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ABSTRACT Catastrophic impacts to power systems caused by extreme weather events have significantly
increased during the last decade. These events highlight the need to develop approaches to assess the
resilience of power systems against extreme events; however, the availability of data that capture power
system performance during and after disruptive events is scarce. This paper proposes an assessment
framework to evaluate the performance aspects of the power grid during extreme outage events using the
Environment for Analysis of Geo-Located Energy Information (EAGLE-I) data. EAGLE-I data include
information related to the number of impacted customers, the duration, and the location of power outages
in the United States. Statistical analyses were conducted to extract resilience-based outage data and derive
probability distribution functions of their impact and recovery characteristics. A list of extreme events is
identified based on population-based threshold values. Metrics from other power outage assessments were
used tomeasure the characteristics of each event, including the impact rate and duration, the recovery rate and
duration, and the impact level. A probability distribution function is obtained for each metric. The proposed
framework is conducted for each state across the United States. The obtained results provide a probabilistic
representation of state-level outage behaviors, which can be applied as a framework to evaluate various
resilience enhancement techniques.

INDEX TERMS EAGLE-I, extreme weather event, power outage, resilience.

I. INTRODUCTION
Modern society has grown to rely on electricity access
and availability. When electricity is unavailable, individu-
als, communities, and countries are subject to economic
and physical harm, especially when an electricity outage
occurs during an extreme weather event (e.g., extreme heat
or cold). Reliability has long been an important indicator
for electric grid operators, but as the frequency and inten-
sity of extreme weather events have increased in recent
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years, yielding prolonged outages and significant economic
losses [1], [2], resilience has become a larger focus for grid
operators and customers. Also, aging infrastructure plays a
vital role in increasing the prevalence and costs of extended
outages [3], [4]. Planners at the facility, local, state, and
federal levels are interested in resilience enhancement and
evaluation solutions to reduce the likelihood and impact of
power outages [5], [6].

Extended power outages are accompanied by noticeable
socioeconomic impacts. Extreme outage events between
2003 and 2012 have resulted in damage costs between
$22 billion and $41 billion dollars per year [7]. In the United
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States, prolonged power interruptions result in $43 billion
to $62 billion dollars in economic losses per year [8]. Also,
extreme weather events have counted for the majority of sus-
tained power outages. For example, Hurricane Sandy caused
more than 8 million customers to lose power across 15 states
in the United States [7]. In 2021, Winter Storm Uri caused
widespread power outages in Texas during extreme cold,
which resulted in 246 recorded deaths and more than 4 mil-
lion customers without power for a few days [9]. During the
last 8 years, the United States has been exposed to 7 wild-
fires, 7 droughts, 73 severe storms, 19 tropical cyclones or
hurricanes, 13 floods, 4 winter storms, and 1 freeze event,
with more than $1 billion dollars in anticipated costs [10].

The fast and efficient restoration of power grid after dis-
ruptive events occur is one of the most important attributes
to achieving resilient power supply. The quick recovery
of the grid infrastructure reduces associated economic and
community impacts [11], [12]. Also, decision makers have
many competing demands for limited resources, meaning
resilience investments are required to demonstrate ‘‘signifi-
cant andmeasurable short and long-term benefits that balance
or exceed the costs’’ [6]. Comparing the costs of installing,
operating, and maintaining a resilience investment to its ben-
efits, which include decreased outage costs, helps planners
determinewhich resilience investments are worth implement-
ing. Conducting cost-benefit analyses to validate resilience
investments has become a requirement for many federal
and state resilience grants [13]. These challenges require
the development of resilience evaluation methodologies to
quantify the impact of extreme events on power systems.
Moreover, such methods are very beneficial to identify and
conduct cost-benefit analyses of potential system upgrades
and improvements.

A. RELATED WORK
Several definitions for power system resilience exist. In this
paper, we use the following: ‘‘The ability of a system to
prepare for, absorb, adapt to, and recover from disrup-
tive events’’ [5]. Attributes of resilience include prepared-
ness, recovery, adaptability, and reliability, to name a few.
Electric reliability is the likelihood that electricity will be
available during normal equipment failures, and grid oper-
ators have a long history of using reliability metrics. There
have been no standardized metrics for resilience quantifica-
tion [14]; however, to compare resilience across infrastruc-
ture domains and jurisdictions, there is a need for publicly
available data sets with transparent metrics for, or attributes
of, resilience [15]. Having reliable and accurate data is the
first step toward understanding the behavior and performance
of electric power systems during extreme events. These data
sets can be used by (a) individuals and communities to per-
form cost-benefit analyses on resilience measures, such as
backup power systems or islandable microgrids, and miti-
gation strategies, such as hardening transmission and dis-
tribution lines; and by (b) government entities to compare

resilience performance across infrastructure systems. Also,
data sets can be leveraged to extract system features and
extreme event characteristics for resilience analyses. There-
fore, robust statistical analysis can be carried out by using
extreme event data and by quantifying their characteristics.

