
Renewable Energy 200 (2022) 457–475

Available online 29 September 2022
0960-1481/© 2022 Battelle Memorial Institute and National Renewable Energy Laboratory. Published by Elsevier Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Evaluating wind speed and power forecasts for wind energy applications 
using an open-source and systematic validation framework 

Joseph C.Y. Lee a, Caroline Draxl b,*, Larry K. Berg a 

a Pacific Northwest National Laboratory, Richland, WA, 99354, USA 
b National Renewable Energy Laboratory, Golden, CO, 80401, USA   

A R T I C L E  I N F O   

Keywords: 
Wind energy 
Benchmark exercise 
Forecast evaluation 
Open-source tool 
Ramp forecasting 

A B S T R A C T   

Building on the verification and validation work developed under the Second Wind Forecast Improvement 
Project, this work exhibits the value of a consistent procedure to evaluate wind power forecasts. We established 
an open-source Python code base tailored for wind speed and wind power forecast validation, WE-Validate. The 
code base can evaluate model forecasts with observations in a coherent manner. To demonstrate the systematic 
validation framework of WE-Validate, we designed and hosted a forecast evaluation benchmark exercise. We 
invited forecast providers in industry and academia to participate and submit forecasts for two case studies. We 
then evaluated the submissions with WE-Validate. Our findings suggest that ensemble means have reasonable 
skills in time series forecasting, whereas they are often inferior to single ensemble members in wind ramp 
forecasting. Adopting a voting scheme in ramp forecasting that allows ensemble members to detect ramps 
independently leads to satisfactory skill scores. Throughout this document, we also emphasize the importance of 
using statistically robust and resistant metrics as well as equitable skill scores in forecast evaluation.   

1. Motivation 

Selecting accurate renewable energy forecasts that suit one’s needs 
requires careful assessment. For instance, variations emerge among 
forecast providers, from numerical modeling practices toforecast un
certainty communications [1]. Varying methodologies chosen by 
different organizations also create uncertainties in predicting wind en
ergy production [2,3]. Creating a benchmark to evaluate forecast per
formance is also costly for forecast users and providers [4]. Therefore, to 
minimize the misalignment of expectations and requirements in wind 
energy forecasts among stakeholders, a comprehensive and objective 
process of selecting forecast providers has been proposed [4,5]. 

Adhering to the recommended practice guidelines, in this work we 
illustrate a systematic approach to evaluate forecast model performance 
with observations. We developed an open-source code base for wind 
power forecast validation, WE-Validate (WE standing for wind energy), 
that solidifies the rigorous forecast evaluation framework. This frame
work allows for transparency in model evaluation, provides clear 

guidance in operational settings, and enables new research endeavors. 
We hosted a forecast benchmark exercise that involved industry and 

academia collaboration. With WE-Validate, we established a systematic 
forecast validation framework with the ability to coherently evaluate 
multiple forecasts within and across various organizations, with an 
emphasis on evaluating forecasts of wind ramps. Users of WE-Validate 
can provide forecast and observation time series and evaluate model 
performance in a manner consistent with others who use the tool. In this 
work, we exhibit the results of the benchmark exercise using WE- 
Validate, discuss the characteristics of different evaluation metrics, 
and reveal the strengths and weaknesses of ensemble mean forecasts. 

This study was funded and carried out as an extension of the model 
verification and validation effort [6] of the Second Wind Forecast 
Improvement Project (WFIP2) [7–9] through the U.S. Department of 
Energy. In addition to being an extension of the WFIP2 work, this study 
also represents a contribution to Phase II of Task 36: Wind Energy 
Forecasting of the International Energy Agency’s (IEA’s) Wind Technical 
Collaboration Programme. The goal of Task 36 is to improve the value of 
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wind energy forecasts to the wind energy industry [10]. This work falls 
under the umbrella of Work Package 1 within IEA Wind Task 36, which 
focuses on forecast model improvement. By being part of IEA Wind Task 
36, this study benefitted from the invaluable input from task members, 
and WE-Validate can be directly linked to real-world applications. In 
particular, the Recommended Practice for the Implementation of 
Renewable Energy Forecasting Solutions [4,5] were consulted during 
the design and conception phase of the benchmark exercise and code 
development. 

2. WE-Validate 

We developed a Python-based code base as a platform to consistently 
evaluate wind power forecasts. We call our tool WE-Validate to gear 
toward forecast validation using observations and simulations for wind 
energy applications. This infrastructure code enables the comparison of 
time series from arbitrary data sources using user-defined metrics. This 
tool is designed to be simple, readily useable, open source, publicly 
available, modularized, and extensible by users. Detailed instructions 
for users can be found on its GitHub page, https://github.com/a2edap/ 
WE-Validate. The tool is currently tailored for wind power forecast 
evaluation, and it can be extended to solar forecasting and other ap
plications as well. 

The tool was built on the data structure of pandas [11], which is a 
widely used Python package. The tool has built-in data quality control 
capabilities, such as checking, flagging, and removing missing or 
duplicated data; aligning multiple time series to user-defined start and 
end times of the evaluation period; and resampling higher-frequency 
data to match another data set of coarser resolution. 

The code can handle data inputs at various height levels and data 
frequencies. After the initial data quality control steps, at each user- 
defined height, the code compares the observed time series to the 
modeled time series and computes the evaluation metrics (Section 3.1). 
If multiple forecasts are specified (e.g., ensemble forecasts), the code 
would screen all the individual forecasts and compare each of them with 
the observations. Instead of using observations, WE-Validate users can 
also employ time series from a reference simulation and compare it 
against other simulated time series to examine model differences and 
improvements. 

For visualization, the code generates a time series line plot, a histo
gram, and a scatterplot between the forecast and observed values at each 
specified height. When ramp evaluation is turned on, for each ramp 
definition, the code computes the ramp evaluation metrics (Section 3.2) 
and generate a time series line plot overlayed with a 2 × 2 contingency 
table. When the variable of interest is wind speed and the height level 
matches the specified hub height, the code derives power using a power 
curve, which can be selected by the user. Note that the visualizations 
displayed in this analysis (Section 5) are not part of the standard visual 
outputs in the current version of WE-Validate. The diagrams presented 
in this work are created for this study, based on the numerical outputs 
from executing WE-Validate with forecast submissions of the benchmark 
exercise. We also made the Python code of these charts and analyses 
publicly available on GitHub. 

Users can edit a configuration file, which is in yaml format, and 
execute the tool in Python. The configuration file specifies the details of 
the forecast evaluation, such as the period of evaluation, the heights of 
interest, the variables to evaluate, the forecast and observed data fre
quency, the method of time step alignment, and the ramp definitions. An 
existing code example listed on GitHub uses a Jupyter Notebook, but 
executing the code does not require using one. 

