this case, the survey is undertaken with two97

primary research questions in mind:98

1) What are the advantages and disadvantages in choosing99

a particular method to model CPPS? How to evaluate100

the suitability of the approach to the problem in hand?101

2) How does the modeling paradigm suit the transition to102

a more distributed and autonomous power grid?103

To address these questions, a detailed literature survey104

was performed using the search terms ‘‘cyber-physical power105

systems,’’ ‘‘cyber-physical smart grid,’’ ‘‘cybersecurity for106

smart grid,’’ and ‘‘cyber-physical model,’’ including others.107

The papers that provided detailed modeling of both cyber108

and power systems were selected to be included in the sur-109

vey, avoiding repetitions if any. To capture broader meth-110

ods, papers that studied purely cyber and physical models111

were also included to evaluate their suitability to include112

in the survey. Finally, papers that demonstrated the effects113

of cyberattacks on CPPS were also included in the initial114

selection to highlight engineering and intrinsic approaches.115

These papers were then analyzed and suitably filtered to be116

included in this survey. The main contributions of this paper117

can be summarized as follows:118

• Reviews several modeling approaches of CPPS, includ-119

ing graphical theory models, graphical-related models,120

system and control models, correlation models, and121

probabilistic models122

• Provides a critical analysis of strengths and limitations123

of various CPPS models124

• Evaluates the existingmodels through a five-metric eval-125

uation criteria to measure their capability and applicabil-126

ity to various analyses127

• Discusses future directions and recommendations to128

develop models that cope with the emerging technolo-129

gies and systems, including big data, resilience, cyber-130

security, and real-time simulations.131

C. PAPER STRUCTURE132

The remainder of the paper is organized as follows. Section II133

provides a brief summary of CPPS layers and dependencies134

among system layers. Section III discusses different types135

of CPPS modeling and unique characteristics of CPS within136

the energy scope. Also, it explains the proposed evaluation137

criteria used tomeasure the capability of CPPSmodels to cap-138

ture the system characteristics. Section IV focuses on graph139

theory and complex network modeling methods; whereas140

Section V discusses finite state machine (FSM), Petri net,141

and network attack modeling methods. A deep investigation142

of system and control CPPS modeling methods is surveyed143

in Section VI. Section VII summarizes other modeling meth-144

ods. Section VIII provides a comprehensive analysis on the145

challenges of CPPS modeling methods, presenting possi-146

ble future directions for various research-and-development147

activities and industrial applications. Section IX provides148

concluding remarks. Fig. 1 provides the framework of149

the paper.150

II. CYBER-PHYSICAL POWER SYSTEMS (CPPS) 151

CPPS are the result of integratingmeasurement sensors, com- 152

munication networks, advanced computational technologies, 153

and intelligent automation systems into power grids. The 154

authors of [14] define CPPS as the integration of informa- 155

tion and communication technologies (ICTs) into physical 156

systems. In [6], the penetrations of new communication and 157

computational technologies—including cloud computing, the 158

Internet of Things (IoT), and 5G communication systems— 159

represent the evolving CPPS. Within an embedded systems 160

scope, CPPS is the integration of computing systems through 161

monitoring and control channels to the physical systems [15]. 162

In the past decade, a significant amount of work has been 163

devoted to the classification, characterization, and interac- 164

tion of the cyber-physical layers of the various domains, 165

including medical systems, transportation systems, agricul- 166

ture, and power systems [16], [17]. This section summarizes 167

the well-known CPPS models and layers as well as inter- and 168

intra-dependencies among these layers. 169

A. CPPS LAYERS 170

CPPS layers are classified in the existing literature as follows. 171

In [18], two layers—the grid and the cyber layers—were con- 172

sidered to study the effect of failures in the control and com- 173

putation sub-layers on the stability of power systems. Other 174

layers (e.g., sensing, communication, and protection) were 175

assumed to be functioning perfectly. In the case of failure of 176

the computation layer, system operators are assumed to rely 177

only on the measurements (with no assistance from the com- 178

putation layer), whereas a failure of the control layer means 179

only the local automated control is assumed to function. 180

In [19], CPPS were represented by the physical and cyber 181

layer, where the latter provides three computational func- 182

tions: wide measurements, protection, and control. In [20], 183

the CPPS layers were classified into two main layers— 184

physical and cyber—and a connecting layer, the wide-area 185

monitoring, protection, and control. CPPS layers were been 186

classified into physical, communication, and cyber layers 187

in [21]. The authors of [22] provided a broader classification 188

of CPPS layers: monitoring, control, communication, and 189

physical layers. 190

A CPPS model provided in [23] comprised three main 191

layers: the decision layer, the communication and coupling 192

layer, and the physical layer. Each layer might have vari- 193

ous operational statuses. The sensing and protection layers 194

are assumed to be perfectly reliable, whereas the control 195

and computation layers are combined in the decision layer. 196

In this CPPSmodel, only abstract states andmain interactions 197

among the three layers are considered. 198

In [24] and [25], the cyber-physical smart grid was 199

classified into the (a) physical layer, (b) control layer, 200

(c) communication layer, (d) network layer, (e) super- 201

visory layer, and (f) management layers, as shown in 202

Fig. 2. The physical layer can be modeled based on ordi- 203

nary differential-algebraic equations (DAE), Markov models, 204
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FIGURE 2. Different CPPS layers with local and global control systems.

or model-free statistics. Numerous control components—205

such as sensors/observers, intrusion-detection systems, other206

smart control components—are considered under the control207

layer. The communication layer is between the control and208

the router through various forms, such as a private network,209

wireless communications, and Internet. The network layer210

basically comprises two components: routing and network211

formation. The supervisory layer supervises all these layers212

through various commands. The supervisory layer performs213

the data analysis or fusion to deal with ongoing situations.214

The final layer is the decision-making management layer,215

which deals with numerous tasks, such as forming budgets,216

developing policies to deal with security- and privacy-related217

concerns, and dealing with the control system issues.218

In [9], a comprehensive CPPS model was provided,219

as shown in Fig. 3. Themodel comprises three tiers, including220

the component tier (Tier 1), the communication tier (Tier221

2), and the function tier (Tier 3). Though each tier has its222

own function and characteristics, they all interact cooper-223

atively to maintain stable and reliable operation of CPPS.224

Tier 1 comprises the primary physical equipment (generator,225

transformer, transmission line, etc.), secondary equipment226

(protection relay, sensor, actuator, etc.), and the connected227

electric devices. All devices are connected together in a228

specific topology to fulfill their functions. Local controllers229

are responsible for collecting sensor information and control230

actuators for the optimal operation of the primary component.231

In Tier 2, the collected information is passed from Tier 1 to232

the master control centers through a communication network233

via wired or wireless communication media. The efficiency234

and effectiveness of the data transmission relies mainly on the235

communication technology, network traffic, routing mech-236

anism, and communication topology. Finally, Tier 3 han-237

dles the advanced functions and operational decision-making238

process by storing and processing the data received at con-239

trol centers. Multiple centers are connected through differ-240

ent typologies to monitor and control the overall system.241

Such centers include the web server, communication server,242

application server, database, and human-machine interface,243

which are connected together through international interface244

standards to allow easy information exchange and interoper-245

ability.246

FIGURE 3. Centralized CPPS structure.

Once the distinct layers of a CPPS are defined, the interac- 247

tions and dependencies between the layers need to be exam- 248

ined. This is discussed next. 249

B. CPPS DEPENDENCIES 250

Adependency in CPPS is a bidirectional relationship between 251

two or more layers such that the state of one layer influences 252

or is correlated to the state of the others. Dependencies in 253

CPPS can be classified as inter- or intra-dependencies based 254

on their scale. Interdependencies refer to interactions taking 255

place between groups (layers), whereas intra-dependencies 256

denote interactions within the same group or layer. Because 257

of the complex integration of ICT to all CPPS components, 258

it is challenging to identify the inter- and intra-dependencies 259

among CPPS layers. This subsection describes various types 260

of dependencies as well as various approaches considered in 261

the literature to model interactions in CPPS. 262

Interactions are usually classified based on the CPPS 263

layers. The authors of [26] provided a detailed guideline 264

and illustration on the interconnections between ICT layers 265

and power systems. The guideline classifies dependencies 266

among CPPS layers into (1) common cause, components of 267

both systems fail because of the same reason, i.e., a sub- 268

station impacted by a hurricane; (2) cascading, a failure in 269
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one system propagates to other systems causing a ‘‘domino270

