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Learning Objectives

1. Explain how water heaters can provide demand side management to the grid.
2. Identify effects of load shifting on end-user electricity bills and the use of solar-

self consumption.
3. Describe how a phase-change-material-based cool thermal energy storage 

system can be used to enable renewables on the electric grid.
4. Describe the pros and cons of behind-the-meter battery and thermal 

energy storage, and how to select the appropriate combination depending 
on the building load profile.
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Pros/Cons of Energy 
Storage Systems

• Batteries
 (+) More flexible—directly meets total electric load
 (-) More costly—capital expense is typically higher
 (-) More sensitive to cycling

• Thermal energy storage
 (-) Less flexible—can only meet thermal loads
 (+) Less costly
 (+) Less sensitive to cycling
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Outline

• Simulations
– Methods
– Results – optimal sizing of thermal and battery storage

• Experiments
– Hardware-in-the-loop setup
– Results – supervisory control and additional efficiency 

benefits



Simulation
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Analyzed case

A big-box retail building in Phoenix, AZ with a 600-kW PV array, and six 150-kW EV 
chargers with assumed load profiles from EVI-EnSite1,2

• Independent variables:
– Thermal energy storage size
– Battery energy storage size

• Dependent variables:
– Utility cost savings
– Battery cycles per year
– Annualized cost savings

1 M. Gilleran et al., “Impact of electric vehicle charging on the power demand of retail buildings,” Advances in Applied 
Energy, vol. 4, p. 100062, Nov. 2021, doi: 10.1016/j.adapen.2021.100062.
2 P. Mishra et al., “A Framework to Analyze the Requirements of a Multi-Port, Megawatt-Level Charging Station for Heavy-
Duty Electric Vehicle,” presented at the 99th Transportation Research Board Annual Meeting, Washington D.C., Jan. 2020.
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Model parameters

Parameter Low Nominal High
BES Capital Cost ($/kWhe) 300 600 900
BES Lifetime (yr) 10 15 20
Demand Charge ($/kW)a 7.5 15 22.5
Discount Rate (%) 4 8 12
Energy Rate ($/kWh) 0.08 0.12 0.16
TES Capital Cost ($/kWhe)b 50 100 150
TES Lifetime (yr) 10 15 20

a We consider cases where the demand charge is assessed all year or only in summer months
b We also consider a case where the TES capital cost equals the BES capital cost ($600/kWhe)
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Annual and daily load 
profiles
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Example day load 
leveling
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Annual simulation results

Utility cost savings ($k/yr) Annualized cost savings ($k/yr)Battery cycles (Eq full cycles / yr)

- Building-only scenario
- Demand charges in summer only
- Battery and TES both $600/kWhe capital cost

Brandt, M., J. Woods and P. C. Tabares-Velasco (2022). "An analytical method for identifying synergies 
between behind-the-meter battery and thermal energy storage." Journal of Energy Storage 50: 104216

BES Only

Hybrid

TES Only
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Annual simulation results

Utility cost savings ($k/yr) Annualized cost savings ($k/yr)Battery cycles (Eq full cycles / yr)

- Building-only scenario
- Demand charges in summer only
- Battery $600/kWhe capital cost; thermal storage $100/kWhe
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Annual simulation results

Utility cost savings ($k/yr) Battery cycles (Eq full cycles / yr) Annualized cost savings ($k/yr)

- Building-only scenario
- Demand charges year round
- Battery $600/kWhe capital cost; thermal storage $100/kWhe
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Annual simulation results

Utility cost savings ($k/yr) Battery cycles (Eq full cycles / yr) Annualized cost savings ($k/yr)

- Building + PV generation + EV charging
- Demand charges year round
- Battery $600/kWhe capital cost; thermal storage $100/kWhe
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Annual simulation results

Utility cost savings ($k/yr) Battery cycles (Eq full cycles / yr) Annualized cost savings ($k/yr)

- Building + PV generation + EV charging
- Demand charges year round
- Battery and TES same $/kWhe capital cost

BES Only

Hybrid

TES Only



Experiments
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Laboratory hardware and controller
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Chiller plant + thermal storage
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Chiller plant + thermal storage

Chiller, 30 ton (105 kW)

Ice tank, 162 tonh
(570 kWh)

Fluid conditioning module
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Battery emulator with inverter
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Supervisory controls
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Chiller + TES performance
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- Modulation of chiller 
increases efficiency by 
~45%

- Compressor modulation 
limited to 60-100%, 
based on an internal 
Trane software limit.
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Example experiment: Electric load leveling

- Chiller modulation reduces 
electric load from 5-6:30pm. 
Battery provides additional 
load reduction from 6:30-
7:30pm.

- Chiller efficiency improves by 
~40% at part load.
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Conclusions

Simulations:
• Adding batteries to a TES system can increase the total system’s load shaving potential (and increase TES 

utilization for peak demand reduction)
• Adding TES to a battery system can improve economics since TES often has a lower capital cost, and 

because it can significantly lower battery cycling, extending the battery life
• In the climate analyzed in this study, which has a large cooling load, the pseudo-optimal hybrid design is 

often some combination of thermal and battery storage, and rarely only a battery-only or TES-only system
Experiments:
• Supervisory controllers can communicate with both thermal and battery energy storage systems to 

optimize controls
• Improved chiller efficiency at part load can increase the load shifting capability for TES (not yet included 

in above simulations)
• Limitations on chiller turndown ratio and response time can limit what is possible compared to 

simulations above. This should be considered when selecting a chiller for a thermal storage application



Questions

Jason Woods
jason.woods@nrel.gov
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DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. 
Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to 
do so, for U.S. Government purposes. NREL/PR-5500-83068



Supplemental slides
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Modeling approach
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Idealized dispatch 
strategy

Binary search finds peak 
load reduction by 
successively guessing 
the final shaved load 
shape.

Brandt, M., J. Woods and P. C. Tabares-Velasco (2022). "An analytical method for identifying synergies 
between behind-the-meter battery and thermal energy storage." Journal of Energy Storage 50: 104216
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Sensitivity analysis
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