In a configuration file, when the user specifies the same data pro
cessing settings to different forecast data sets, they can consistently 
compare the resultant evaluation metrics from across the data sets. For 
instance, if a wind farm operator receives a forecast at 10-min resolution 
and another forecast at 30-min resolution, the analyst can execute WE- 
Validate at a 30-min resolution for both forecasts and compare their 

performance in a compatible manner. 
We note that other useful validation tools also exist or are under 

development. WindSider (windsider.io) is tailored for the wind resource 
assessment process and uses the data structure of xarray, another Python 
package. As of this writing, WindSider is under development, led by 
experts from 3E and the Technical University of Denmark. The Ramp 
Tool and Metric [12], created by researchers at the National Oceanic and 
Atmospheric Administration, is geared toward ramp forecasts. Written 
in MATLAB, the Ramp Tool and Metric is a stand-alone program and 
cannot not be easily modified by users. The Solar Forecast Arbiter [13], 
created and maintained by a team of experts at the University of Ari
zona, Sandia National Laboratories, Electric Power Research Institute, 
Inc., and Sharply Focused LLC, is an established Python tool for 
renewable energy forecast evaluation. The Solar Forecast Arbiter is open 
source and is equipped with a dashboard and an application program
ming interface (API) that connects to its host server and its database. 
Users of the Solar Forecast Arbiter would upload their data to its data 
center and perform analysis on its server. METplus [14] is a sophisti
cated model verification framework for numerical weather prediction. 
The tool is developed based on the Model Evaluation Tools (MET) and 
has a suite of Python wrappers for statistical and graphical analyses. 
METplus is developed and supported by the Developmental Testbed 
Center, which involves experts from the National Oceanic and Atmo
spheric Administration, the National Center for Atmospheric Research, 
and the U.S. Air Force. 

Compared to the other forecast evaluation tools, WE-Validate is open 
source, readily available, easily customizable, and computationally 
lightweight. WE-Validate is documented on GitHub, and we encourage 
and welcome contributions to the tool from the wind energy community. 
After installing Python and the required packages, users can download 
and use WE-Validate at their convenience. Users can also extend WE- 
Validate’s existing capabilities by adding data-processing functions, 
forecast evaluation metrics, ramp definitions, or visualizations to ach
ieve their objectives. Users can write their own data-ingesting functions 
so that theoretically any type of data can be processed by the tool. We 
encourage users to write unit tests for the metrics they develop and add 
to WE-Validate. Moreover, users only need a local machine to execute 
WE-Validate, without uploading their data to a server. 

3. Metrics and evaluation 

In this section, we discuss the characteristics of different metrics for 
the evaluation of time series and ramp forecasts. The wind energy 
community often uses single-value metrics to summarize forecast per
formance. Different categories of metrics are tailored for specific pur
poses; for example, the mean square error determines accuracy, the 
probability of detection targets precision (a measure of data spread), and 
the Peirce skill score accounts for a model’s skill relative to a reference 
model [15]. Although using summary metrics is useful for making 
comparisons, collapsing multidimensional data into a single-number 
metric loses valuable information. Therefore, depending on the goal of 
the forecast evaluation, analysts should consider multiple metrics of 
different aspects for a holistic examination [5]. For example, suites of 
metrics for wind and solar power forecasting are respectively discussed 
in Refs. [16,17]. In the following subsections, we review several 
commonly used metrics to evaluate time series and ramp forecasts for 
wind energy applications. 

3.1. Single-value metrics for time series forecasts 

This section focuses on metrics for nonprobabilistic forecasts for 
continuous predictands, which are appropriate for the deterministic 
time series evaluation of wind speed or wind power forecasts. To begin, 
we briefly discuss two statistical properties: robustness and resistance. A 
robust statistic is insensitive to assumptions made on the nature of the 
data, and a resistant statistic is insensitive to a small portion of outliers 
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[18]. For instance, on the one hand, an arithmetic mean is not robust 
because the mean does not adequately characterize the center of a 
non-Gaussian distribution and may result in misleading interpretations. 
An arithmetic mean is also not resistant because the mean can change 
drastically when a few extreme values are added to the data set, and 
hence, the mean does not sufficiently characterize the center of the data 
set anymore. On the other hand, the 50th percentile of a data set, also 
known as the median, is robust and resistant because the median does 
not make any assumptions on the distribution of the data set and is not 
influenced by a few outliers. 

In the wind energy community, using the root-mean-square error 
(RMSE) has been a common practice to evaluate time series forecasts [6, 
16]. However, the RMSE is neither robust nor resistant because it in
volves the arithmetic mean. When a wind power forecast fails to predict 
power fluctuations for a short period, which often takes place during 
ramp events, the RMSE of the forecast can be overly inflated thanks to its 
nonresistance to outliers. Researchers have been using variations of 
RMSE to mitigate RMSE’s weaknesses, such as normalized RMSE [19] 
and unbiased RMSE [20], but the augmentations do not fundamentally 
resolve its lack of statistical robustness and resistance. 

Experts from other fields, such as space weather forecasting and soil 
sciences, have proposed metrics based on the relative magnitude be
tween forecast and observed values, such as mean absolute percentage 
error and its variant like the mean arctangent absolute percentage error 
[21]. Median symmetric accuracy is an example of such metrics that is 
both robust and resistant [15,22]: 

Median symmetric accuracy = 100 × exp
(

median
(⃒
⃒
⃒
⃒ln

forecasti
observationi

⃒
⃒
⃒
⃒

)

− 1
)

(1) 

Nevertheless, metrics based on the ratio between forecast and 
observation are not ideal for wind power forecast evaluation. First, such 
a ratio for an observation-forecast pair of 20 MW and 10 MW and the 
ratio for another pair of 200 MW and 100 MW are the same. The frac
tional metric does not convey the magnitude of the forecast error, which 
can have substantial financial implications in wind energy applications. 
Second, when the observed power is 0 MW, the ratio generates mathe
matical errors from division by 0. Even though median symmetric ac
curacy has many valuable traits, we caution readers on metrics that use 
relative magnitude between forecast and observed values. 

To conclude, we suggest readers understand the characteristics of 
different metrics and use robust and resistant metrics in their analyses in 
addition to their established workflow or commonly used metrics. One 
example that we employed in this analysis, which is robust and resistant 
and preserves the magnitude of the variable, is the median absolute 
error. We incorporated the median absolute error and other common 
metrics such as the RMSE, the mean bias, and the mean absolute error in 
the existing version of WE-Validate. 

3.2. Metrics for ramp forecasts 

This section focuses on metrics for nonprobabilistic forecasts for 
discrete predictands, which are appropriate for evaluating deterministic 
wind ramp event forecasts. Wind ramp events add power-generation 
variability and pose challenges to the grid, and many studies have 
been dedicated to wind ramp detection, forecasting, and evaluation 
metrics [23–31]. Researchers at the National Oceanic and Atmospheric 
Administration also developed a software package, the Ramp Tool and 
Metric, that uses a set of ramp detection definitions and sophisticated 
skill scores to evaluate ramp forecasts [12]. In this section, we discuss 
several commonly used ramp metrics that have been incorporated into 
WE-Validate (Section 2). 