A few data sets have been prepared and reported that
focus on extreme events and their associated impacts on
power grids. Major outage event data are available from
the U.S. Department of Energy (DOE) Office of Electric-
ity (OE-417) [16]. These data report extreme outage events
based on DOE’s extreme thresholds [17]. DOE refers to
major outages as those that impact at least 50,000 cus-
tomers or cause unplanned power loss exceeding 300 MW.
Also, the U.S. Energy Information Administration (EIA) pro-
vides the Annual Electric Power Industry Report, Form EIA-
861 data [18]. EIA-861 contains statistics from 1990-2020,
including utility outage, electricity usage, and number of
customers. It also provides utility-reported reliability indices
with and without major event days.

Though different approaches have been proposed to dis-
tinguish between outages that belong to reliability analysis
and those that belong to resilience analysis, gaps still exist.
For instance, a time-based threshold was used in [19] to
identify prolonged outage events for the resilience evalu-
ation framework. In [20], [21], and [22], a temporal per-
spective with a 24-hour mark was used as a threshold to
differentiate between short- and long-duration outages. Also,
a quantitative threshold has been used based on the amount
of customers without power or the amount of lost energy to
identify extreme outage events, as proposed by DOE [17].
In [23], a computational-based resilience interactions simu-
lation platform has been developed to quantify resilience of
transmission networks using utility outage statistics. Other
approaches include assessing lifeline infrastructure restora-
tion behavior using predefined extreme weather events [24],
similar to a description of power outages using retrospective
analyses (e.g., outages between 2000–2016) [17]. Most of
these methods have conducted basic analysis of the exist-
ing data for specific weather events or defined geographic
regions. The importance of extracting distribution functions
governing the behavior of extreme outage events has not been
deeply investigated, highlighting a research gap in resilience
evaluation processes. Table 1 provides a summary of the
current state-of-the-art in quantifying resilience using outage
data and the associated challenges.

B. RESEARCH GAPS
Though DOE collects electric disturbances through the
mandatory outage event (OE-417) [16] reports, these data are
of insufficient quality to estimate outage duration for sev-
eral reasons. First, customer outages are not always tracked
and are sometimes incorrect. These data mainly rely on
reporting outages using DOE’s major event thresholds (more
than 300 MW or 50,000 customers), which might not cap-
ture extreme events on small communities. These data do,
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TABLE 1. Literature review summary.

however, provide insightful information on event start dates,
end dates, and event locations for major outage events. On the
other hand, EIA data do not provide sufficient information to
determine the distribution and behavior of extended power
outages. The EIA-861 reliability metrics—System Average
Interruption Frequency Index (SAIFI), SystemAverage Inter-
ruption Duration Index (SAIDI), and Customer Average
Interruption Duration Index (CAIDI)—reveal basic system
performance information that might not be very representa-
tive for resilience evaluation. In short, the existing data cannot
be directly used to understand the characteristics of extreme
power outages across country and state levels. Although there
exist other sources of power outage data [25], the accessabil-
ity of these data is very limited.

The diversity of events that can impact the grid makes it
difficult to make generalized statements about what qualifies
as a ‘‘major’’ event. A town of less than 1,000 people could
be without power for weeks, yet it would not be considered a
major event from the national scale, even though it would cer-
tainly have significant economic impacts on the town. In con-
trast, short-duration and high-frequency events that regularly
impact a small number of people could make it difficult for
communities to rely on power affecting their ‘‘access’’ to
electricity, as is often the case with remote communities that
have low quality of power supply. Therefore, a proper quan-
tification framework is required to capture extreme outages
taking into account the demographic population factors.

C. CONTRIBUTIONS
The goal of this paper is to examine a publicly available
data set to evaluate extreme power outages and their char-
acteristics. Our primary source of outage information is
from the Environment for Analysis of Geo-Located Energy

FIGURE 1. Research framework.

