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Automated Shift Detection in Sensor-Based PV
Power and Irradiance Time Series

Kirsten Perry1,
Matthew Muller1

1NREL, Golden, CO, 80401, USA

Abstract—PV power and irradiance sensor-based measure-
ments are prone to error, resulting in issues such as abrupt time
series data shifts. These shifts, which are usually unintentional,
may be caused by software or hardware configuration changes
on a PV system, and do not reflect an actual change in overall
system performance. Locating these shifts and segmenting the
associated time series aids in more accurate future PV analysis. In
this research, an offline changepoint detection (CPD) algorithm
that automatically detects these abrupt data shifts in sensor-
based time series is introduced. Data shift periods in 101 daily
PV power and irradiance time series were labeled manually by
two solar experts. These data streams represent sensor-based
measurements, and display a variety of data shift behaviors.
A changepoint detection algorithm was tuned using the 101
labeled data streams, with each model configuration’s ability
to detect labeled changepoints benchmarked using metrics such
as F1-score, recall, and Rand Index. Best performing models
on seasonality-corrected data streams include the Pruned Exact
Linear (PELT) method, the Binary Segmentation method, and
the Bottom-Up method, all scoring an average F1-score of 0.76
or greater at detecting labeled changepoints within a 30-day
window for the labeled data sets. To promote further research
in this space, we are releasing the labeled data shift sets on U.S.
Department of Energy’s (DOE) DuraMAT Data Hub, and the
associated algorithm in the Python PVAnalytics package.

Index Terms—data shift, changepoint detection, solar, irradi-
ance, power, data quality

I. INTRODUCTION

The use of high-quality PV data is paramount for effective
monitoring of photovoltaic (PV) systems, including running
advanced analytics routines to estimate system performance
and degradation rate [1]. When poor underlying data is fed into
PV models, results may be inaccurate and lead to uninformed
business decisions that further impact system health and
longevity. Consequently, it is paramount to use high-quality
and valid data when performing these analytics routines.

Invalid solar time series data, which includes missing data
periods and outliers, may occur as result of power outages,
equipment failures, and communication issues [1]. One par-
ticular issue in power and irradiance data streams is abrupt
data shifts. Some example data shifts, taken from sensor-based
time series data, are shown in Figure 1. Data shifts such as
these are frequently introduced unintentionally, as a result
of replacing hardware or by software configuration changes
[2]. It is important to note that these shifts do not reflect
an actual change in system performance, but are generally a
result of data acquisition issues; for example, by changing the
scale factor for a particular data output, or by converting an

Fig. 1. Two example daily time series with data shifts, taken from data
streams in the NREL PV Fleets project. Daily data points are represented in
purple, and vertical green lines represent manually labeled changepoints.

AC energy data stream to an AC power data stream and not
adequately documenting the change.

Some limited research has been performed exploring the
consequences of performing PV analysis using time series with
data shifts. In particular, Jordan et al. [2], [3] have examined
the effects of abrupt data shifts on degradation estimates in
PV time series data. [3] corrects artificially introduced data
shifts in a sensor-based temperature time series via a scaling
factor, to obtain accurate degradation estimates for a system.
Similarly, [2] uses multiple techniques such as standard least
squares regression (SLS) and a year-on-year (YoY) approach
to correct data shifts to accurately estimate degradation rates.

Lindig et al. [4] also addresses data shifts in the context of
data quality filtering for accurate solar performance loss and
useful-lifetime calculations. This research specifically recom-
mends filtering out data shift periods in time series where the
cause of the data shift is unknown. However, [4] does not
provide any process for detection of data shifts in PV time
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series data, instead relying on manual inspection by a trained
analyst to identify shift periods.

The methods previosuly described require manual identi-
fication of data shift periods, which may not be feasible if
hundreds or even thousands of data streams must be analyzed.
This research aims to automate the process of detecting abrupt
data shifts in PV data automatically via offline changepoint
detection (CPD), without making any data assumptions. The
resulting time series segments can then be analyzed separately,
or the shortest segment can be removed during later analysis,
similar to the process recommended by [4].

CPD is the process of detecting changes in an underlying
signal, in particular a time series [5]. The concept of CPD
dates back to the 1950’s [6], and has various applications in
speech processing [7], climatology [8], and financial analysis
[9], among others. Offline CPD is a subcategory of CPD,
where changepoints are detected in a signal after all data points
have been collected [5]. Offline CPD can be formulated as a
model selection problem, where we want the best possible
segmentation of a signal with a specific quantitative criterion
minimized [5]. CPD can be described as a combination of
three elements: a cost function, which is a measure of the
homogeneity between separate time series segments; a search
method, which is the particular procedure employed to solve
the optimization problem in question; and a constraint, which
is either the number of changepoints in a sequence (if known)
or penalty value associated with the goodness-of-fit term [5].