We use a 2 × 2 contingency table to evaluate deterministic wind 
ramp forecasts compared to observations, where the four categories are 
true positive (TP) or hit, false positive (FP) or false alarm, false negative 

(FN) or miss, and true negative (TN). Mathematical combinations of the 
four categories yield useful scalar attributes for ramp forecast evalua
tion, and we list several that are discussed in this manuscript: 

Probability of detection (POD) or hit rate =
TP

TP + FN
(2) 

which is the ratio of correct forecasts to observed ramps, and a 
forecast with a higher POD is more favorable; 

False alarm ratio =
FP

TP + FP
(3) 

which is the percentage of forecast ramps that are wrong, and a 
forecast with a lower false alarm ratio is more favorable; 

Success ratio (SR) or forecast accuracy =
TP

TP + FP
= 1 − False alarm ratio

(4) 

which is the percentage of forecast ramps that are correct, and a 
forecast with a higher SR is more favorable; 

Bias or frequency bias score =
TP + FP
TP + FN

=
POD
SR

(5) 

which is the ratio of forecast ramps to observed ramps. An unbiased 
forecast yields a bias of unity, a forecast that over forecasts ramps yields 
a bias larger than 1, and a forecast that under forecasts ramps yields a 
bias smaller than 1; 

Criticalsuccessindex(CSI)orthreatscore=
TP

TP+FP+FN
=

(
1
SR

+
1

POD
− 1

)− 1

(6) 

which is the ratio of correct forecasts to the total number of forecast 
and observed ramps. The worst possible forecast yields a CSI of 0, and 
the best possible forecast yields a CSI of unity. Regarding forecasting 
rare events when occurrences are fewer than nonoccurrences, such as 
wind ramps, CSI is useful because it does not account for TN, which 
would be a relatively large number compared to the other three cate
gories [18]. The geometric relationship among POD, SR, bias, and CSI is 
discussed in Ref. [32], which can be visualized as a performance 
diagram. 

Note that the false alarm ratio differs from the false alarm rate [18, 
33] Equation (3): 

False alarm rate =
FP

TN + FP
(7) 

which is the ratio of false alarms to the total number of nonramp 
instances. 

Besides the scalar attributes mentioned above, we recommend using 
equitable scalar skill scores to evaluate wind ramp forecasts. An equi
table skill score rates random forecasts and forecasts of constant results 
equally, where the skill score for a useless forecast is usually defined to 
be 0, and a perfect forecast often yields a skill score of unity [18,34]. 
Equitability also implies that correct forecasts of less frequent events 
have more weight than correct forecasts of more-common events [18]. 
An example of an equitable skill score is the Peirce skill score (PSS): 

PSS = POD − False alarm rate =
(TP × TN) − (FP × FN)

(TP + FN) × (FP + TN)
(8)  

where a perfect forecast yields a PSS of unity, a random forecast yields a 
PSS of 0, and a forecast worse than a random forecast yields a negative 
PSS. When ramp events are rare, a correct ramp forecast contributes 
more to the PSS. 

In addition to the PSS, the symmetric extreme dependency score 
(SEDS) is another useful metric for ramp forecasts [35–37]: 
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SEDS =

ln
( TP + FP

n

)

+ ln
(

TP + FN
n

)

ln
( TP

n

) − 1 (9)  

where n is the total number of deterministic ramp forecasts, and n =

TP+ FP+ FN+ TN. A perfect forecast yields a SEDS of unity, a random 
forecast yields a SEDS of 0, and a forecast inferior to a random forecast 
yields a negative SEDS. When TP is 0, the resultant SEDS is undefined. 
The SEDS is argued as asymptotically equitable, in which it approaches 
equitability when the data sample size is large [35,36]. The SEDS is 
appropriate for evaluating rare event forecasts because it ignores the 
potentially large contribution from TN. 

In the existing version of WE-Validate, we included the 2 × 2 con
tingency table, the scalar attributes, and the two skill scores discussed 
above. We encourage users to expand the current library of ramp metrics 
in WE-Validate (Section 2). 

4. Benchmark exercise 

The goal of the benchmark is to demonstrate the use of the WE- 
Validate tool building on the WFIP2 model verification and validation 
work. The benchmark exercise aims to demonstrate the importance of 
reproducible, metrics-based model assessments, which should be part of 
every organization’s forecast validation strategy. In that sense, this 
benchmark exercise provides an opportunity for us to evaluate the 
forecast performance of numerical weather prediction models at both 
intra- and interorganizational levels. This exercise also serves as a 
platform for stakeholders to share and compare wind forecast evaluation 
metrics among organizations. In this study, we have further used the 
benchmark results to illustrate the utility of a variety of metrics. The 
purpose of this exercise is not to determine the most accurate forecast, 
but to illustrate the value of a systematic forecast evaluation framework. 

Setting up a rigorous forecast evaluation procedure also aligns with 
the verification and validation framework proposed in the WFIP2 [6] as 
well as the IEA Wind Task 36 Recommended Practice for the Imple
mentation of Renewable Energy Forecasting Solutions [5]. Through this 
work, we implemented the metrics discussed in Section 3 into 
WE-Validate (Section 2) to showcase the importance of the recom
mended framework. 

Forecast providers in the wind energy industry as well as wind en
ergy researchers were invited to participate in this exercise. Participants 
were given several months in 2021 to prepare and submit their forecasts. 
The authors of this manuscript from the National Renewable Energy 
Laboratory and the Pacific Northwest National Laboratory in the United 
States organized and coordinated this benchmark exercise. 

After we collected data from the participants, we anonymously 
evaluated the submitted data and executed WE-Validate for each sub
mission. For the data analysis, we used and contrasted commonly used 
statistics, such as the RMSE and the median absolute error (Section 3.1), 
as well as more sophisticated skill scores for wind ramp events (Section 
3.2). We also varied the configuration files, depending on the submis
sion, to test for sensitivity of the methodology. For instance, we inves
tigated the influence of averaging frequency to resultant forecast errors 
(Section 5.1). In the long run, we hope that WE-Validate will be devel
oped into a useful reference forecast evaluation framework for the wind 

Table 1 
Summary of the two cases.  

Case study WFIP2 Baltic-2/FINO2 

Site description The WFIP2 project was a 
meteorological 
measurement field 
campaign targeting the U. 
S. Pacific Northwest. The 
region has complex terrain 
and land-based wind 
farms. More information 
can be found in Refs. [8,9, 
38]. The location of the 
WFIP2 sodar is projected in 
Fig. 1. 

The Baltic-2 offshore wind 
farm is on the Germany 
side of the Baltic Sea in 
Europe. The wind farm has 
80 S SWT-3.6-120 wind 
turbines, with a hub height 
of 78.25 m, rotor diameter 
of 120 m, and rated power 
of 3.6 MW. The plant 
capacity is 288 MW, and 
the wind farm has been 
operating since 2015. 
The FINO2 research 
platform has been 
operating since 2007. The 
platform offers various 
measurements that 
support research on 
oceanography, 
meteorology, and ecology. 
The locations of Baltic-2 
and FINO2 are depicted in 
Fig. 2. 

Latitude and longitude 
(WGS84) of 
measurements 

Sodar: 45.57451◦N, 
120.74734◦W 

FINO2 tower: 
55.006928◦N, 
13.154189◦E 
Baltic-2 wind farm: 
54.9733◦N, 13.1778◦E 
FINO2 is about 4 km 
northwest of Baltic-2. 