Information (EAGLE-ITM) data set, provided by Oak Ridge
National Laboratory (ORNL) [26]. The proposed assessment
framework includes three main phases: filtration method-
ology, evaluation metrics, and probabilistic curve fitting.
In the filtration phase, we use threshold values to iden-
tify extreme power outages. A population-based threshold
is proposed to account for diverse extreme outages across
different jurisdictions— The population-based threshold is
defined to be a filtration threshold that relies on the pop-
ulation and the number of utility customers in a specific
geographical location to refine extreme power outage events.
The evaluation metric phase aims to measure characteristics
of extreme outages, including outage duration, number of
customers affected, and restoration time. The probabilistic
curve fitting phase focuses on testing and providing proba-
bility distribution functions (PDFs) governing the behavior
of the proposed evaluation metrics. Useful information from
both OE-417 and EIA-861 data is used to justify and validate
the efficiency of the proposed algorithm. Fig. 1 shows an
illustrative framework of the proposed methodology.

The contributions of this paper are listed as follows:
• Provide detailed statistics on extreme power outages on
the national, state, and county levels.
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• Develop a statistical methodology to quantify extreme
electricity outages from the EAGLE-I data set consid-
ering the relative relationship between the outage level
and the size of the area under study.

• Introduce metrics to measure and assess the behavior
of extreme outage events from temporal and impacting
levels.

• Create and evaluate proper distribution functions that
govern the behavior of these metrics at the state level.

D. PAPER STRUCTURE
The remainder of the paper is organized as follows. Section II
describes the EAGLE-I data and the required data processing
techniques to overcome some of the associated false or miss-
ing information. Section III explains the proposed assess-
ment framework to quantify extreme power outages through
filtration, evaluation, and representation phases. Section IV
illustrates the implementation procedure and presents results,
and section V provides some concluding remarks.

II. EAGLE-I DATA
This study leverages EAGLE-I data to assess the behavior of
extreme outage events at the state level of the United States.
This section provides a description of the EAGLE-I data.
Also, it addresses data processing techniques to overcome
some of the data quality challenges.

A. DATA DESCRIPTION
EAGLE-I data are collected and managed by ORNL. This
data set spans November 2014 to the present and is col-
lected by scripted web scrapers that check utilities’ publicly
available outage maps to estimate the number of customers
without power by utility in a given county. Outage records
are updated every 15 minutes. This work considers outage
records from November 2014–March 2021.

Table 2 shows a sample of EAGLE-I data across a few
selected counties of three states on July 1, 2015, at 10:30 AM.
Note that this table includes a few selected data records for
visualization. For instance, only three counties are shown for
each state. Each record consists of temporal, geographic, and
service provider information. This helps track the source of
the outage and provides a deeper spatiotemporal analysis.

A few remarks about the EAGLE-I data should be noted.
First, service providers or utilities usually have customers in
different counties. For instance, the utility Entergy Louisiana
has recorded outages in both Calcasieu and Jefferson counties
in the State of Louisiana at the same time. The listed utility
identification number can be used to assign outage events to
specific service providers regardless the outage geographic
locations. Though many counties have only a single utility,
counties that span large geographic boundaries or counties
that intersect metropolitan regions might have multiple util-
ities. EAGLE-I reports customer outages for each utility in
each county. For example, Los Angeles County in the State
of California is supplied by multiple utilities, including the
Los Angeles Department of Water and Power and Southern

California Edison. The provided Federal Information Pro-
cessing Standards (FIPS) code provides a unique index to
each county across the United States. This helps reduce the
potential problem of repeated county names.

Because the data set is based on the number of utility
websites that can be scraped, the number of utilities in the
data set and their geographic granularity change over time.
Also, the number of counties changes over time. Table 3
tracks the number of counties and utilities recorded during the
studied period (November 2014–March 2021). This is also a
result of the fact that more utilities are making their outages
publicly available. As a result of this evolution in time, the
raw data form cannot be directly used to estimate the year-
over-year changes, and the average number of years must be
based on the first records; however, the proposed assessment
framework can be leveraged to provide insightful contribu-
tions to extreme power outages. Additionally, because of the
EAGLE-I sampling methodology, statistical methods based
on the assumption that increased samples will converge on
the ‘‘ground truth’’ are not relevant as increased samples from
one utility will not provide outage data for another utility in
the same county; this limits the statistical work that can be
done on this data to reduce uncertainty.