CPD has been applied to PV time series data previously, for
different applications. Specifically, Theristis et al. [10], [11]
applied the Facebook Prophet CPD algorithm to performance
ratio (PR) time series with a non-linear degradation rate, with
the intent of detecting degradation rate changes. This research
differs from ours in that we are not looking to detect changes in
degradation rates across a time series; rather, we are attempting
to detect issues with the raw data itself, which occurs as a
result of data acquisition problems. To our knowledge, this is
the first attempt to automatically identify this particular issue
in sensor-based PV data.

II. METHODS

A. Data Sets

To build and validate the shift detection algorithm, 101 data
sets representing unique sensor-based irradiance and power
data streams were collected and labeled. Time series were
collected from multiple PV solar installations, available via
the NREL PV Fleets Initiative [12]. The PV Fleets Initiative is
a US Department of Energy-funded project, where operational
PV plant data is aggregated into a centralized cloud repository
for the purpose of large-scale degradation analysis across the
US. This database contains sensor-based time series data for
over 1700 sites across the United States.

Data streams representing a variety of data shift behaviors,
including scaling issues, were selected for labeling. Each time
series was summed over a daily basis.

Two experts manually labeled data shifts in each of the 101
daily summed time series. A binary labeling strategy was used.

Each individual data point in the time series was either labeled
as a “data shift” point, where a major data shift occurs in the
time series, or as a “regular” point where no change occurs.
This labeling strategy was used to facilitate finding the specific
point in a time series where a shift occurs, so data can be
partitioned into individual issue-free segments.

B. Data Pre-Processing

Before applying the shift detection algorithm, each daily
summed time series data set was cleaned, with the intent
of removing egregious single-point outliers and anomalies.
Specifically, the following steps were performed:

• All negative data days were removed.
• Stale data readings, i.e. consecutive repeat daily readings,

were identified and removed from the time series. A
consecutive repeat window of 6 readings or more was
used to identify stale reading periods.

• All values less than the 1st percentile of data and greater
than the 99th percentile of data were removed.

• Each daily time series was min-max normalized.
Irradiance and PV power time series can show extreme sea-

sonality year-over-year. Removing seasonality helps to make
the time series more stationary, and aids in detecting data
shifts more accurately. Seasonality was removed from each
time series via the following logic:

• The median value of each day of the year was calculated,
resulting in a 365 day-long time series, with a median
value for each day in the year. So, for example, in a
three-year long time series, the three values occurring at
January 1st in the time series are used to calculate the
median value of January 1st.

• At each day in the time series, the median day value
calculated in the previous step is subtracted from the
normalized time series value.

An example time series, pre- and post-seasonality removal,
is shown in Figure 2. It is important to note that all time series
must be at least two years in length for this strategy to work,
or seasonality cannot be calculated and removed.

C. Shift Detection Algorithm

The Python Ruptures changepoint detection package was
used to develop and tune the shift detection algorithm [13].
An offline, unsupervised CPD algorithm was tuned using
the manually labeled data sets. The following changepoint
algorithm parameters were varied during grid search, to find
the best-performing algorithm combination on the labeled
data:

• Search method: Binary Segmentation, Window-based,
Pruned Exact Linear Time (PELT), and Bottom-Up meth-
ods

• Cost function: radial basis function (rbf), L1, and L2
• Penalty: value between 10 and 100 inclusive, at intervals

of 10. Higher penalty values cause heavier filtering of
changepoints, resulting in fewer total detected change-
points. Because we are attempting to automatically detect
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Fig. 2. An example time series before seasonality removal, and after
seasonality removal.

data shifts with no prior knowledge of the time series, we
do not pass a specific number of changepoints to find, and
instead rely on a penalty threshold.

• Width: value between 10 and 110 inclusive, at intervals
of 20. Width only applies to the window-based method,
and acts as the length of the sliding window.

In addition to running seasonality-corrected data through
the CPD algorithm, normalized time series data (with no
seasonality correction) was also run. This was to identify the
best parameter combination for situations where seasonality
cannot be removed, i.e. time series shorter than 2 years in
length.

D. Benchmarking Algorithm Performance

The ability of each model to successfully detect change
points in the labeled time series was assessed, using CPD-
specific F1-score and precision metrics developed by the Alan
Turing Institute [14].