Evaluation period (one 
initialization at the 
start of the forecast) 

Start: 2016-09-23, 1200 
UTC 

Start: 2020-10-03, 2300 
UTC 

End: 2016-09-25, 1200 
UTC 

End: 2020-10-10, 2300 
UTC 

A 48-h forecast A 168-h forecast 
Validation 

measurement type 
Temporal averages from a 
Vaisala Triton wind 
profiler 

FINO2: Temporal averages 
from cup anemometers 
and wind vanes 
Baltic-2: Wind-farm- 
average power and nacelle 
wind speed 

Data frequency Data are averaged at an 
interval of 10 min at the 
end of the bin (e.g., data 
labeled at 00:10 UTC 
represent averages from 
00:00 to 00:10 UTC). 

FINO2: Data are averaged 
at an interval of 10 min at 
the midpoint of the 
interval, which starts at 
00:05 of the hour (e.g., 
data labeled at 00:05 
represent averages from 
00:00 to 00:10). 
Baltic-2: Data are averaged 
at an interval of 15 min at 
the end of the bin (e.g., 
data labeled at 00:15 
represent averages from 
00:00 to 00:15). 

Benchmark variables 
[units] available at 
heights 

Wind speed [m s-1] and 
wind direction [degrees] at 
40, 80, 120 m above 
ground level 

FINO2: Wind speed [m s-1] 
at 62, 72, 82, and 92 m and 
wind direction [degrees] 
at 51, 71, 91 m above sea 
level 
Baltic-2: Plant-level power 
[MW] and nacelle wind 
speed [m s-1] at 78.25 m 
above sea level 

Meteorological 
description 

Northwesterly flow and 
mountain waves were 
observed in the area. The 
area was overcast at times, 
with scattered showers in 
the Columbia River Basin 
during the first half of the 
forecast period. More 
details can be found in 
Ref. [39]. 

Based on the FINO2 tower 
data, southwesterly flow at 
hub height was observed 
for most of the 7-day 
period. The hub height 
temperature was never 
below freezing. 
Precipitation was recorded 
at 60 m on 4, 7, 8, 9, and 
10 October 2020. Multiple  

Table 1 (continued ) 

Case study WFIP2 Baltic-2/FINO2 

frontal systems passed 
through the Baltic Sea 
region in the 7-day period. 

Notes on wind farm(s) Wind farms exist and 
operate in the area, but no 
wind power data were 
available. 

Wind turbine availability 
was 100%.  
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energy community. 
Table 1 describes the metadata of the two case studies that partici

pants could submit data for: the WFIP2 case at the Columbia River Basin 
in the Pacific Northwest of the United States and the Baltic-2/FINO2 

case in the North Sea in Europe. 
We asked the participants to submit 30-min forecasts for both cases. 

For the WFIP2 case, we asked for wind velocity forecasts over 2 days; for 
the European case, we asked for wind velocity and plant-level power 
forecasts over 7 days. We invited the participants to submit forecasts 
aligning with the metadata of the observations in Table 1, which 
allowed for valid comparisons between forecasts and observations as 
well as comparisons among forecasts. We also asked the participants to 
provide metadata of their numerical models, including the resolutions of 
the model grid cell and, in the case of ensemble forecast, the differences 
between the ensemble members. 

We briefly summarize the submissions we received in Table 2. 
Participant p3 did not submit data for the WFIP2 case, and Participant 
p5 submitted forecasts at 60-min intervals. For a consistent assessment 
among organizations, we analyzed 60-min averages for all the forecast 
and observed data in this study. Note that the data we gathered in this 
benchmark exercise are not strictly forward-looking weather forecasts 
because the participants could use historical reanalysis data to initialize 
their numerical models. The submissions from Participants p2 through 
p5 are referred to as ensembles because they provided more than one 
modeled forecast, whereas p1 only submitted a single forecast for each 
case study. The ensemble members use different model settings, such as 
various wake parameterization schemes, surface layer schemes, plane
tary boundary layer schemes, and vertical diffusion schemes. For 
example, the submission from p5 is considered a classic ensemble pre
diction system, in which the members differ in condensation and 
advection parameterization schemes. Moreover, if a participant sub
mitted forecasts from operation model runs, their type of forecast is a 
true forecast. Alternatively, p1 used reanalysis data in their simulations, 
and the type of forecast is a hindcast. The forecast submission from p2 
involved experimental changes made to their operational model, which 

Table 2 
Summary of collected forecast submissions.  

Participant p1 p2 p3 p4 p5 p6 

Number of ensemble 
members 

N/A (single 
submission) 

2 2 8 75 N/A (single submission) 

Forecast output temporal 
resolution (min) 

5 30 30 30 60 30 

Number of domains 3 WFIP2: 4 3 2 3 1 for all models used 
Baltic-2/FINO2: 2 

Grid resolution 25, 5, and 1 km WFIP2: 13, 6.5, 3.2, and 1.6 km 
Baltic-2/FINO2: 13 and 6.5 km 

18, 6, and 2 
km 

9 and 3 
km 

WFIP2: 0.15◦ Baltic-2/ 
FINO2: 0.225◦

WFIP2: 0.25◦

FINO2: 0.15◦

Baltic-2: 0.15◦, 0.15◦, 0.156◦

by 0.234◦, and 0.25◦

Number of vertical levels 109 60 80 35 32 WFIP2: 137 
FINO2: 38 
Baltic-2: 38, 38, 70, and 137 

Type of forecast Hindcast Pre-operational Forecast Forecast Forecast Forecast  

Fig. 1. The location of the WFIP2 sodar on the aerial map of the northwestern 
United States. 

Fig. 2. The locations of the FINO2 tower (blue) and the Baltic-2 wind farm (red) on the aerial map of the Baltic Sea in Europe. Because we could not share the specific 
turbine locations with the participants, we asked them to submit spatially averaged Baltic-2 forecasts within the area bounded by the black-color four-sided polygon. 
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were then formally adopted after the submission, and thus is labeled 
“pre-operational” in Table 2. The Baltic-2 power forecast submission 
from p6 involves four different numerical weather prediction models, 
and their differences are listed in Table 2. 

5. Analysis of benchmark submissions 

5.1. Time series forecasts 

In this section, we exhibit the differences among the submitted 

forecast data sets after we processed them with the systematic evalua
tion framework via WE-Validate. The forecasts were analyzed and 
compared to observations for both benchmark case studies (Fig. 3). 
Except for p1 and p6, we calculated the ensemble means for the par
ticipants. We then treated the ensemble means of the participants, 
including the single-member forecasts from p1 and p6, as members of 
one multiorganization ensemble, which allowed us to calculate a six- 
organization ensemble mean. Thus, for each case study, we compared 
the skills of individual ensemble members, intra-organization ensemble 
means, and the six-organization ensemble mean. 