B. DATA PROCESSING
As with many large data sets, the raw form of the EAGLE-
I data includes some data quality issues, including missing
information and data discrepancies. To improve the quality of
the data, it is required to apply different data transformation
techniques, such as smoothing, aggregation, and normaliza-
tion. Because this study focuses on state-level outage behav-
ior, proper aggregation is required to group outages for each
state.

Fig. 2 shows the outage count for five counties in Alaska
starting November 30, 2018, at 3:00 pm for 24 hours. The
outage profile represents outage aggregation on the utility
level for each county. It is obvious that one county is experi-
encing a sequential extreme outage behavior, whereas other
counties have very low numbers of impacted customers.
Outages occurring at the same time at different geographic
locations might not be correlated unless a major extreme
event is impacting several counties or nearby states. There-
fore, it is not convenient to aggregate outages that occur
at the same time. Also, it is noticeable that some data are
not recorded at 15-minute intervals. For example, a 6-hour
duration should have 24 data records; however, this is not the
case for Matanuska-Susitna County, where only 15 records
are observed during the event peak (18:00–23:59 on
November 30, 2018).

Of eight counties in Alaska, only five have provided outage
records. The existing eight counties are supplied by only four
utilities, implying the existence of more than one utility in
some counties. Having more than a sole service provider in
a single county is normal within the EAGLE-I data. Because
this work focuses on the state level, it is assumed that out-
ages are aggregated geographically across the same county.
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TABLE 2. EAGLE-I sample.

TABLE 3. Number of reported counties and utilities over time in EAGLE-I
data.

FIGURE 2. Outage profile of five counties in Alaska.

FIGURE 3. Outage profile of single county with two utilities in Alaska.

Fig. 3 shows the aggregation process for the Kenai Peninsula
County in Alaska during November 2018. This location-
based aggregation helps reduce the negative impacts of lost
data. Also, it provides insightful representations of power
outages at the county level without focusing on the quality
of the utility service.

For better visualization, Fig. 4 provides the aggregation
process applied to Houston County in the State of Georgia
on October 11, 2016. The number of customers without
power are aggregated at each instant regardless of the service
provider assigned to them. The aggregated data have higher
or the same outage values as the recorded data. For instance,
at 12:00 am, 4 customers supplied by Flint Corporation and
8 customers supplied by Georgia Power lost power, resulting
in a total of 12 customers (as noted by the green markers).
Though this work focuses on extreme outage events, where
the outage level exceeds a several thousand customers, this
figure illustrates the concept of geographic aggregation on a
small scale.

FIGURE 4. Geographic aggregation of single county with two utilities in
Georgia.

III. ASSESSMENT FRAMEWORK
This section explains the proposed assessment framework to
analyze the behavior of extreme outage events across the
United States. The proposed framework consists of three
main steps: first, filtering the preprocessed EAGLE-I data
to extract extreme outages based on defined thresholds, then
extracting the characteristics of the extreme outages using
a few evaluation metrics, and, finally, conducting statistical
analyses to compute PDFs representing each metric.

A. FILTRATION METHODOLOGY
Most power outages are classified as minor disturbances
to the distribution system [27]. The main causes of minor
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disturbances include (a) technical causes, such as a short
circuit, equipment failure, or system malfunction; (b) envi-
ronmental causes, such as vegetation, animals, and inclement
weather; and (c) human causes, such as physical accidents
and human control errors [28]. On the other hand, major
power outages are characterized by having prolonged outage
durations and elevated outage impacts [1]. The primary cause
of major power outages is extreme weather events, mainly
including hurricanes, wildfires, and ice storms. Also, it is
expected that vulnerabilities of power systems to cyberattacks
will dramatically increase, yielding potentially catastrophic
blackout events [4]. Caused by the diversity of power out-
age causes, it is difficult to produce representative outage
behavior.

Various studies have been conducted to develop a cri-
terion to distinguish between minor and major outages
[20], [22]. DOE identifies extreme outage events as those
that exceed 300 MW or 50,000 customers [17]. In [19],
a 24-hour threshold was used to identify major events. The
trade-off between a time-based threshold and an impact-
based threshold imposes further challenges on identifying
proper threshold values. Also, the correlation between the
number of impacted customers and the relative geographic
boundaries makes it difficult to generalize a specific thresh-
old across the state level or the county level. For example,
an event causing a power outage to a whole county will be
preserved as a major event at the county level, but it might
be ignored at the state or country level. Therefore, a proper
threshold that accounts for both the temporal and impact
behaviors should be carefully and efficiently computed.