effect’’, i.e., the power outage of ICT components; and (3)271

escalating, an existing failure in one system worsens an inde-272

pendent failure in another system, i.e., failure of protection273

devices when a failure occurs in the ICT components. The274

authors of [27] provided a classification based on the corre-275

lation between networks and elements into: direct element-276

element, direct network-element, indirect element-element,277

and indirect network-element. In [28], the interdependencies278

between infrastructure layers were categorized according to279

various dimensions, as follows: the (1) type of interdepen-280

dencies, (2) infrastructure environment, (3) couplings among281

layers, (4) infrastructure characteristics, (5) state of operation,282

and (6) type of failure affecting the infrastructure. In [8],283

the authors identified three levels of interactions: (1) inter-284

actions within local levels, where power system controllers285

receive information from local protection and communication286

layers; (2) interactions between physical and communication287

platforms; and (3) interactions between communication and288

central computational platforms.289

Various methods have been proposed to model the inter-290

actions among CPPS layers. The authors of [26] described291

five main methods to identify and analyze interdependen-292

cies: (1) hazard identification methods, (2) causal analysis293

methods, (3) consequence analysis methods, (4) topologi-294

cal analysis methods, and (5) dynamic analysis methods.295

In [29], a Markov state model was identified on the com-296

ponent level to model the transitions between the physical297

and cyber failures. A Petri net model was introduced to298

model interdependencies between the ICT and the physical299

layer, where various malicious attacks have been simulated300

to assess their impacts on the power system [28]. The authors301

of [30] leveraged the concept of a cyber-physical interface302

matrix (CPIM) to assess the reliability of power systems303

against cyber-induced failures. CPIMuses IEC 61850 to build304

a correlation matrix that induces cyber failures into physical305

components. In [31], a Bayesian attack model was used to306

simulate the propagation of cyberattacks into communication307

and computational layers and their impacts on the tripping308

breaker in the physical layer. The approach was used to evalu-309

ate the reliability of power systems under supervisory control310

and data acquisition (SCADA) cybersecurity considerations.311

The authors of [32] provided a detailed illustration of using312

graph theory integrated with a chaotic levy flight algorithm313

to model the propagation of a cyberattack leading to the314

cascading failure of power grids.315

III. CPPS MODELING316

Modeling is the key challenge to advance the state of the art317

to understand, assess, analyze, control, improve, and validate318

the performance of CPPS and the interactions within the319

system layers. Designing and developing accurate models320

is an essential step in the design of any system [33], [34].321

A CPPS model usually comprises models of physical pro-322

cesses, communication modes, and computational processes.323

This section provides a brief summary of the existing CPPS324

modeling approaches. Also, it highlights the main character- 325

istics of CPPS and their corresponding impacts on proper 326

modeling. Then, a five-metric evaluation framework is dis- 327

cussed to evaluate the fitness of each CPPS modeling method 328

to capture the required characteristics. 329

A. CATEGORIES OF CPPS MODELS 330

Various methods have been provided to present proper 331

CPPS models that describe system heterogeneity, informa- 332

tion system characteristics, and information models. The 333

classification process relies on some main factors, includ- 334

ing system time characteristics (continuous versus discrete), 335

component characteristics (physical versus cyber), and scope 336

of study or application (assessment, simulation, optimization, 337

etc.). This section provides a quick illustration of the main 338

CPPS categories. 339

The authors of [8] provided three main categories of CPPS 340

modeling: interconnection, interaction, and interdependent 341

modeling, as shown in Fig. 4. The interconnection model- 342

ing captures the act of the physical and cyber systems in a 343

distinct manner; whereas the interaction modeling focuses 344

on the effect of both systems on each other. The interdepen- 345

dent modeling measures the degree of dependency between 346

both systems. Though it might look difficult to differentiate 347

among the three models, each type focuses on studying CPPS 348

from a different prospective. Note also that interconnection 349

modeling mainly focuses on the component level; whereas 350

interdependent modeling is applied on the system level. 351

In [9], CPPS models are classified according to the fol- 352

lowing dimensions: graphical, mechanism, probability, and 353

simulation. In the graphical dimension, graph theory and 354

complex network theory are leveraged. A CPPSmodel can be 355

converted into a graphical network structure that captures the 356

inner relationship between the network topology parameters 357

and the system behavior. The dynamic behavior between the 358

CPPS and the cyberattack process can be described using 359

FSM models, Petri net models, attack tree models, attack 360

graph models, and state transition diagrams. The mechanism 361

dimension aims to leverage the differential-algebraic equa- 362

tions to analyze the relationship between the cyber failures 363

and the power system components. Such models include ana- 364

lytical models, dynamic system-based models, hybrid system 365

models, variable structure system models, and multi-agent 366

models. The probability dimension focuses on the role of 367

uncertainties in CPPS models, including the predictability of 368

cyberattacks and the stochastic behavior of cyber and power 369

system components. Finally, the simulation dimension builds 370

a simulation model for experimental analysis. 371

Other studies have provided a simpler classification of 372

CPPS models. In [35], CPPS modeling approaches were 373

classified into: correlation matrix methodology, graph theory, 374

complex network, FSM, mathematical programming, and the 375

cellular automata method. CPPS models were classified into 376

time-driven and event-driven systems in [36]. A more generic 377

classification of CPS models was presented in [37], which 378
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FIGURE 4. CPPS modeling approaches presented in [8].

is divided into three main categories: modeling techniques,379

modeling requirements, and application domains.380

B. CHARACTERISTICS OF CPPS381

The inter- and intra-dependencies in CPPS have unique char-382

acteristics that set CPPS apart from other CPS and require383

careful selection of the modeling choices. These character-384

istics include, but are not limited, to: (1) the massive net-385

work topology and system mechanism level, which include386

the large number of components that are connected together387

in a nontrivial topology and numerous meshed connections388

between them and the well-defined operating mechanisms389

of each system to satisfy their operational constraints; (2)390

the combination of continuous and discrete events—CPPS391

are considered systems of systems that are deeply integrated,392

time-space, multidimensional, heterogeneous systems where393

the power system belongs to the continuous time domain394

and the cyber layer lies within the discrete domain; (3) the395

mixture of static and dynamic behaviors—the power system396

comprises many dynamic components as compared to the397

larger number of static components in cyber system; and (4)398

the role of uncertainties in the decision-making procedure—399

this includes the impacts of uncertainties from renewable400

energy system resources, system errors, measurement errors,401

communication latency, and the lack of bulk energy storage.402

Fig. 5 summarizes the main characteristics of both cyber403

and physical systems [10]. CPPS have a wide spectrum of404

modeling paradigms as a result of the diverse time, location,405

and size of the components under study. Physical system406

components with dynamic behavior are connected to cyber407

system components with static behavior to maintain the reli-408

able operation of the physical system. Because of the different409

topologies of both physical and cyber systems, the close410

dependency between them is a vital and critical coupling411

point. Also, interoperability between the two systems is a412

must to exchange information in a timely and actionable413

frame. Proper CPPS models need to consider the aforemen- 414

tioned characteristics of each system and address the interface 415

challenges of integrating cyber with physical systems to pro- 416

vide grid applications. 417

These grid applications rely primarily on control and com- 418

putations enabled by the ICT infrastructure. In [38], a brief 419

summary of the challenges of security in controlling CPS 420

was provided. First, it is required to design a control policy 421

that ensures the stability of the overall system by considering 422

the large number of spatially distributed system components. 423

Second, comprehensive models of communication networks 424

that properly model limited capacity, random delay, packet 425

loss, and intermittent network connectivity are a must to 426

reduce the impacts of denial-of-service attacks [39], [40]. 427

Third, system controller design needs to accounts for the 428

random failure behavior of measurement devices and actu- 429

ators via fault-tolerant control approaches [41]. Finally, it is 430

required to design distributed algorithms that can perform a 431

global task with local information exchange through advanc- 432

ing distributed estimation [42]. 433

C. MODELING EVALUATION CRITERIA 434

Despite the significant contributions in the surveyed litera- 435

ture, only a few papers provided a qualitative assessment of 436

CPPS modeling techniques. Besides providing a comprehen- 437

sive technical review of CPPS modeling, this works develops 438

an assessment framework to measure the pros and cons of 439

each model. The modeling paradigms are assessed over five 440

main criteria: (1) accuracy, (2) scalability, (3) fidelity, (4) 441

ability to model distributed systems, and (5) ability to model 442

dynamics. Each model is assigned a low or high rank based 443

on its performance in a specific criterion. While additional 444

criteria can be used to evaluate CPPS modeling methods, 445

these five represent a comprehensive set of parameters on 446

which existing CPPS modeling methods can be studied, and 447
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FIGURE 5. Characteristics of cyber and physical systems.