Fig. 3. (a) Wind speed time series of the 
WFIP2 case at 80 m above ground level, 
where the red line illustrates cup anemom
eter measurements, the magenta and cyan 
lines denote the p1 and p6 forecasts, the 
purple, blue, and light blue lines, respec
tively, indicate ensemble mean forecasts 
from p2, p4, and p5, and the black line is the 
ensemble average of the five participants. (b) 
Similar to (a), but for wind speed of the 
FINO2 case at 82 m above sea level with 
submissions from six participants. (c) Similar 
to (b), but for wind farm power data at 
Baltic-2 at 78.25 m above sea level. The p3 
ensemble mean is plotted in (b) and (c) as a 
navy line. Across the panels, the shading 
around the ensemble means of p4 and p5 
represents the standard deviation of the 
ensemble members around the mean. The 
ensemble means of p2 and p3 are plotted as 
single lines and no shading is incorporated 
because the differences between the two 
ensemble members in each submission are 
mostly trivial.   
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Often, an ensemble mean yields a below-average forecast error 
compared to those of its members (Fig. 4). As expected, the six- 
organization ensemble mean has weaker temporal fluctuations than the 
intra-organization ensemble means (Fig. 3), which may have boosted its 
forecast performance. Across the two case studies, the six-organization 
ensemble mean performs better than most, and sometimes all, of the 
other submitted forecasts, both in terms of the RMSE and the median 
absolute error over the whole forecast period (Fig. 4). The superiority of 
the ensemble means in single-value summary metrics is even more 
apparent in wind power time series forecasts. The nonlinear power curve 
conversion results in satisfactory power forecast performance of the 
ensemble means compared to their individual members (Fig. 4). 

The choice of the evaluation metrics affects the relative skills be
tween forecasts. Compared to their ensemble members, ensemble means 
sometimes yield larger relative errors using median absolute error 
compared to using RMSE, and this pattern is particularly apparent in the 
FINO2 case (Fig. 4c and d). The disparity of relative errors between the 
two metrics emerges from the large magnitude of errors of outliers. For 
RMSE, squaring the error at each time step magnifies the impacts of 
those outliers and creates a long tail in the squared-error distribution, 
because of the lack of statistical robustness and resistance of RMSE. In 
our case studies, given some members in an ensemble yield substantially 
larger errors than others, the associated ensemble mean could yield a 
lower relative RMSE than many of its members, whereas the same 

Fig. 4. Swarm plots of root-mean-square error (left column: a, c, and e) and median absolute error (right column: b, d, f) of the p4 ensemble (blue), the p5 ensemble 
(light blue), and the six-organization ensemble (gray) on the forecasts of WFIP2 wind speeds at 80 m above ground level (a and b), FINO2 wind speeds at 82 m above 
sea level (c and d), and Baltic-2 hub height power (e and f). In each data column, each dot represents an ensemble member, and the cross indicates the respective 
ensemble average. 
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Fig. 5. The rank of the absolute error of hourly power forecast among seven time series: (a) p1; (b) p2 mean; (c) p3 mean; (d) p4 mean; (e) p5 mean; (f): p6; and (g) 
the six-organization ensemble mean at the Baltic-2 wind farm. A forecast is ranked 1 for an hour when its power forecast error is the lowest among all seven forecasts 
at that hour. Each pie chart illustrates the portion of the ranks over the 7-day period that each forecast holds. 

Fig. 6. Histograms of absolute errors of the hourly power forecast over the 7-day period at the Baltic-2 wind farm: (a) p1; (b) p2 mean; (c) p3 mean; (d) p4 mean; (e) 
p5 mean; (f) p6; and (g) the six-organization mean. 
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ensemble mean derives a relatively modest median absolute error. 
During the 7-day period at the Baltic-2 wind farm, the six- 

organization ensemble mean is never the worst wind power forecast 
among the members at any given hour, and occasionally it is the best of 
all (Fig. 5). More than three quarters of the time, the skill of the 
ensemble mean is at least average, ranked 4 or lower, which fits our 
expectation (Fig. 5g). Along the same line, the performance of the 
ensemble mean is above average for about half the time. Meanwhile, the 

individual forecasts of all six organizations have been the worst for some 
periods. Individual forecasts are often skillful as well, for instance, p6 is 
ranked first for about a quarter of the time (Fig. 5f). Overall, the mul
tiorganization ensemble mean is rated above average for over 75% of 
the time stamps, signifying the wisdom of the crowd in time series 
forecasting. 

Even though its overall performance is above average, the error 
distribution of the six-organization ensemble mean does not wildly 

Fig. 7. Power spectra of the hourly power forecast error of the Baltic-2 case over the 7-day period for (a) the p4 ensemble, (b) the p5 ensemble, and (c) the six- 
organization ensemble. In each spectrum, the black line indicates the ensemble mean, and the other colored lines represent the ensemble members. 
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differ from those of its members. The underlying absolute error distri
butions of wind power forecasts are analogous to the probability density 
function of an exponential distribution, where the magnitude of most 
errors is small and skewed towards 0 (Fig. 6). To examine whether the 
absolute error distributions statistically differ from each other, we use 
the two-sample Kolmogorov-Smirnov test for each pair of the distribu
tions. Based on the Kolmogorov-Smirnov test with an alpha of 0.05, p4’s 
absolute error distribution is significantly different from the other dis
tributions except for p3’s. The absolute error distribution of the six- 
organization ensemble mean is also statistically different from p4’s. 
Therefore, even though the six-organization ensemble mean often yields 
above-average forecasts (Fig. 5g), we cannot conclude that its error 
distribution differs from those of all the members. 

To investigate why the ensemble means yield lower errors than their 
members, we transformed the time series of hourly power forecast errors 
into power spectra. Using a power spectrum, we can understand how 
each forecast performs during wind power fluctuations of various fre
quencies. The integral of the spectral components across all the fre
quencies corresponds to the error variance of the time series. Therefore, 
when the integrated power spectral density is lower than the others, the 
associated RMSE is also lower than the others. 

The six-organization ensemble mean smooths out the extremes of its 
members, leading to lower power forecast errors, and a spectrum of 
lower integrated magnitude (Fig. 7). For example, the wind power 

Table 3 
Observed ramp counts with different ramp definitions at the Baltic-2 wind farm 
during the 7-day period using 60-min data.  

Ramp definition Observed ramp count Observed no-ramp count 

|50 MW| in 2 h 57 109 
|50 MW| in 4 h 80 84 
|50 MW| in 6 h 82 80 
|50 MW| in 8 h 89 71 
|100 MW| in 2 h 17 149 
|100 MW| in 4 h 31 133 
|100 MW| in 6 h 38 124 
|100 MW| in 8 h 45 115 
|100 MW| in 10 h 35 123 
|150 MW| in 4 h 9 155 
|150 MW| in 6 h 14 148 
|150 MW| in 8 h 17 143 
|150 MW| in 10 h 18 140 
|150 MW| in 12 h 21 135 
|200 MW| in 4 h 3 161 
|200 MW| in 6 h 3 159 
|200 MW| in 8 h 7 153 
|200 MW| in 10 h 9 149 
|200 MW| in 12 h 10 146  