F1-score and recall are defined via the following equations,
respectively [14]:

F-score =
2 · recall · precision
recall + precision

(1)

recall =
TP

TP + FN
(2)

where TP represents the number of true positives, and FN
represents the number of false negatives. A true positive is
defined as a detected changepoint within 30 days of a labeled
changepoint. This 30-day period acts as a margin-of-error
period, to allow for small discrepancies where the detected
changepoint may be a few days off from the actual labeled
changepoint. Recall is the fraction of relevant changepoints
detected out of all correctly-labeled changepoints. A recall of

1 indicates that all labeled changepoints were found. An F1-
score of 1 indicates perfect precision and recall, where the only
changepoints detected by the algorithm are true positives.

In addition to measuring F1-score and recall, the Rand
Index was measured for each test case. The Ruptures Python
package implementation for the Rand Index was used [13].
The Rand Index measures the similarity between data clusters;
in the case of changepoint detection, it analyzes the similarity
between changepoint-separated time series segments [13]. For
this research, the Rand Index is a valuable metric because
we are most concerned with having consistent time series
segments as a final output, not necessarily the changepoints
themselves. The Rand Index is defined via the following
equation [13]:

Rand =
N0 +N1

T (T + 1)/2
(3)

where N0 represents the number of pairs of samples that
belong to the same segment in a sequence T that has been
split into segments T1 and T2, and N1 is the number of pairs
of samples that belong to different segments according to T1

and T2. The Rand Index is normalized between 0 and 1, where
0 indicates complete disagreement and 1 indicates complete
agreement.

III. RESULTS

Tables I and II show the five best CPD model configurations
based on average F1 score for seasonality-corrected and nor-
malized data streams, respectively. Table III shows Rand Index
scores for these particular models. Generally, better overall
metric scores were achieved when seasonality-corrected data
was used.

Using seasonality-corrected data, the best-performing CPD
model, a PELT model, achieved an F1-score of .767 and a
Rand index value of 0.871. For normalized-only data, the best
performing model, a window-based model, achieved an F1-
score of .745 and a Rand Index value of .848. It is noteworthy
that the best performing model overall (PELT model with
seasonality-removed data) had one of the slowest overall run
times, with an average run time of 50.81 seconds per a data
stream, with the average data stream length of approximately
2300 data points. Several models achieved slightly lower
average F1-scores on the data set, but have far faster average
run times. When looking at model performance in terms of
both time efficiency and accuracy, we recommend using the
Bottom-Up model for seasonality-corrected data (average F1-
score of 0.76 and Rand Index of .878, with an average run time
of 0.26 seconds). For normalized-only data, we recommend
using the Window-based model with the highest average F1-
score (F1-score of .745 and Rand Index of .848, with a run
time of .2 seconds).

The Rand Index scores for the highest-scoring models are
particularly promising (values greater than .8), as they indicate
that the final time series outputs are well-segmented. This is
particularly important, as we want to perform analysis on data
periods that are consistent and free of massive data shifts.
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TABLE I
TOP 5 PERFORMING CPD CONFIGURATIONS ON LABELED,

SEASONALITY-CORRECTED DATA

Model Cost Penalty Recall F1 Run Time (s)
PELT rbf 40 .734 .767 50.81

Binary Seg rbf 50 .705 .763 2.24
Binary Seg rbf 40 .726 .762 2.37

PELT rbf 50 .708 .761 54.99
Bottom-Up rbf 40 .729 .760 .26

TABLE II
TOP 5 PERFORMING CPD CONFIGURATIONS ON LABELED, NORMALIZED

DATA (NO SEASONALITY CORRECTION)

Model Cost Penalty Width Recall F1 Run Time (s)
Window rbf 30 50 .698 .745 .200
Window rbf 40 50 .671 .741 .199
Window rbf 20 30 .736 .739 .191
Window rbf 20 50 .747 .737 .199
Window rbf 50 50 .654 .736 .206

IV. PVANALYTICS INTEGRATION & FURTHER RESEARCH

The models developed in this research are available for
public use via the Python PVAnalytics package [15]. In ad-
dition to automated data shift detection, the package includes
functionality for identifying the longest continuous time series
segment that is free of data shifts and isolating it for further
analysis. This detection-and-segmentation process is illustrated
in Figure 3.

Our logic for selecting the longest time series segment
for further analysis is currently rudimentary, and we plan to
develop more advanced processes for analysing and selecting
the "best" time series segment for further analysis, based on
each segment’s overall data quality and availability. We also
plan to further investigate whether data shifts caused by scaling
issues or similar can be identified and corrected (rather than
eliminated), without compromising the overall quality of the
time series and biasing future analyses.
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