sufficient information is available to determine their suit-448

ability for modeling future energy systems. Other criteria,449

such as the modeling method’s suitability to accommodate450

emerging technologies can also be considered, however there451

is insufficient information to evaluate their suitability at this452

time, thus placing it oustide the scope of this work. Themodel453

evaluation criteria are explained next.454

1) ACCURACY455

CPPS model accuracy is the extent to which a modeling456

paradigm accurately represents the physical manifestation457

and phenomena and agrees with reproducible and repeatable458

experimental data. These criteria assess the performance of459

a model and its consistency over a wide range of scenarios460

and inputs. The CPPS model should be able to accurately461

represent various operating conditions and remain consistent462

over various factors, such as geographic locations, solution463

techniques used to solve the model, connections to external464

components, and so on.465

2) SCALABILITY466

This metric measures the ability of a specific CPPS model467

to represent large-scale systems. Many existing models can468

easily model small-scale CPPSs; however, various chal-469

lenges arise when the system size increases. Some challenges470

include, but are not limited to, the complicated model conver-471

sion process, limited computational power, diverse modeling472

domains, and technological advancements in cyber and com-473

munication systems.474

3) FIDELITY475

The fidelity of a CPPS model is defined to be the capability476

of the model to provide equal or semi-equal outcomes to477

the results collected from real-world systems or scenarios.478

In other words, minimal discrepancy should be observed479

between the studied model and the real-world system. This480

criterionmeasures the degree towhich the CPPSmodel repro-481

duces the state and behavior of real-world feature or operating482

conditions. The complexity of achieving this goal in CPPS483

modeling might be very challenging because of the high non-484

linearity levels of several power system components. Also,485

the adoption of an approximation-based mathematical repre-486

sentation to solve the differential equations representing the487

behavior of the physical system induces further complexities.488

4) DISTRIBUTED SYSTEMS 489

The electric power grid can be considered a system of sys- 490

tems that spans large numbers of stakeholders. The conven- 491

tional power system—comprising generation, transmission, 492

and distribution—has expanded to include customers, opera- 493

tion, the energy market, and business services. The capability 494

of CPPS models to capture the distinctive features of these 495

players as well as their dependencies has become a necessity 496

to achieve the smart grid concept. On the other hand, the 497

transition from centralized to distributed generation resources 498

has increased the modeling complexities. Also, the spatially 499

distributed system components have resulted in increased 500

numbers of local control centers. This metric measures the 501

ability of a CPPS model to easily represent the aforemen- 502

tioned distributed structure. 503

5) DYNAMICAL BEHAVIOR 504

This criterion evaluates the suitability of the model to accu- 505

rately capture the system dynamical behavior across various 506

time resolutions. At a fundamental level, the model must be 507

capable of changing from one state to another in response to 508

internal changes and external disturbances, and not remain 509

static across time; however, this criterion evaluates the per- 510

formance of the model to accurately represent the changing 511

dynamic behavior of a system not only over a specific time 512

horizon but also over a large variety of system changes. For 513

example, a model that is equally capable of representing 514

slow changes over a number of years and also also capa- 515

ble of capturing subsecond dynamics would be ideal. But 516

models come with various trade-offs when evaluating them 517

over various time horizons and this criterion evaluates the 518

flexibility provided by the model to accurately capture both 519

slow changes and subsecond behaviors. 520

IV. GRAPH THEORY AND COMPLEX NETWORK 521

METHODS 522

Graph theory is one of the most widely used approaches to 523

model CPPS. Graph models provide a proper visualization- 524

based approach to capture the relationship between physical 525

and cyber systems. In CPPS graphical modeling, each power 526

system component is assumed to map to a node in the cyber 527

layer. This connection is responsible for transmitting mea- 528

surements from the power system to the control cyber layer 529
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and transferring the control decision in the reverse direction.530

The mapping between the layers can be a general function,531

or it can be more restrictive, such as a bijective relationship.532

Complex network approaches rely mainly on graph the-533

ory. The complex network models are usually adopted as a534

result of the presence of large numbers of different types535

of system components across all layers [9]. CPPS can be536

represented by three layers: the cyber layer, physical layer,537

and interface-mapping layer. The cyber nodes represent the538

communication equipment and any independent autonomous539

system, including operation and monitoring systems. ‘‘One-540

to-one’’ and ‘‘one-to-many’’ inter-dependencies are lever-541

aged to model the correlation between the physical and cyber542

layers based on the existing topology. For instance, a single543

power station might be responsible for supplying electricity544

to multiple autonomous cyber systems; hence, the one-to-545

many model is more convenient. Microscopic mechanisms546

can be integrated with macroscopic system characteristics to547

provide detailed analyses of the inter-dependencies among548

system components [43], [44].549

The main difference between graphical-based modeling550

and complex network-based modeling is the scale of the551

system under study. Also, graphical-based models can be552

combined with other modeling methods because they rep-553

resent actual CPPS topology. On the contrary, complex554

network-based models usually create an abstracted topology555

and are suitable only for a single complex network. Finally,556

complex network-based approaches are convenient to study557

the relationship between system topology and network evo-558

lution.559

A. CPPS GRAPHICAL REPRESENTATION560

A physical power system is represented by a graph, GP =561

(NP,EP), where NP is a set of vertices corresponding to562

generators, buses, circuit breakers, and loads in the power563

system; and EP is a set of edges connecting system compo-564

nents, such as transmission lines and transformers. Following565

the same convention, the cyber layer can be represented as a566

graph, GC = (NC,EC), where NC is a set of vertices that567

correspond to communication routers, servers, computing568

nodes, and control centers in the cyber system; and EC is a set569

of edges representing the communication channels between570

the information nodes. Both graphs can be either directed571

or undirected [8]. A directional arrow represents the flow of572

information in the cyber graph or the flow of power in the573

power graph. The failure of a physical power connection or a574

cyber information connection is represented by the removal575

of a graph edge, whereas the failure of a specific node com-576

ponent is represented by the removal of the corresponding577

vertex.578

The authors of [11] showed the capability of a complex579

network approach to assess the vulnerabilities in CPPS based580

on the topological structure and provided a list of factors581

affecting the network graph modeling, including path redun-582

dancy, branch count effect, overlapping branches, switching583

operations, repetition of sources, and aggregated central point584

FIGURE 6. One-to-one CPPS mapping.

dominance. Also, the structural characteristics of the graph 585

model representing a power grid were presented in [45]. 586

An assessment framework based on system vulnerability and 587

the associated relative variance was presented in [46] to study 588

and assess the hierarchy of complex networks. 589

B. GRAPH THEORY-BASED CORRELATION MAPPING 590

Many studies have focused on the mapping correlation 591

between the physical graph network GP and the cyber graph 592

network GC. The dependencies in CPPS have been modeled 593

in diverse approaches, including one-to-one mapping [47], 594

[48], [49], [50], one-to-multiple mapping [51], and cluster 595

mapping [52]. The one-to-one mapping between the cyber 596

nodes and the physical nodes is the most commonly used 597

approach, as shown in Fig. 6. In [53], the correlation between 598

networkswas not assumed to be one-to-one but rather as a few 599

coupling edges connecting both networks at specific nodes. 600

In [54], one-to-one mapping and two-to-two mapping 601

between the physical and the cyber network was studied. Two 602

strategies were used to reduce CPPS vulnerabilities within the 603

proposed graphical model, including the degree-betweenness 604

interface strategy and the closeness centrality interface strat- 605

egy. In [55], a one-to-one mapping between the physical and 606

the cyber networks was proposed considering a spatial rep- 607

resentation of CPPS. The inter-dependencies between both 608

layers is represented in four basic failure modes: information 609

edge failure, information node failure, power edge failure, 610

and power node failure. In [56], a one-to-one mapping was 611

leveraged to model CPPS where four types of physical nodes 612

are assumed: generation node, consumer node, distribution 613

node, and transformer node. The presented framework was 614

used to measure the robustness of the CPS graph model 615

following a cascading failure impact. 616
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FIGURE 7. CPPS model based on different communication channels.

A one-to-one mapping was used to model the interde-617

pendencies between the power and communication networks618

in [57]; however, the communication nodes were represented619

as load components in the distribution level to capture the620

dependency of the communication network on the power grid.621

Each communication node is assumed to be fully operating if622

the power supplied exceeds a specific threshold. The depen-623

dency of the power grid on the communication network is624

modeled by assuming the loss of the corresponding commu-625

nication or control node to the power component.626

The authors of [58] developed a graphical network model627

to assess the cybersecurity level between physical and cyber628

systems. Communication channels are classified based on629

three types of transmitted information: C1, information is630

uploaded from the power nodes to the communication center;631

C2, command controls are transferred from the control center632

to the power nodes directly; and, C3, command controls are633

transmitted to the line breakers. Fig. 7 visualizes the differ-634

ent channels between CPS layers. A one-to-one mapping is635

assumed between the physical nodes and the cyber nodes.636

The proposed approach can be adopted to larger CPS by637

adding another communication channel, as shown in Fig. 8.638

Large-scale CPS can be divided into smaller CPS based639

on geographic boundaries such that each small CPS has its640

own control center. An additional communication channel641

between control centers is required to maintain observeability642

of the whole system.643

In [59], a cyber-physical graphical model was presented to644

model the cause-effect relationship between cyber and phys-645

ical components. Each node represents an associated grid646

component, such as generators, transformers, loads, circuit647

FIGURE 8. Large-scale CPPS model based on different communication
channels.