Fig. 8. Illustration of the 2 × 2 contingency table on the power ramp forecast at the Baltic-2 wind farm over the 7-day period. Each row represents a ramp event 
definition, from changing over |100 MW| within 2 h to changing over |100 MW| within 10 h, and the ramp definitions include both up ramps and down ramps. Each 
column is an ensemble mean, except for p1 and p6, which submitted single-member forecasts. The four triangles in each square characterize the 2 × 2 contingency 
table as percentages of instances among the four parameters in the contingency table. The percentages are annotated in the triangles. The sum of the four triangles in 
each square is 100%. 
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patterns fluctuating at about 2.5 h are better captured by the six- 
organization ensemble mean, and hence, its power errors at that fre
quency are lower than those of its members (Fig. 7c). Similar features 
also emerge at fluctuations of about 3.7 and 6.7 h. The spectra of the p4 

and p5 ensembles also display that the single-organization ensemble 
means have below-average integrated magnitude. The p4 ensemble 
mean has a smaller spectral component integral than all its individual 
members (Fig. 7a), and only five p5 ensemble members yield slightly 

Fig. 9. Illustration of determining wind power 
ramps with voting scheme using a ramp definition 
of |50 MW| within 6 h for the Baltic-2 case in 
October 2020. In this example, three out of six 
voting members indicate ramps between 0700 UTC 
and 1300 UTC on 5 October, so the 50% voting 
scheme labels ramp in this period (gray rectangle). 
Similarly, six out of six voting members indicate 
ramps between 1800 UTC on 5 October and 0000 
UTC on 6 October, and two out of six voting mem
bers indicate ramps between 0500 UTC and 1100 
UTC on 6 October, so the respective 100% (yellow 
rectangle) and 33% (green rectangle) voting 
schemes label ramps for the two periods.   

Fig. 10. The counts of true positive wind power ramp forecasts over the 7-day period at the Baltic-2 wind farm. Each row represents a ramp event definition, and all 
ramp definitions include both up ramps and down ramps. From left to right, the columns illustrate different voting schemes (% vote), the six-organization ensemble 
mean (6-org mean), and the forecasts from each organization (pX or pX mean, where X is the participant number). 
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smaller spectral component integrals, which are of the same order of 
magnitude, than the p5 ensemble mean (Fig. 7b). To summarize, an 
ensemble mean only needs to perform better than most of its members at 
several frequencies to generate low forecast errors. 

We also investigated whether different averaging time frames of a 
time series would lead to different error distributions. For instance, 
using the same FINO2 82-m wind speed forecasts (e.g., p5 ensemble 
members), we performed the two-sample t-test on a pair of RMSE dis
tributions at 60-min and 120-min frequencies. We found that the 
resultant p-value does not exceed any meaningful alpha threshold (not 
shown). Therefore, we could not reject the null hypothesis that the two 
RMSE distributions have identical averages. We performed the two- 
sample t-tests on other error metrics presented in this manuscript, 
such as the median absolute error, at different heights, and we drew the 
same conclusions. Thus, in this work, the error distributions are inde
pendent of different averaging time scales. 

5.2. Ramp forecasts 

In this section, we classify ramp events on different forecast data sets 
using the same set of ramp definitions through WE-Validate, and hence, 
we analyze the ramp forecasts in a consistent fashion. We define a wind 
ramp event when the absolute change in power in a given period exceeds 
a threshold. For instance, the ramp definition of |50 MW| within 6 h 
means that a change—either a positive or negative change—in power 
above 50 MW in any 6-h interval is labeled as a ramp event, and such a 

definition applies to forecast and observed power time series. We 
implemented this simple ramp definition in WE-Validate to display the 
capability of the code base, and users are welcome to add their own 
ramp definitions. We summarize the occurrences of observed wind 
power ramps and no-ramps of the Baltic-2 case using 60-min data in 
Table 3. When we increase the temporal resolution to 15 and 30 min and 
count the ramp occurrences, the resulting observed ramps and no-ramps 
increase, yet the ratios between them remain similar to those of the 60- 
min data (not shown). 

5.2.1. 2 × 2 contingency table 
Given a ramp definition, a comparison of deterministic ramps be

tween a pair of forecast and observed power time series yields a 2 × 2 
contingency table. Each square in Fig. 8 projects a contingency table of a 
ramp definition and a forecast-observation pair, where the two upper- 
left triangles are correct forecasts (TP and TN), and the two lower- 
right triangles denote incorrect forecasts (FP and FN). The numbers 
and the colors display the counts of the four categories in the contin
gency table. A skillful forecast would yield higher counts in the upper- 
left triangles than the lower-right triangles. Combining multiple con
tingency tables at once in Fig. 8 enables us to contrast the skills of 
various forecasts under different ramp definitions. 

In our Baltic-2 case study, the multiorganization ensemble mean 
records fewer correct power-ramp forecasts than its members. The six- 
organization ensemble mean tends to identify ramp events less 
frequently than the individual members and thus yields below-average 

Fig. 11. Similar to Fig. 10, but for false positive forecasts.  
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TPs and FPs (Fig. 8). Accordingly, the ensemble generates above- 
average TNs and FNs. The relative magnitude among the four cate
gories in the contingency table has implications in calculating ramp 
forecasting skill scores, and they are discussed later in this section. 

Combining the ramp detection of individual forecasts often leads to 
better ramp forecasts than detecting ramps with the ensemble mean 
forecast time series. The ensemble mean forecast smooths out temporal 
fluctuations, and such removal of peaks and troughs cripples the 
ensemble mean in adequately predicting ramp events. To further 
examine this attribute, we implement a voting scheme between 
ensemble members to detect ramps, which leads to superior ramp 
forecast performance to a simple ensemble mean. 

5.2.2. Voting schemes 
In the following paragraphs and figures in this section, for a six- 

member ensemble, the “50% vote” scheme tags a period as a ramp 
forecast when three of the six ensemble members forecast a ramp under 
a ramp definition. For instance, p2, p3, and p5 forecast ramp from 0700 
UTC to 1300 UTC on 5 October 2020, so the 50% voting scheme labels 
that period as a forecast ramp (the gray area in Fig. 9). In the same 
example, the 33% voting scheme also tags the period as a ramp forecast 
because at least two of the six voting members indicates ramp. For all the 
individual ramp forecasts as well as the various voting schemes, we use 
the same observed ramps to compute the 2 × 2 contingency table. 

The voting schemes vary in strengths and weaknesses. As expected, 
the 16% voting scheme is the most sensitive in detecting ramps, which 

scores the highest in TP as well as FP ramp forecasts among all forecasts 
listed in Figs. 10 and 11. In contrast, the 83% voting scheme is stringent 
in indicating ramps, resulting in substantially higher FN and lower FP 
than the others (Figs. 11 and 12). The 66% voting scheme has a rela
tively high threshold to ramp detection, and even it yields more TP and 
fewer FN ramp forecasts for ramps above 50 MW at 6 and 8 h than the 
ensemble mean. Like the 66% voting scheme, the 50% voting scheme 
largely increases TP and decreases FN compared to the ensemble mean, 
but it also increases FP. 

In the Baltic-2 case, more episodes of observed power fluctuations 
are labeled as ramp events (sum of TP and FN) when the length of a ramp 
detection period increases. In the model forecasts, TP and FP ramp 
forecasts for ramps above 50 and 100 MW also share such a pattern, 
whereas TN ramp forecasts monotonically decrease with increasing 
ramp-detection duration for all ramp definitions (Fig. 13). 

