
The framework of the joint MV/LV state estimation arises naturally from the 
hierarchy of distribution networks. As shown in Fig.1, we divide the distribution 
system into a primary MV subnetwork and multiple secondary LV subnetworks 
following the border-bus overlapping partition approach. The MV subnetwork 
overlaps with the LV subnetworks with shared secondary feeder heads (i.e., 
primary side of the secondary transformer). Given the two-level hierarchical 
nature of the problem, we propose solving the joint state estimation in an 
iterative manner where primary and secondary estimators alternatively solve 
their state estimation problems (1.a) and (1.b) during the iterations while 
exchanging the estimated boundary conditions, 𝑏𝑏𝑖𝑖

𝑝𝑝−𝑠𝑠 and 𝑏𝑏𝑖𝑖
𝑠𝑠−𝑝𝑝, calculated 

based on (2.a) and (2.b), respectively:
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As grid-edge technologies advance and become more affordable, distributed
energy resources could better manage their power output or energy usage
portfolios and proactively participate in system operation. Compared with
passive distribution systems, where utility-owned control devices operate under
timed set points to ensure system reliability and resilience, active distribution
systems face an increasing level of variability and uncertainty in their voltage
profiles, especially near the end users; therefore, situational awareness at the
grid edge becomes critical. Fortunately, the existence of sensor devices installed
in the low-voltage (LV) networks, e.g., cable television (CATV) voltage sensors
[1], provides a promising solution to address this need. CATV voltage sensors
transmit voltage magnitude measurements in real time (at a 5-min resolution)
through the secure, high-bandwidth, low-latency CATV communications.

1. R. F. Cruickshank, III, B.-M. S. Hodge, and A. R. Florita, “Heterogeneous network topology management and control.” [Online]. 
Available: https://www.osti.gov/biblio/1805392

2. A. Bernstein and E. Dall’Anese, “Linear power-flow models in multiphase distribution networks,” in 2017 IEEE PES Innovative 
Smart Grid Technologies Conference Europe (ISGT-Europe), 2017, pp. 1–6.

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and 
the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Introduction

Proposed Algorithm

Primary states Secondary states

Mean Standard 
deviation

Mean Standard 
deviation

No uncertainty propagation 0.0046 0.0062 0.0037 0.0056
Uncertainty propagation 0.0032 0.0043 0.0033 0.0051

Table 1: Statistics of the 
error distributions 
generated by the joint 
and disjointed state 
estimations (in p.u.)

Framework of the joint MV/LV state estimation

References

Linear measurement function

To ensure the computational efficiency of the joint state estimator, linearized 
primary and secondary measurement matrices are derived based on reference 
[2], as given in (3.a):

Uncertainty propagation

Fig. 2:  Data flow within the joint state estimator.

Case Study
We examine the performance of the joint state estimator on a modified IEEE 
13-bus system model. Detailed secondary circuits are modeled following the 
starlike topology and attached to the primary subnetwork via step-down service
transformers. Results demonstrate the advantage of the joint state estimator 
over its disjointed counterparts. It is also shown that reasonable estimations of 
the uncertainty propagation from measurements to boundary conditions play 
an important role in improving the accuracy of the joint state estimation during 
iterations.

Fig. 3: Comparison between the primary (left figure) and secondary (right figure) state estimation errors 
generated by the joint versus the disjointed state estimators.

Primary states Secondary states

Mean Standard 
deviation

Mean Standard 
deviation

No uncertainty propagation 0.0046 0.0062 0.0037 0.0056
Uncertainty propagation 0.0032 0.0043 0.0033 0.0051

Uncertain propagation and 
nonzero error covariance

0.0030 0.0041 0.0032 0.0049

Table 2: Statistics of the 
error distributions with 
different settings of 
uncertainty propagation 
(in p.u.)

Method Measurement 
coverage

Mean Standard 
deviation

Disjointed state estimator 0% 0.0051 0.0075

Joint state estimator

20% 0.0046 0.0071
40% 0.0038 0.0051
60% 0.0037 0.0047
80% 0.0037 0.0047

100% 0.0037 0.0047

Table 3: Statistics of the 
error distributions under 
different secondary 
voltage magnitude 
measurement coverage 
levels (in p.u.)

(1.a)

(1.b)

(2.a)
(2.b)

Despite the extensive discussion on DSSE, MV and LV state estimations are
investigated in the literature as separate topics. The interdependence between
the primary and secondary distribution networks is generally disregarded. To
address the growing need for visibility at the grid edge and to embrace the
opportunities introduced by untapped CATV measurements, this study
proposes an MV/LV joint state estimator.

Fig. 1:  Partition of the distribution network.

Where:

(3.a)

(3.b)

(3.c)

(3.d)

(3.e)

(3.f)
(3.g)
(3.h)
(3.i)

(3.j)
(3.k)
(3.l)
(3.m)
(3.n)

Linearized boundary condition functions (3) and (4) are also derived using the 
linear power flow in reference [2], which results in the uncertainty propagation 
rule given in (8) for estimating the error covariance matrix associated with 
𝑏𝑏𝑖𝑖
𝑠𝑠−𝑝𝑝.

(4)

(5)

(6)

(7)
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