FIGURE 9. Physical model based on component state representation [59].

breakers, switches, control centers, sensors, and breaker actu- 648

ators; whereas edges are selected to represent state depen- 649

dencies among the various components. Directed links are 650

between nodes to visualize the energy flow and the informa- 651

tion flow. Each node is associated with a state governed by the 652

dynamical system equations. Fig. 9 and Fig. 10 visualize the 653

presented CPS graph model on a simple generator substation. 654

The authors of [60] developed a graphical network model 655

by coupling different power grids with a single cyber layer, 656

as shown in Fig. 11. The power system is represented by 657

a undirected graph, and four types of nodes are modeled: 658

supply and load node (SLN), supply node (SN), load node 659

(LN), and neither supply nor load (TN). The communication 660

network is modeled as an undirected graph with three levels 661

of control centers: a regional control center (RCC), an area 662

load dispatch center (ALC), and a local control center (LCC). 663

Two sets of one-way edges are formulated based on the 664

interdependencies represented in Fig. 11. 665

The authors of [61], [62] created a many-to-one-based 666

graphical model using a graph minor where the power sys- 667

tem graph is considered to be a graph minor of the cyber 668

graph, as represented in Fig. 12. This approach considers 669

that there are a number of associated cyber components to 670

a single power system component, thus having a many-to- 671

one relationship. The cyber and power system graphs still 672

have a bjiective relationship, and the underlying topology for 673

both graphs is preserved by assuming that the power system 674
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FIGURE 10. CPS modeling based on component state representation [59].

FIGURE 11. CPPS model presented in [60].

graph is a graph minor, which means that the power graph is675

essentially a reduction of the larger cyber graph.676

A scale-free graph approach was developed in [53] to677

address the scalability issue of large-scale networks, where678

the cumulative distribution and analytical equivalent meth-679

ods were used to measure the degree of functionality of the680

developed graphs.681

C. GRAPH THEORY-BASED APPLICATIONS IN CPPS682

STUDIES683

Graphical network representation is considered the most684

widely used modeling approach of CPPS. Numerous studies685

have leveraged graph theory-based approaches for various686

applications. This paper has highlighted only a few studies687

to show the capabilities of these methods for CPS analysis.688

FIGURE 12. Many-to-one relationship presented in [61].

In [53], a coupling framework between the electrical power 689

network and the natural gas network was presented using 690

graphical models. In [63], a graphical model was presented to 691

model CPPS for state estimation studies. A mapping method- 692

ology was provided in [64] to convert an electric power 693

system into a transportation map through graphical methods. 694

The developed transportation map was to solve the economic 695

dispatch problem and the available transfer capability prob- 696

lem. The paper suggests leveraging the proposed approach to 697

model similar problems in the cyber layer. In [57], a CPPS 698

graph model was used to mitigate cascading failures of a 699

power network on a communication network via a load- 700

shedding mechanism. 701

In [65], a cyber-physical data-fusion framework that inte- 702

grates sensor measurements from CPS and a stochastic infor- 703

mation fusion algorithm was proposed to detect intrusions 704

and malicious data for enhanced situational awareness. The 705

proposed method leverages graph network methods to create 706

a connectivity matrix between different system hosts that 707

can be used to identify possible attack graphs. The created 708

attack model was converted into a hidden Markov model to 709

determine the attack path at each time instant based on a set of 710

triggered alerts. The connectivity matrix approach was lever- 711

aged in [66] for improved contingency analysis of CPPS. The 712

authors of [67] leveraged one-to-onemapping between power 713

buses and phasor measurement units (PMUs) to improve state 714

estimation caused by a joint cyber and physical attack model. 715

The proposed cyber-physical model in [58] was used to 716

assess the vulnerability of CPPS against physical impact [64]. 717

In [60], the presented CPS model was used to formulate a 718

multistate failure model of physical and cyber components 719

for enhanced recovery caused by cascading failures. 720

D. GRAPH POOLING AND GRAPH NEURAL NETWORKS 721

Recently, there has been increasing interest in the concept 722

of graph homomorphism, especially in the areas of con- 723

straint satisfaction problems as applied to graphs such as 724

graph colorings. This has been explored for various applica- 725

tions, such as cyber defense mechanisms [68] and sequential 726
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decision-making problems. These constraint satisfaction727

problems applied to graphs rely on techniques that can prop-728

erly classify graph nodes, in the context of which graph neural729

networks (GNNs) have been leveraged. GNNs offer a method730

to perform graph pooling, in which case neural networks are731

used to downsample a graph while still retaining the critical732

features of interest across multiple graphs [69]. This can be733

used tomapCPSwhereGNNs are used to retain the important734

graph properties of both the cyber and physical systems while735

pooling them together for combined analysis [70]. GNNs are736

then used to deploy various learning mechanisms to support737

grid applications, as reviewed in the survey [71]. This is an738

evolving area, where much more research activity is expected739

going forward.740

E. STRENGTHS AND LIMITATIONS741

As a results of the simplified models of the physical sys-742

tem characteristics, there is limited capability to use them743

in operation and control studies [9]. The special physical744

laws governing the behavior of power systems impose further745

limitations of graph-theoretic approaches in electric power746

system studies [72]. Also, the scalability of graph models747

to large-scale CPPS is still under investigation, with GNNs748

offering a promising way forward. A main drawback of749

graphical methods is the incapability to observe dynamic750

characteristics in power systems. This requires integrating751

the graphmodel with differential-algebraic equations in some752

fashion, which increases the complexity of the model formu-753

lation. Though one-to-one mapping provides a fair represen-754

tation of the dependency between cyber and physical layers,755

the proper definition of each node representation in both the756

physical and cyber layers is required to avoid model com-757

plexity. In other cases, one-to-one mapping does not provide758

a convenient approach to model interdependencies in CPPS.759

The authors of [54] stated that one-to-one mapping does not760

usually capture the whole spectrum of cyber capabilities, and761

advanced one-to-many and many-to-one coupling provide762

a pathway to more comprehensive analysis. On the other763

hand, prioritization algorithms need be applied in one-to-764

many graphical representations to capture real system control765

behavior.766

Based on the proposed evaluation criteria, graph theory767

and complex network models are characterized as having768

high accuracy, high scalability, low fidelity, are highly dis-769

tributed, and have low dynamical behavior levels. First,770

they provide accurate topological representations of both771

the cyber and physical layers as well as the inter- and772

intra-dependencies among both layers. Also, they have shown773

high ability to properly model large-scale CPPS, with even774

some of the largest models being smaller or comparable to775

graphs from other domains, such as social networks. As a776

result, they have been widely used for transmission systems,777

distribution systems, and integrated transmission/distribution778

systems. Such models are well suited to model the spatially779

distributed structure of CPPS. On the other hand, their fidelity780

level is low as a result of the lack of their ability to model781

FIGURE 13. Categories of graphical-related methods.

the dynamic-differential and discrete-difference equations of 782

system components. They also exhibit some limitations for 783

time-varying behavior analysis and studies. 784

V. GRAPHICAL-RELATED METHODS 785

These are modeling methods that leverage graph theory 786

approaches on the system-level representation rather than the 787

component-level representation. In other words, nodes of the 788

graph model usually present a system state, and branches of 789

the model capture the transition behavior between system 790

states. These methods are classified into three main cate- 791

gories, as shown in Fig. 13. 792

A. FINITE STATE MACHINES MODELS 793

An FSM, or sometimes simply called a state machine model, 794

is a mathematical model that represents the discrete-behavior 795

computational process [73]. In FSM, a list of sequential 796

actions is executed based on a sequence of events to change 797

from one state to another. In other words, an input triggers the 798

system to go from one state to another based on a predefined 799

transition function. In CPPS, transitions occur in the physical 800

layer, in the cyber layer, and between the cyber and physical 801

layers for different triggering events [74]. 802

An FSM is a widely used mathematical approach to model 803

the interaction process of a CPPS based on the state descrip- 804

tion of the dynamic behavior. It is characterized by the ability 805

to express the limited state and the relationship between tran- 806

sitions [75]. A state chart diagram is usually the outcome of 807

applying an FSM, which provides a visualization of the sys- 808

tem dynamic behavior. State chart diagrams have been a key 809

factor to analyze the qualitative cyber-physical interactions. 810

FSMs are classified into deterministic and non- 811

deterministic based on the problem formulation [8]. An FSM- 812

based problem can be represented as follows: 813

(Q, σ, δ, qo,F) (1) 814
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where Q is a finite set of states, σ is a finite non-empty input,815