To summarize the outcomes of the 2 × 2 contingency table, we 
employ the PSS, which is an equitable metric. The six-organization 
ensemble mean generates near-zero PSSs in nearly all ramp defini
tions, which means it is not much more skillful than random forecasts 
(Fig. 14). The forecasts from p1, p2, p3, and p4 yield more positive PSSs 
than the six-organization ensemble mean, especially for stronger ramps 
above 150 and 200 MW. Mathematically, the relative magnitude of the 
higher POD of the four forecasts exceed the influence of the higher false 
alarm rate, which leads to a higher PSS than the multiorganization 
ensemble mean (Fig. 16 as an example). The p5 ensemble mean consists 
of 75 individual members and ravels their discrepancies, hence 

Fig. 12. Similar to Fig. 10, but for false negative forecasts.  
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intrinsically indicating few ramps. Similarly, the p6 submission also 
considers four different numerical models that could also explain its 
above-average FN ramp forecasts. 

The voting schemes score higher PSSs than the six-organization 
ensemble mean, especially for ramps above 200 MW (Fig. 14). The 
50% voting scheme has a higher or same PSS compared to the ensemble 
mean in all but three ramp definitions for strong ramps in short time 
frames (150 MW over 4 h, 200 MW over 4 and 6 h). The stricter 66% and 
83% voting schemes yields similar PSSs to the ensemble mean in most 
ramp definitions. Meanwhile, the 16% voting scheme has very high PSSs 
when detecting ramps over 200 MW. However, this pattern exposes a 
weakness of the PSS: The PSS is inflated when FN is close to 0, the false 
alarm rate is close to 0, and the POD is large. For the 16% voting scheme, 
its FN counts are either 0 or 1 for ramps above 200 MW (Fig. 12), 
therefore its PSSs become remarkably large. Similar phenomena also 
exist for the p4 ensemble mean. 

The SEDS is a valuable complement to the PSS. The SEDS does not 
account for any TN, which is suitable when ramp events are rarer than 
nonramp periods. Using SEDS, the relative performance of the ensemble 
mean improves from its PSS results (Fig. 15). The edge of the partici
pants’ individual forecasts over their ensemble mean also shrinks in 
moderate ramps of 100 and 150 MW, and they are still more skillful in 
detecting the large ramps above 200 MW. Note that an undefined SEDS 
represents that the forecast does not yield any TP forecasts under a given 
ramp definition. 

Using SEDS instead of PSS, the more sensitive voting schemes also 
lose a certain level of superiority over the six-organization ensemble 

mean. Because of its large FP forecasts, the SEDSs for the 16% voting 
scheme are comparable to those for the ensemble mean. The 33% voting 
scheme yields substantially higher SEDSs than the ensemble mean in 
detecting strong ramps above 200 MW, and its advantages over the 
ensemble mean become questionable for most of the other ramp defi
nitions. The 50% voting scheme has a SEDS higher than or equal to the 
ensemble mean except for one ramp definition (150 MW over 4 h). The 
stringent 66% and 80% voting schemes are often inflexible, forecasting 
0 TP in many ramp definitions, like the ensemble mean does (Fig. 10). 

5.2.3. Performance diagram 
We further use performance diagrams to contrast the skills of mul

tiple deterministic wind power ramp forecasts on the same chart. A 
performance diagram uses the geometric relationship among four scalar 
attributes of the 2 × 2 contingency table—the POD, the SR, the bias, and 
the CSI—and projects the information onto one diagram [32]. A per
formance diagram assists us in comparing ramp forecasting abilities of 
the ensemble mean, individual ensemble members, and different voting 
schemes (Fig. 16). 

Changing a voting scheme to another involves modifying the sensi
tivity of ramp detection, and such a switch follows a pattern on a per
formance diagram. Theoretically, increasing the sensitivity of ramp 
detection (reducing the percentage of votes required to indicate ramps) 
increases the instances of TP or FP or both. Therefore, mathematically, 
raising this sensitivity increases bias and POD. Because both TP and FP 
are in the denominator of SR and CSI, adjusting this sensitivity has an 
undetermined impact on these two parameters. As a result, a voting 

Fig. 13. Similar to Fig. 10, but for true negative forecasts.  
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scheme that is sensitive to ramp detection (e.g., 16% vote) always has a 
higher POD and a higher bias than those insensitive to ramp detection, 
and the relative magnitude of their SR and CSI depends on the forecasts 
and the ramp definition. 

Choosing a voting scheme can more correctly and effectively forecast 
ramp events than using the ensemble mean. In the six-organization 
example for ramps above 50 MW over 6 h (Fig. 16a), all the ensemble 
members and most voting schemes have a higher POD, a higher SR, and 
a higher CSI than the ensemble mean. Among all voting schemes, the 
50% voting scheme achieves a satisfactory balance among POD, SR, 
bias, and CSI. In the p5 ensemble example (Fig. 16b), the 50% voting 
scheme appears close to the center of the ensemble members on the 
performance diagram, whereas the ensemble mean tends to under 
forecast ramps and have fewer TPs. 

6. Discussion 

In this effort, we designed and hosted a benchmark exercise, and we 
gathered and analyzed wind power forecasts. Through this benchmark, 
we emphasized the importance of a rigorous validation process and the 
need to consider various metrics in determining the value of a forecast or 
forecast ensemble. We evaluated the wind speed and wind power fore
casts in two geological and climatic regions, as well as in land-based and 
offshore environments. We identified and documented forecast evalua
tion methodologies with an open-source code base, WE-Validate, by 
setting up a benchmark of different forecast techniques. The significance 

of this benchmark exercise also lies in data sharing as well as knowledge 
sharing among collaborators. This exercise sheds light on how forecast 
evaluation can be transformed into lessons learned, thus leading to 
purposeful incentives for forecast improvements. Through this exercise 
and by demonstrating WE-Validate, we aim to improve the value of wind 
energy forecasts to the wind energy industry. 

WE-Validate provides a platform and a set of forecast evaluation 
steps for analysts to use and refer to. When forecast providers modify 
their operational workflow, such as changing the input data, advancing 
data assimilation techniques, updating model physics, and shifting 
forecasting horizons, they can test the forecast improvements via a 
systematic framework. Users can put numerous data sets through the 
same data processing procedures and sets of evaluation metrics in WE- 
Validate and generate standardized numerical outputs. Thus, users can 
objectively compare forecasts of distinctive types, from relatively sleek 
ensemble means to highly fluctuating ramp forecasts. As a demonstra
tion, this work synthesizes the results from processing multiple forecasts 
via WE-Validate. Additionally, users can use WE-Validate to select the 
ideal forecast providers [4,5]. The analysts can also equip the code base 
with their own modules and functionalities to fit their purposes. With 
this validation tool, the wind energy community can fairly assess fore
casts of different models and organizations in a coherent and transparent 
manner. 

