

Performance Assessment of High-Efficiency Refrigerated Display Cases With **Low Global Warming Potential Refrigerants**

Alexander Bulk¹, Ramin Faramarzi¹, Greg Shoukas¹, Omkar Ghatpande¹, Steven LaBarge²

1. National Renewable Energy Laboratory (NREL), 2. Commonwealth Edison Company

All photos and figures by Alexander Bulk, NREL

Objective

Evaluate daily energy savings of high-efficiency mediumtemperature (MT) reach-in refrigerated display cases utilizing environmentally friendly refrigerants under realistic operating conditions

Background

- Self-contained MT refrigerator display cases see widespread use in convenience stores, restaurants, and small supermarkets.
- Significant attention has been given to energy-efficient remote and lowtemperature (LT) refrigeration. However, little research has investigated energy use by MT self-contained cases other than to verify compliance with standards.
- In 2020, Congress and the U.S. Environmental Protection Agency initiated a phase-down of units using hydrofluorocarbon (HFC) refrigerants with high global warming potential (GWP). GWP is the ratio of heat stored in one metric ton of a substance to the same amount of CO₂.

Properties of Selected Refrigerants

Two cases with alternative refrigerants were evaluated against a case containing traditional HFC R134a refrigerant (baseline case):

			Liquid Constant	Vapor Constant	
		Saturated Liquid	Pressure Heat	Pressure Heat	Enthalpy of
	Global Warming		Coefficient, cp	Coefficient, cp	Vaporization
Refrigerant	Potential (GWP)	@ 25°C (kg/m3)	@ 25°C (kJ/kgK)	@ 25°C (kJ/kgK)	(kJ/kg)
R134a	1301	1207	1.426	0.851	234.7
R513a	573	492	2.742	2.036	440.1
R290	3	1134	1 412	0.881	194.8

Energy-Efficient Features of Display Cases

- Energy-Efficient (EE) Case A: Closest matching model containing hydrocarbon R290 (high-purity propane), energy-efficient lighting, heat exchanger fan motors, and improved insulation
- **EE Case B:** Same model case as the baseline containing R513a (Hydrofluoroolefin drop-in replacement to R134a) with energy-efficient upgrades including efficient lighting, oversized evaporator, and condenser heat exchangers

Display Case Specifications

Case	Refrige	Refrigerant V/Hz/Ph			CCMS-Rated Energy (kWh/day)		Defrost Cycle Frequency		Rated Cooling Output (Btu/h)	Rated Curre (A)	
Baseline	R134a		115/60/1		6.24		24 hours		2,600	13.8	
EE Case A	R290		115/60/1		4.90		none		4,716	9.3	
EE Case B	R513a		115/60/1		Unavailable		12 hours		Unavailable	Unavailable	
Case	GWP	Volum Capac			efault Cut-In emp (°F)	Default C Temp (°F)	it-Out Evaporat		tor Fan Cycling		
Baseline	1300	48.29	9 32		2 40			Continuous			
EE Case A	<4	49.15	33		38			1 min every 6 min			
EE Case B	573	48.29		32	2	40		With cor	mpressor cycling		

Experimental Design

Display Case Selection Criteria

Selected from a U.S. Department of Energy database of commercially available refrigerators that contained the closest specifications based on:

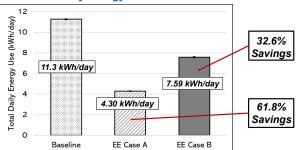
- 1. Equivalent overall merchandizing volume and configuration (5 deck/4 shelf, 6-ft length)
- 2. Discharge air temperatures (medium temperature)
- 3. Components wiring (all on 115V/3Ph/60Hz)
- 4. Number of glass doors (3)
- An equal number of compressors/condensing units (1. ½ HP)

Environmental chamber

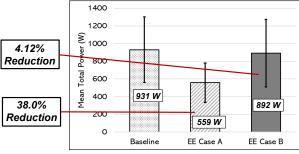
6. Close internal dimensions.

Experimental Procedure

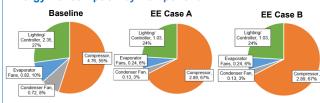
- Followed ASHRAE 72-2018 method of test where applicable
- · 24-hour experiments in controlled environmental chamber
- · Measured total power, subcomponent power, refrigerant and air temperatures, product temperatures, and mass of condensate
- Door actuators used to replicate customer traffic and door openings over an 8-hour period.



Refrigerator cases inside environmental chamber: Baseline (left), EE Case A (right)


Findings

Energy error bars indicate standard deviation across repeated 24-hour evaluations. Power error bars indicate standard deviation across compressor operation.


Total Mean Daily Energy

Energy Consumption by Component