δ represents a series of transition functions, qo is the initial816

state, and F includes the set of final states. In deterministic817

FSMs, there exists only one transition for each state; whereas818

multiple transitions occur in non-deterministic FSMs.819

B. PETRI NET MODELS820

A Petri net is described to be a network that captures the821

relationship between conditions and events. In other words,822

Petri nets are used to represent a system organization and823

the control behavior. In CPPS, Petri nets are used to simu-824

late the interaction behavior between continuous dynamics825

of the physical system and the discrete information of the826

cyber system [76], [77], [78]. The authors of [28] illustrated827

a conversion procedure to create a Petri net model from a828

predefined FSM model. The proposed approach was used829

to understand the propagation mechanism of failure events830

in CPS.831

Several Petri net models have been developed to assess832

the impacts of cyberattacks. Stochastic Petri net models have833

been used to model cyber-intrusion processes to assess the834

stochastic behavior of cyberattacks [79]. Colored Petri net835

models have been introduced to distinguish different attack-836

ers in the model by assigning a unique token color to each837

data value (type and operations). The authors of [80] lever-838

aged colored Petri net models to analyze false data injection839

cyberattacks for improved intrusion detection. A quantitative840

assessment framework of a cyberattack propagation in CPS841

was developed by integrating stochastic and colored Petri net842

models [81]. In [82], a Petri net model integrated with game843

theory was used for CPS risk assessment. Also, a time-based844

Petri net model was leveraged in [83] to model the means of845

attack and attack information transmission route in CPS.846

A Petri net model can be represented graphically or by847

using set notations, as follows:848

(P,T , I ,O,MP ) (2)849

where P is a set of places, T is a set of transitions, MP is850

the marking of places with tokens, and I and O represent the851

input and output function for all transitions, respectively.852

C. NETWORK ATTACK MODELS853

A network attack is a graphical-related approach used to854

model diverse cyberattacks. Network attack models have855

been introduced into CPS studies as a result of the rapid856

integration of information and communication technology to857

power systems, introducing additional vulnerabilities. Such858

models are very useful to identify the sources of cyber vulner-859

abilities, apply proper mitigation and isolation strategies, and860

create more resilience for CPS. These methods are classified861

mainly into: attack tree, attack graph, and state transition862

diagrams [84].863

1) ATTACK TREE864

An attack tree is a graphical description of all possible paths865

of a cyberattack. Attack trees aim to visualize the multistage866

cyber network intrusion behavior and to capture the structure 867

characteristics of a specific attack [85], [86]. The authors 868

of [87] developed a cyber-physical threat model using attack 869

trees for risk assessment and resilience enhancement. In [88], 870

a security assessment framework was introduced to quantify 871

the impacts of cyberattacks on the cyber and physical layers 872

using attack tree. 873

2) ATTACK GRAPH 874

An attack graph describes the attacking policy of an attacker, 875

including the correlation between different exploitation 876

strategies. In an attack graph, the network topology and iden- 877

tified vulnerabilities are used to compute the probability of 878

an attacker for a successful penetration attack. Attack graphs 879

are system-independent, providing a proper way to model a 880

complex combined network using an automatic generation 881

method [9]. The authors of [89] used an attack graph to assess 882

the security of the communication network in a CPS. In [90], 883

an attack graph was used to analyze the impact of cascading 884

failures in CPS. An automated attack graph generator was 885

introduced in [91] to integrate the role of the Internet of 886

Things in CPS for risk assessment. 887

3) STATE TRANSITION DIAGRAM 888

This model leverages the Markov decision process (MDP) 889

to model the attack behavior of a cyberattack. The transi- 890

tion probabilities between Markov states are computed using 891

the component vulnerabilities [66], [92]. Two advantages of 892

using this model is their capability to extensively describe all 893

types of attacks from a detection prospective and the possibil- 894

ity to define multiple system states based on the CPS safety 895

levels [9]. This model features the adaptability to changing 896

trends in system states and stochastic attack behavior. In [93], 897

a state transition diagram was used to evaluate the reliabil- 898

ity of CPPS against communication failures. Also, an auto- 899

mated cognition model was introduced in [94], leveraging a 900

semi-MDP to model CPPS for risk assessment. 901

D. STRENGTHS AND LIMITATIONS 902

Though FSM models can provide advanced features— 903

including composite state, entry and exit actions, state transi- 904

tions, and guard conditions—there still exist a few challenges 905

in the process of implementation, including poor reusability, 906

difficult maintenance, and unsuitable quantization. 907

Petri net models are very convenient to capture the 908

condition of the system change and the corresponding conse- 909

quences on the system state, but such methods lack the capa- 910

bility to provide changes in data values or system attributes. 911

Also, the scalability of Petri net models to large complex 912

systems is still a challenge. As the system size increases, the 913

computational time exponentially increases as a results of the 914

increased environment restrictions. 915

Though network attack models have been widely used 916

to model cyberattacks, a few challenges still exist. For 917

instance, attack tree models are convenient for limited types 918

of attacks, specifically sequential-based attacks. Attack tree 919
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models have limitations on simultaneous attacks or multiple920

compound attacks. The formation and structure of an attack921

tree becomes more complicated for some complex modeling922

objects. On the other hand, state transition diagrams lacks the923

scalability feature to larger systems with increased numbers924

of vulnerable components.925

The graphical-related methods can be ranked as having926

high accuracy, low scalability, high fidelity, low distributed,927

and high dynamical behavior characteristics. These methods928

have the capability to capture realistic system transition states929

considering the dynamic characteristics of the physical sys-930

tem as well as the meshed network structure of cyber systems.931

As a result, they can provide good visualization of real system932

behavior under different cyberattacks. On the other hand,933

scaling these models to larger systems is still challenging as934

a result of the exponential increase in the number of system935

states as the number of components increases. Also, their936

adaptability to the distributed environment is still a limitation.937

VI. SYSTEM AND CONTROL METHODS938

The hybrid dynamical system theory integrates the differen-939

tial equations representing the continuous-time behavior of940

the physical system with the difference equations capturing941

the discrete-time behavior of the cyber systems [95]. The942

importance of advancing control systems to cope with the943

rapid integration of distributed energy resources (DERs) and944

ICTs in power systems was presented in [96].945

A. DYNAMIC MODEL INTEGRATION APPROACH946

The authors of [62], [97] introduced a CPPS modeling947

approach based on a cyber-based dynamical model formu-948

lation to integrate cyber technologies into the dynamic equa-949

tions governing the behavior of the physical components. The950

model considers the actions of end users for control applica-951

tions. First, each type of system components is represented952

as a cyber-physical model capturing the physical and cyber953

input-output signals, internal dynamics, local sensing, and954

actuation. The generator-turbine-generator model is used as a955

reference to build cyber-physical-based models of DERs and956

load components. Each component in the system is repre-957

sented as a single module, including: (1) the internal states958

and the interaction variables between the module and the959

rest of the system and (2) the internal cyber signals and the-960

interaction cyber signals between the module and the rest961

of the cyber network. Then, a feasible integration between962

modular components is carried out based on the network963

constraints and topology. A discrete-time state-space DER964

model can be formulated as follows:965

ẋG =

−DG/JG 1/JG eT /JG
0 −1/Tu Kt/Tu

−1/Tg 0 −r/Tg

 xG966

+

 0
0

1/Tg

 uG +
−1/JG0

0

PG (3)967

xG =
[
ωG PT a

]T (4)968

where PT and PG are the mechanical and electrical powers 969

of the turbine and the generator, respectively; JG, DG, and 970

Tg are the moment of inertia, the damping factor, and the 971

time constant of the generator; Tu is the time constant of the 972

turbine; eT is the valve position coefficient; and ωG and a 973

are the generator output frequency and the valve opening, 974

respectively. 975

Following the same convention, a model of the 976

cyber-physical load module can be formulated as follows: 977

xL,k =
[
1−1TDl/JL −1TEL/JL

0 φL

]
xL,k−1 978

+

[
−1T/JL

0

]
PL,k−1 +

[
0
ETL

]
ωL (5) 979

xL,k =
[
ωL,k LTk

]T (6) 980

where L is the discrete load energy; PL is the electrical energy 981

delivered by the network to the load; JL and DL are the 982

parameters of a converted load model, with ωL representing 983

its local physical state; 1T is the sampling period; EL is a 984

zero array, with one at the corresponding time instant; and Lk 985

is the sequence of the load values preceding the current time 986

instant. 987

The presented model in [62] and [97] can capture the 988

controllability and observability of the system under study. 989

In [98], a hypothetical investigation of the CPPS dynamic 990

model on a large scale was provided. A multilayered orga- 991

nization of complex CPPS was presented that captures both 992

the local interactions among subsystem components and the 993

intraactions between subsystems. 994

B. MULTI-AGENT SYSTEM APPROACH 995

In a multi-agent system, each physical entity or physical 996

subsystem is represented by a single agent. Internal agent 997

information is exchanged among all agents through com- 998

munication networks. This approach is very convenient for 999

distributed systems because it provides an effective control 1000

approach for various DERs in a flexible and timely manner. 1001

Also, the multi-agent approach features excellent autonomy, 1002

flexible adaptability, easy coordination, and social stability. 1003

A control-based approach based on flocking theory for 1004

CPPS was proposed in [99]. The presented framework aims 1005

to improve the stability of a power system after a cyberattack 1006

considering the interactions between the cyber and physical 1007

layers. An exploration method was provided to synergisti- 1008

cally harness the information and the physical couplings, then 1009

a control method was formulated to control the DERs for 1010

enhanced stability. CPPS is split into clusters, each repre- 1011

sented by a few agents that capture the local system interac- 1012

tions and the local control information. The state-spacemodel 1013

of each agent is formulated using a set of dynamic equations 1014

capturing the behavior of the assigned cluster. Agents with 1015

high physical coherency are grouped into the same cluster. 1016

The dynamics of the presented framework for stability-based 1017

studies are formulated as follows: 1018

Miω̇i = −Diωi + Pm,i − E2
i Gii 1019
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−