We discuss the importance of using statistically robust and resistant 
metrics to evaluate time series forecasts as well as equitable metrics to 
evaluate deterministic ramp forecasts. When evaluating forecasts, we 

Fig. 14. Similar to Fig. 10, but for the Peirce skill score using the 2 × 2 contingency table projected in Figs. 10–13.  
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advise accounting for multiple metrics for a comprehensive analysis. If 
outliers exist in the data set, the choice of metrics can affect the relative 
errors between forecasts and thus the deduced conclusions. For instance, 
when a minority of its members generate humongous forecast errors, an 
ensemble mean can display superb skills with RMSE while yielding a 
modest median absolute error. In that case, examining forecasting skills 
with only RMSE can lead to misinterpretation. Furthermore, analysts 
should spend time understanding the characteristics of the metrics they 
choose. For example, the PSS accounts for TN forecasts, but the SEDS 
does not. When forecasting rare events, we advise using SEDS for an 
impartial assessment. For a holistic forecast evaluation on wind ramp 
events, analysts should consider various ramp definitions of different 
magnitude and periods in the analysis. Sometimes strong ramps have 
larger financial implications than weak ramps, and the same applies to 
down ramps compared to up ramps. 

We explore the strengths and weakness of ensemble means in this 
study. An ensemble mean shaves off the extreme forecasts of its mem
bers, and its relatively smoothed pattern acts as a double-edged sword. 
In time series forecast evaluation using single-value metrics, such as 
RMSE and median absolute error, ensemble means often lead to satis
factory results and do not yield the largest errors among all ensemble 
members at any time steps. The wisdom of the crowd prevails in time 
series forecasts because an ensemble mean moderates the differences 
and underscores the common features between ensemble members. 
Hence, when compared to observations at every time step, ensemble 
means can achieve favorable performance. 

However, attributed to its smooth pattern, ensemble means tends not 
to perform well in ramp forecasts. In deterministic ramp forecast eval
uations using the 2 × 2 contingency table, ensemble means become less 
skillful than many of their ensemble members, assuming the members 
have adequate ramp forecasting skills. As an alternative, a 50% voting 
system among individual ensemble members on indicating ramp fore
casts often yield more correct ramp predictions than an ensemble mean, 
where the latter has a higher chance of missing forecast ramps. Given a 
voting scheme, a trade-off usually exists between more TPs with fewer 
FNs and larger FPs. A sensitive voting scheme can lead to a larger 
number of forecast ramps, which increases the chances of TPs and FPs. 
When missing extreme ramp events brings costly consequences, a sen
sitive voting scheme can be useful. In such circumstances, a forecast 
with a high POD and a high bias is favorable. With the aid of a perfor
mance diagram, we can visualize the performance of numerous forecasts 
as well as the trade-off between sensitive and insensitive voting 
schemes. Overall, in contrast to time series forecasting, the wisdom of 
the crowd carries a different meaning in ramp forecasting, in which 
members voting at each time step becomes advantageous in ramp 
detection. Ultimately, the skill of an ensemble mean as well as a voting 
scheme is dictated by the skill of the ensemble members. Skillful 
ensemble members yield a skillful ensemble mean. 

7. Conclusions 

Through this study, we established and showcased a code base, WE- 

Fig. 15. Similar to Fig. 10, but for the symmetric extreme dependency score using the 2 × 2 contingency table projected in Figs. 10–13. A blank cell means that the 
SEDS is undefined, meaning the forecast does not yield any TP forecasts under a given ramp definition. 
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Validate, to evaluate multiple wind forecasts in a consistent fashion. WE- 
Validate, written in Python, is open source, modularized, and extensible 
by users. We select two case studies in a benchmark exercise to exhibit 
the systematic forecast evaluation procedure layout in WE-Validate. 

Participants from industry and academia engaged in the benchmark 
exercise and contributed to its success, and we analyzed their data 
submissions via WE-Validate in this work. 

We discuss the importance of employing statistically robust and 

Fig. 16. Performance diagrams of the Baltic- 
2 power ramp forecasts for the 7-day period 
under the ramp definition of changing over | 
50 MW| within 6 h. The x-axis is the success 
ratio, the y-axis is the probability of detec
tion, the dashed diagonal lines extending 
from the origin represent bias values, and the 
blue contours indicate a range of critical 
success index values. A perfect forecast 
would land on the top-right corner of the 
diagram. (a) The ensemble means of each 
participant are purple dots, the results of 
voting schemes are green triangles, and the 
six-organization ensemble mean is a black 
cross. (b) The p5 ensemble members are gray 
dots, the results of voting schemes among the 
p5 ensemble members are triangles, and the 
p5 ensemble mean is a black cross.   
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resistant metrics as well as equitable skill scores. We analyzed the 
collected data with median absolute error, an example of a robust and 
resistant metric, and the Peirce skill score, an example of an equitable 
skill score. We also recommended using the symmetric extreme de
pendency score, an asymptotically equitable metric, to evaluate fore
casts of rare events, such as wind ramps. 

We further investigated the performance of ensemble means. We 
found that the multi-organization ensemble mean has adequate skill in 
time series forecasting and underperforms in ramp forecasting compared 
to its ensemble members. The spectral analysis suggests that the 
ensemble mean performs better than most of its members at several 
frequencies, thus generating low time series forecast errors for the whole 
forecast period. In ramp forecasting, unsurprisingly, the 2 × 2 contin
gency table reveals that the ensemble mean tends to miss predicting 
ramps because of its smooth pattern. To overcome this hurdle and take 
advantage of the information provided in an ensemble, we developed an 
arrangement in which individual ensemble members vote to detect 
ramps at a given time step. Such a voting scheme preserves the ramp 
forecasting skills of each ensemble member and therefore performs well 
in ramp identification, especially for ramps of large magnitudes. How
ever, the downside of a sensitive voting scheme is risking more false 
alarms, whereas its likely benefit is more hits and fewer misses. 

Looking forward, we envision that the wind energy industry will 
acknowledge the advantages and benefits of robust and resistant fore
cast validation. The next phase of this study includes adding capabilities 
to WE-Validate to evaluate probabilistic forecasts and to quantify fore
cast uncertainty with a systematic procedure. For instance, imple
menting the framework discussed in Ref. [40] will further improve 
WE-Validate. We welcome community contribution to WE-Validate to 
refine the wind forecast validation process. 

Data availability 

WE-Validate and example data sets discussed in this manuscript are 
available at https://github.com/a2edap/WE-Validate. 
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[1] R.J. Bessa, C. Möhrlen, V. Fundel, M. Siefert, J. Browell, S. Haglund El Gaidi, B. 
M. Hodge, U. Cali, G. Kariniotakis, Towards improved understanding of the 
applicability of uncertainty forecasts in the electric power industry, Energies 10 
(2017) 1402, https://doi.org/10.3390/EN10091402, 10 (2017) 1402. 

[2] J.C.Y. Lee, M.J. Fields, An overview of wind-energy-production prediction bias, 
losses, and uncertainties, Wind Energy Sci. 6 (2021) 311–365, https://doi.org/ 
10.5194/WES-6-311-2021. 

[3] A. Craig, M. Optis, M.J. Fields, P. Moriarty, Uncertainty quantification in the 
analyses of operational wind power plant performance, J. Phys. Conf. 1037 (2018), 
052021, https://doi.org/10.1088/1742-6596/1037/5/052021. 
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