N∑
j=1,j6=i

Pij sin
(
θi − θj + φij

)
+ αiui (7)1020

where i corresponds to a specific agent, u represents the cyber1021

coupling, and P and φ capture the physical coupling.1022

Further investigation into agent-based coupling for CPPS-1023

based control studies was provided in [100]. A multi-agent1024

framework was proposed to capture the physical and cyber1025

couplings for centralized and decentralized control schemes.1026

A single agent comprises a synchronous generator, a local1027

generator sensing device, a distributed controller, and a1028

fast-acting energy storage device. The agents are coupled1029

physically through transmission line connections and in cyber1030

form through the communication network. Each agent cap-1031

tures its own state and the other agents’ interaction caused1032

by the cyber-physical couplings. The proposed framework1033

aims to improve the transient stability of a physically coupled1034

CPPS leveraging fast-acting energy storage systems.1035

Other studies have also adopted multi-agent system mod-1036

eling specifically in distribution systems. In [101], a holonic1037

multi-agent system was developed to control the reactive1038

power of solar panels considering the impacts of a cyber sys-1039

tem. A load restoration strategy was introduced in [102] using1040

multi-agent modeling of DERs considering proper communi-1041

cation and coordination among agents. The authors of [103]1042

provided a cybersecurity framework of CPPS to improve the1043

detection and isolation techniques of vulnerable components1044

caused by a cyberattack. The proposed approach provides a1045

comprehensive monitoring platform for improved situational1046

awareness. In [104], a multi-agent framework was developed1047

to detect anomalous grid operation and provide proper reme-1048

dial actions for enhanced resilient operation of CPPS.1049

C. NETWORK CONTROL SYSTEM APPROACH1050

In [105], [106], and [107], a novel cyber-physical architecture1051

was proposed to model CPPS using an arbitrated network1052

control system approach. The proposed framework splits the1053

power grid into multiple areas, wherein each operate by a1054

different system operator or utility. The PMU measurements1055

within each area are transmitted to a local phasor data con-1056

centrator (PDC). Each PDC is communicating with a cor-1057

responding cloud network that comprises a set of virtual1058

machines (VMs). Each PMU is assigned to a specific VM1059

that is responsible for the computation and analysis. All VMs1060

then communicate with each other to generate a control input1061

for each generator in the whole system. A co-design frame-1062

work leveraging an arbitrated network control system was1063

developed in [108] to achieve optimal control performance1064

and efficient resource utilization considering communication1065

delays.1066

A cloud-based CPPS model was used in [109] to provide a1067

delay-aware architecture for wide-area control. The approach1068

addressed the importance of local, intra-, and inter-area1069

communication delays. A state-space model was formulated1070

to include such delays in the input signals to the CPPS.1071

A detailed illustration of a global and local closed-loop1072

FIGURE 14. Cloud-based CPS model [110].

feedback system was presented, highlighting the scalability 1073

on larger systems. 1074

A distributed framework of a network control system was 1075

provided in [110] for the wide-area measurement application 1076

of CPPS, as shown in Fig. 14. The proposed framework 1077

comprises three control loops: (1) distributed state estimation 1078

and control, (2) software-defined networking (SDN)-based 1079

real-time communication network, and (3) cloud-based col- 1080

lection and processing. All loops operate independently and 1081

cooperatively to maintain stable and reliable operation of the 1082

CPS. The first control loop is responsible for collecting and 1083

processing the PMU data and transmitting the control signals 1084

back to the system actuators. The second control loop serves 1085

the different wide-area applications through SDN network 1086

implementation. Finally, the spatial distribution of the PMUs 1087

with different data rates to improve the data latency and the 1088

fault latency of the second loop is managed by the third layer. 1089

In [111], a control-based framework was presented to 1090

include the role of renewable energy systems and demand 1091

response in a CPPS. The proposed methodology formulates 1092

the state-space models of CPPS at the primary, secondary, 1093

and tertiary control levels. The proposed framework was 1094

integrated with machine learning methods to determine the 1095

optimal delay assignment [112]. 1096

D. STRENGTHS AND LIMITATIONS 1097

In the dynamic system model approach, the scalability 1098

presents a major problem, considering the computational 1099

burden to solve a large set of system equations. Though the 1100

authors provided a basic guideline to implement the approach 1101

on a large scale, there are no applied research or case studies 1102

from actual deployments. Though the framework provides a 1103

unified modeling method, a few challenges still need to be 1104
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addressed, including: (1) The integration of system models1105

with regulatory stakeholders (such as utilities, government,1106

regulatory bodies) is a challenge [98], (2) the creation of such1107

system models often requires deep technical understanding1108

and large amounts of data and testing before they can be val-1109

idated, and (3) disconnection between the cyber and physical1110

models leads to non-provable model performance.1111

Though the multi-agent approach has been extensively1112

applied to control various DERs integrated through CPPS,1113

further investigation is still required to address diverse com-1114

munication protocols. Also, the capability to integrate the dis-1115

tributed multi-agent model with the conventional centralized1116

control mode is still challenging.1117

A main challenge in network control system approaches1118

is the large number of control variables, which increases the1119

numerical computation of the system under study. As the1120

number of inter-area computations, representing each subsys-1121

tem of the physical layer, increases, the complexity dramat-1122

ically increases. Some network control system approaches1123

adopt a centralized state-feedback control design that might1124

need to become more distributed fashion to improve the1125

scalability feature.1126

System and control methods have very high accuracy, low1127

scalability, low fidelity, are highly distributed, and have high1128

dynamical characteristics. The high accuracy level is attained1129

as a result of the presence of fully developed control-based1130

theories that have been extensively studied and validated.1131

Also, control-based methods can capture the dynamic char-1132

acteristics of the system under study through the various1133

developed state-space models. On the other hand, they show1134

a very low scalability feature because the number of dis-1135

crete equations representing each component will increase1136

dramatically as the number of components increases as well1137

as the dynamic model complexity of each component. These1138

models provide highmodeling fidelity for the physical system1139

but low modeling fidelity for the cyber system, where things1140

such as packet drops and latency can be well modeled, but1141

advanced access control and vulnerability modeling presents1142

a challenge; therefore, they might not be convenient to pro-1143

vide realistic emulation of CPPS from the cyber prospective.1144

VII. OTHER MODELING METHODS1145

This section provides a concise summary of other modeling1146

approaches that have gained less interest or are still being1147

developed.1148

A. CORRELATION MATRIX APPROACH1149

The correlation matrix approach aims to create a matrix that1150

captures the correlation characteristics between the power1151

and cyber components, including the communication layer.1152

In [113], three main matrices were combined to form the1153

overall system correlation matrix. Matrix decomposition1154

methods have been used to build sub-matrices that cap-1155

ture the interdependencies within a specific layer [114], for1156

instance, modeling communication network routers that are1157

not directly connected to cyber nodes interfacing the power1158

system component. An upstream and downstream architec- 1159

ture methodology was used to propagate the information 1160

signals between the bottom power layer and the top control 1161

center. 1162

The authors of [54] used one-to-one mapping between the 1163

cyber and physical network to build an adjacency correlation 1164

matrix, as shown in (8). 1165

A =
[
Ap Apc
ATpc Ac

]
(8) 1166

where A is the CPPS correlation matrix, Ap is the correlation 1167

matrix of the power system components, Ac is the correlation 1168

matrix of the cyber and communication components, and Apc 1169

is the correlation matrix describing the connection between 1170

the power and cyber components. 1171

In [115], the concept of the cyber-physical incident matrix 1172

(CPIM)was introduced to capture the impact of cyber failures 1173

on the physical system components. CPIM uses the available 1174

communication scheme, IEEE 61850, to build a correlation 1175

matrix that introduces cyber failures into physical compo- 1176

nents. Each row in the CPIM defines scenarios of the cyber 1177

component failure modes; whereas each column refers to the 1178

scenarios of the physical parts that are out of service caused 1179

by the cyber failure modes. The elements of the CPIM are the 1180

probabilities of the interface events, which can be extracted 1181

using the predefined failure rates of the cyber and protection 1182

components. 1183

A compact version of the CPIMwas introduced in [116] by 1184

eliminating the off-diagonal zeros. Each row in the modified 1185

CPIM represents a physical component, and each columns 1186

provides the probability of a consequent event given that 1187

a primary fault occurred on this physical component. Con- 1188

sequently, the sum of all row values should be one. Also, 1189

a consequent event matrix was developed to trace the source 1190

of failure in each physical component. It also summarizes all 1191

possible consequent events when a primary fault occurs at a 1192

particulate physical component. 1193

The use of a Kronecker product can also be considered 1194

a correlation approach; it offers the flexibility of operating 1195

on matrices of arbitrary sizes, thus removing the one-to-one 1196

mapping constraint that is often present when working with 1197

strict matrix models. A Kronecker product has been used 1198

for power grid applications to understand the effect of cyber 1199

failures, such as packet drops on system stability [117], [118]. 1200

B. PROBABILISTIC APPROACHES 1201

Probabilistic quantification approaches are used to quantify 1202

the stochastic behaviour of events impacting the performance 1203

of CPPS [119]. These approaches are mainly classified into 1204

uncertainty models and game-theoretic models. 1205

Uncertainty models leverage diverse probabilistic models 1206

to assess the direct impacts of cyber vulnerabilities [120] 1207

and the indirect impacts of monitoring and protection sys- 1208

tems caused by cyber malfunctions [121]. Such probabilistic 1209

models include numerical and sampling methods, analytical 1210

methods, approximate methods, and hybrid methods [122]. 1211
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Various evaluation approaches have been applied to assess the1212

reliability of CPPS, including a probability table [120], [121],1213

a state transition diagram [116], minimal cut set-based [123],1214

and Monte Carlo [124]. Most applied studies have not been1215

applied to large-scale systems as a result of the restrictive1216

computational limitations.1217

On the other hand, game-theoretic models use an1218

attack-mitigation model in which rational participants make1219

decisions for their own benefits based on the existing1220

information [9]. Various models have been used, including1221

zero-sum game [125], [126], Colonel Blotto game [92], [127],1222

and stochastic game [128], [129]. A bi-level mathematical1223

programmingmethodwas used tomodel an attacker-defender1224

game to mitigate the impact of a cyberattack on a distribution1225

system in [130]. Most game-theoretic models do not capture1226

the actual physical behavior of the system components and1227

the ideal performance of all controls.1228

C. VARIABLE STRUCTURE SYSTEM APPROACH1229

The variable structure approach aims to identify and locate1230

the vulnerabilities of CPPS resulting in topology reconfigu-1231

ration. Mathematical deduction theory is integrated with the1232

value of the switching signals to determine the weakness1233

points caused by a rapid continuous change in the topology of1234

the system under attack [131]. The authors of [132] presented1235

a variable structure-based CPPS model for transient stability1236

control assessment and enhancement.1237

D. CELLULAR AUTOMATA APPROACH1238

Based on cellular automata theory, any device in CPPS con-1239

sists of power cells and information cells [133]. The power1240

cells usually include power primary components, such as gen-1241

erators, transformers, transmission lines, and loads; whereas1242

information cells include secondary equipment associated1243

with the primary equipment, such as the monitoring host,1244

microcomputer protection device, measurement units, and1245

control actuators. Each cell can hold a specific operating1246

status based on the operating conditions. The transitions1247

between cells and changing cell status can be used to model1248

the interactions between the power and information cells.1249

E. CPPS TEST BEDS1250

Cyber-physical test beds are widely used for the creation of1251

environments for the analysis and demonstration of novel1252

technologies. The mapping techniques widely used in the1253

creation of these test environments are primarily based on1254

engineering judgement. As a first step, the placement of intel-1255

ligent electronic devices that act as both the measurement and1256

control devices for the power system are assigned to different1257

breaker locations in the power system model. Along with the1258

intelligent electronic devices, the mapping also accounts for1259

controllers that are directly connected to grid control devices,1260

such as regulators and capacitors. These devices form a pri-1261

mary interface between the cyber and physical layers in the1262

test bed environments.1263

CPPS test beds have shown significant capabilities to eval- 1264

uate the synergistic relationship between the physical and 1265

cyber system components, specifically in controlled environ- 1266

ments. Also, they have been widely used in cybersecurity 1267

assessments, vulnerability analysis, intrusion detection, and 1268

mitigation strategy evaluations. The authors of [134] pro- 1269

vided an extensive review on the recent simulation techniques 1270

of power systems, highlighting the importance of hybrid 1271

simulation and co-simulations to cope with the rapid inte- 1272

gration of communication networks into power systems. The 1273

authors of [135] studied the various interfacing techniques 1274

between test bed components suited for different types of 1275

studies. The authors of [10] provided an extensive review on 1276

CPPS test beds detailing different types of platforms and the 1277

corresponding convenient scope of study. Also, an outlook of 1278

the future CPPS test beds was provided. 1279

F. INDUSTRY APPROACHES 1280

Note that information on CPPS modeling approaches used in 1281

the industry at utilities, regulatory bodies, and other stake- 1282

holders is not easily available in the literature. It is well 1283

known that power system control centers run complex algo- 1284

rithms, such as state estimation and optimal power flow, 1285

over large areas regularly using measurements from ICT 1286

infrastructure; however, combined analysis in terms of CPPS 1287

is still rare. Power grid operators concern themselves with 1288

the evaluation of the stability of systems using contingency 1289

analysis methods, such as ‘‘N-1’’ criterion, whereas infor- 1290

mation technology network operators at these control cen- 1291

ters deploy traditional information technology monitoring 1292

tools, such as intrusion detection systems, to protect against 1293

cyberattacks. Although the study of cyber-induced power 1294

system failures and physics-informed information technol- 1295

ogy/operational technology system protection is gaining trac- 1296

tion, implementations in the industry still seem to be building 1297

toward a common framework toward CPPS modeling. Most 1298

industrial deployments seem to rely on a one-to-one mapping 1299

between the cyber and physical components to perform CPPS 1300

studies. 1301

G. STRENGTHS AND LIMITATIONS 1302

The presented models in this section show varied levels of 1303

accuracy but rank low in overall CPPS accuracy because they 1304

specialize in one system (power or cyber) over the other. From 1305

a scalability point of view, correlation matrix approaches can 1306

be applied on large-scale systems, especially with advance- 1307

ments in high-performance computing for computing over 1308

large matrices; however, cellular automata and variable struc- 1309

ture methods require extensive mathematical procedures for 1310

large-scale systems. The computational burdens of proba- 1311

bilistic methods significantly increase at larger scales. 1312

The fidelity feature also varies across methods. For 1313

instance, cellular automata methods have high cyber fidelity 1314

and acceptable physical fidelity, whereas correlation matrix 1315

methods and probabilistic methods have low-fidelity model- 1316

ing based on the adopted level of approximations in system 1317
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component modeling; however, variable structure methods1318

have high physical, low cyber fidelity characteristics because1319

they focus mainly on the impact of the network reconfigura-1320

tion on power system dynamics. Among these methods, cel-1321

lular automata, correlation matrix, and probabilistic methods1322

are not usually convenient for dynamic-based studies.1323

Because of the limited number of studies leveraging1324

variable structure methods and cellular methods, it might1325

be difficult to evaluate such methods from the distributed1326

prospective. Further investigation is still required to develop1327

a better understanding of these methods from the proposed1328

evaluation framework.1329

VIII. DISCUSSION1330

This section summarizes the main existing challenges1331

to present a realistic comprehensive modeling approach1332

of CPPS. First, it describes some previously mentioned1333

challenges that still require further investigation. Then,1334

it highlights some recent challenges facing CPPS modeling1335

considering big data, renewable energy system integration,1336

and communication technologies. A brief summary regarding1337

the strengths and limitations of these modeling approaches1338

is also provided. Finally, some potential future directions1339

are provided to help the stakeholder community advance the1340

modeling techniques of CPPS.1341

A. CHALLENGES1342

Besides the previously mentioned limitations on each mod-1343

eling technique, a brief summary of some CPPS model-1344

ing challenges that have been raised by other researchers1345

is discussed. First, a simplified comparison between differ-1346

ent CPPS modeling approaches was presented in [9], high-1347

lighting the main characteristics and studied applications of1348

each model. This comparison provides a guideline to under-1349

stand the cyber-physical interactions for a specific scope1350

of study. In [11], various research gaps were identified to1351

assess the vulnerabilities in CPPS, including the trade-off1352

between computational complexities and the scalability of1353

CPPS, the multi-hazard modeling in different domains, the1354

high meshed interdependencies among CPPS, the absence1355

of a general resilience metric for CPPS, and the existence1356

of proper measurement of performance. The authors of [12]1357

provided a list of foundational issues and challenges in CPPS1358

modeling, including coordination, energy data co-transfer,1359

real-time evaluation, reliability, resilience, and scalability.1360

On the other hand, purely graph-based approaches do not1361

sufficiently model the state changes within the physical sys-1362

tem [136]. Also, graph models do not account for the unique1363

characteristics of the system at various timescales nor do they1364

capture the physical modeling [136]. Because of the high sen-1365

sitivity of the communication network to failures propagated1366

from the power network, additional studies are required to1367

enhance the robustness of communication systems [56].1368

Some major challenges in CPS modeling were addressed1369

in [137]; however, further investigation of these challenges1370

in CPPS is still required. First, models should have a1371

deterministic solution rather than multiplicity of behaviors. 1372

Most numerical solvers dynamically adjust the step size, 1373

yielding biased solver-dependent behavior based on the 1374

selected step size. Also, Zeno behavior can be realized in 1375

some models as a result of the occurrence of an infinite 1376

number of events in a finite time interval. Having a determin- 1377

istic, non-solver-dependent, and non-Zeno behavior model 1378

provides a robust and reliable testing and validation method. 1379

Consistency among the model components must be achieved 1380

to reduce the risk of divergence. As the CPS model becomes 1381

bigger, the possibility of misconnected model components 1382

increases. Validation approaches should be used to ensure 1383

correctness of connections among system components. Real- 1384

istic consideration of the implementation details, including 1385

data latency and computational time, on the software level 1386

should be considered. Moreover, CPS modeling should con- 1387

sider the distributed nature behavior of the system compo- 1388

nents. This adds a few issues, such as disparities in time 1389

measurements, network delays, imperfect communication, 1390

consistency of the system state, and distributed consensus. 1391

Although there has been rapid evolution and improved 1392

progress in the field of modeling CPPS, several issues are 1393

still under investigation. First, many studies model the com- 1394

munication or cyber layer for separate parts of the power 1395

grid, giving less interest to the interconnected communica- 1396

tion network for generation, transmission, and distribution. 1397

Some studies do not fully observe the specific communication 1398

network topology and communication transmission mecha- 1399

nisms, yielding less realistic modeling. The rapid advance- 1400

ment in communication technologies has resulted in more 1401

efficient, low-latency, and cost-effective methods and sys- 1402

tems, which calls for extensive efforts to adapt and integrate 1403

recent communication technologies, including 5G and wire- 1404

less sensor networks, to CPPS. 1405

B. MODELING EVALUATION SUMMARY 1406

Table 1 summarizes the rank of each modeling approach 1407

using the proposed evaluation criteria. It is obvious that each 1408

modeling approach outperforms in some characteristics, and 1409

there is no single modeling approach that fulfills all criteria. 1410

The reason behind using graph theory and complex network 1411

methods is their capability to satisfy many required charac- 1412

teristics for proper CPPS modeling. This table also provides 1413

a guideline on possible integration techniques for improved 1414

modeling. For example, FSMmethods can be integrated with 1415

control-based methods through proper handling of ordinary 1416

differential equations. Future research should explore combi- 1417

nations of different modeling paradigms to suit the specific 1418

scenario or use case under study. In addition, techniques in 1419

the modeling process can be further refined to address the 1420

enumerated weaknesses. 1421

C. DISTRIBUTED AND AUTONOMOUS SYSTEMS 1422

As noted, CPPS are transitioning to highly distributed, 1423

autonomous systems [138]. In this context, it is important 1424

for CPPS models to support distributed system modeling 1425
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TABLE 1. Summary of CPPS modeling evaluation.

and analysis. This requires the system model to support the1426

computational capabilities at the edges of a system, instead1427

of using a centralized or hierarchical architecture, while1428

also modeling the necessary communication infrastructure to1429

enable this transition. In addition, because of the size of the1430

systems that need to be studied in greater detail with high1431

fidelity, it is essential that the modeling paradigm supports a1432

distributed solution mechanism by either dividing the prob-1433

lem into multiple smaller subproblems or enabling parallel1434

computations using high-performance computing techniques.1435

For autonomous systems, it is essential that the model1436

supports more complex computations, both at the grid edge1437

and in centralized/hierarchical deployments, while also mod-1438

eling the underlying communication infrastructure with high1439

fidelity to better understand interdependencies. Increased1440

autonomy comes with an increased risk surface to cyberat-1441

tacks because there are higher numbers of controllers and1442

attack points for malicious actors. The CPPS model not only1443

needs to be able to accommodate the attack vectors but also1444

must be capable of demonstrating the effectiveness of the1445

security and mitigation mechanisms deployed.1446

D. FUTURE DIRECTIONS1447

Because of the importance of CPPS modeling in various1448

technical and socioeconomic environments, some emerg-1449

ing research directions should be addressed. These include1450

resilience, big data, cloud computing, DER market participa-1451

tion, and technology advancements.1452

From the CPPS modeling perspective, several studies have1453

provided insightful contributions, as follows. In [134], some1454

criteria were suggested to provide a reliable and robust1455

model of CPPS, including structural properties, scalability,1456

validation, and model aggregation. The structural properties1457

describe the hybrid nature of continuous dynamic power1458

systems and discrete static cyber system. Also, component1459

reflectivity should be maintained to improve the modularity1460

of the model. The authors of [38] identified a few poten-1461

tial criteria to develop secure control algorithms of CPS,1462

including: (1) designing robust control and estimation algo-1463

rithms considering realistic attack models from a security1464

point of view, (2) developing approaches that estimate the1465

indicators of the quality of service and the integrity of the1466

communication network based on available network data, (3)1467

combining physical and analytical redundancies with security1468

principles to adapt the system operation during an attack, and 1469

(4) including trust management schemes with different com- 1470

ponents of CPS. Also, some potential solutions for improved 1471

CPPS modeling include hybrid system modeling and simu- 1472

lation, heterogeneous and concurrent computational models, 1473

and functionality-architecture joint models [137]. 1474

The severe impact of extreme weather events calls for 1475

comprehensive resilience-based studies of CPPS. Because 1476

conventional N − 1 or even N − 2 contingencies are not suf- 1477

ficient in very tight operating conditions, the interoperability 1478

features and characteristics of CPPS might yield better sys- 1479

tem performance for N − k (i.e., k > 1) contingencies. Also, 1480

cyber resilience evaluation and enhancement methods have 1481

become a necessity. Further intensive analysis is still required 1482

to assess simultataneous and coordinated cyberattacks against 1483

multiple targets in CPPS. This also calls for introducing 1484

resilience metrics to measure and assess the performance of 1485

CPPS during severe events. 1486

The rapid growth in integrating intelligent systems into 1487

conventional power system components has resulted in expo- 1488

nential increases in data sizes and rates. Also, the large 1489

amounts of data transferred from PMUs has pushed toward 1490

using data mining techniques for improved monitoring and 1491

control of CPPS. Developing a CPPS control strategy that 1492

has the capability to organize, manage, analyze, and assess 1493

the spatiotemporal-based big data has become a necessity. 1494

Data fusion approaches are being studied to overcome data 1495

problems and to improve knowledge extraction for enhanced 1496

observability. 1497

With the issuing of FERC Order 2222 and allowing energy 1498

participation from distributed energy resources, a few emerg- 1499

ing factors and actions are required to be addressed. This 1500

includes incorporating the role of DER aggregators and 1501

residential energy consumers in communication and cyber 1502

systems and conducting cybersecurity assessment analysis 1503

against the induced vulnerabilities in CPPS from DER aggre- 1504

gators. The impact of integrating renewable energy sources 1505

and electric vehicles on CPPS still requires further investiga- 1506

tion under the cyber-physical security framework to achieve 1507

cyber-physical transactive energy systems. 1508

One of the biggest challenges of CPPS modeling is the 1509

fast aging of the developed model. Operation and planning 1510

engineers often update power grid information several times 1511

per year. It is time-consuming to repeat the whole model- 1512

ing process for every update in the original CPPS model; 1513
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therefore, it is more efficient to have a fast and efficient way1514

to update the developed CPPS model based on new data.1515

This can be achieved by creating and leveraging match-and-1516

compare algorithms in different tools and platforms.1517

Developing and building test beds for CPPS has gained1518

significant interest during the last decade. These simula-1519

tion test beds have shown convenient platforms in many1520

applications, including impact analysis of cyberattacks on1521

power systems, vulnerability assessments of CPPS against1522

single or coordinated cyberattacks, and hardware-in-the-loop1523

testing and simulations; however, the capability to study1524

large-scale CPPS on these test beds is still very limited.1525

Though co-simulation techniques have shown a potential1526

solution, specifically as applied to power systems, efforts are1527

still required to validate their adaptability for CPPS. Also,1528

building an integrated model of CPPS considering the behav-1529

ioral characteristics of all components and the sophisticated1530

self-adaptability of both cyber and physical systems will pro-1531

vide a more experimental realistic significance. Most existing1532

test beds focus on a single CPPS domain, giving less interest1533

to multi-perspective domains.1534

IX. CONCLUSION1535

This paper provided a critical review on current prac-1536

tices of CPPS characteristics and an up-to-date survey on1537

cyber-physical modeling techniques. A thorough investiga-1538

tion of CPPS modeling methods, including the strengths1539

and limitations of each approach, has been provided. Also,1540

a qualitative evaluation framework was proposed and used to1541

measure the capability of eachmodel to capture CPPS charac-1542

teristics. Further, this paper identified research gaps and asso-1543

ciated challenges, proposed potential solutions, and provided1544

future directions for developing CPPSmodels considering the1545

evolving autonomous and distributed environments. Note that1546

this paper highlights only some typical research work. The1547

work presented in this paper is intended to contribute toward1548

the development of realistic CPPSmodels with high accuracy,1549

scalability, fidelity, and distributed and dynamical features.1550

Also, comprehensive modeling of CPPS components and1551

dependencies between and within the system is a necessary1552

step toward achieving a smart grid concept with improved1553

reliability, resilience, security, and sustainability.1554
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