The electric power outages in the EAGLE-I data set are rep-
resented by the number of customers without power, which
varies from zero to a maximum value of almost 10 million
customers during Hurricane Irma. A customer here is defined
as any entity that purchases energy from a utility via a tariff.
This means that ‘‘customer’’ should not be interpreted as
‘‘persons’’. Residential households with only one tariff often
have multiple residents, and commercial entities sometimes
have multiple tariffs for a single site.

In this work, we identify two thresholds, high (αh) and
low (αl), to extract and evaluate extreme outage events.
An extreme outage event is defined to be the set of contiguous
customer outage records bounded by outage level beyond
the threshold value starting and ending the event. First, αh
threshold acts as a filtration phase to identify extreme out-
ages. In other words, outages exceeding this threshold will
be considered extreme outages. The chosen value of αh will
have a significant impact on the analysis results. A higher
threshold value results in fewer extreme events. Additionally,
from an energy justice perspective, rural communities with
fewer than 50,000 customers will never register as having a
long-duration outage in the current methodology. Therefore,
the value of αh will be selected to capture impacts on small
communities as well as large communities. Upon determining
the extreme events, it is required to extract their temporal

characteristics. The αl threshold acts as a trigger phase to
identify both the start and end time of a specific event. The
value of αl is always lower than αh to provide a realistic
representation of the event duration.

Fig. 5 visualizes the concept of filtration thresholds to
quantify extreme power outages for a typical event. The pre-
vious outage event taking place atMatanuska-Susitna County
in the State of Alaska during November 30 and December 1,
2018, is used for illustration. Values of αh and αl are arbitrar-
ily chosen for clarification. Four time indices are identified
based on the intersection of the horizontal threshold lines
with the outage curve behavior. Event up-trigger and event
down-trigger refer to the intersection of αh with the outage
curve, whereas the event start time and end time represent
the intersection of αl with the outage curve.

FIGURE 5. Applying filtration methodology on a typical outage event.

Because of the diverse outage events, other behaviors are
noticed. Fig. 6 shows a special case where multiple event
triggers can be identified within a single event. This figure
shows the outage behavior in Macropia County in the State
of Alabama. It is clear that using a single threshold might
lead to having more one trigger value, specifically when
data efficiency and accuracy are not granted. The zoomed
view highlights the intermediate event triggers. Using the αl
threshold solves this issue by ignoring all the intermediate
triggers within the event start and end times. In other words,
only the very first up-trigger and the very last down-trigger
are considered across the event duration. Though data aggre-
gation methods can be used to reduce the negative impacts of
data inaccuracy, these methods require extensive analysis to
determine the proper aggregation interval. This induces more
challenges at the country level because a fixed aggregation
interval might not be convenient for each county.

B. EVALUATION METRICS
The behavior of extreme events might vary from one event
to another. Also, the associated negative impacts on the sys-
tem performance rely on the event type and the geographic
boundaries. The concept of resilience through a disturbance
and impact resilience curve has highlighted the importance
of assessing extreme power outages [29], [30]. A conceptual
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FIGURE 6. Applying filtration methodology on a nontypical outage event.

resilience curve was developed in [31] to define and quantify
power system resilience. These studies have shown that the
relative performance of a system to optimal and minimum
performance level usually follows a triangular or trapezoidal
behavior [1], [32]. These resilience curves provide temporal
representations of system performance before, during, and
after an extreme event. Various resilience metrics have been
developed and quantified using these curves.

One power system performance indicator is the number of
served customers at each time instant. This is a vital metric
to compute reliability indices, such as SAIFI, SAIDI, and
CAIDI [33]. The number of customers without power is the
complementary value of the number of served customers for
a specific utility, county, state, and country. The sequential
outage records can be used to quantify the characteristics of
extreme outage events. Following the same resilience metric
conventions, a few metrics are defined to measure the behav-
ior of extreme outages as follows:

1) Event duration (Te): the total time of an outage
event where the outage level exceeds the filtration
threshold αl [34]

2) Impact duration (Ti): the total time between the start of
an outage event and the maximum outage level within
the event duration [29]

3) Recovery duration (Tr ): the total time between the
maximum outage level within the event duration and
the end of the event [34]

4) Impact level (Oi): the maximum number of customers
without power within the event duration [29]

Leveraging the defined metrics, three additional metrics
are proposed, as follows:

1) Impact rate (Ri): the amount of unserved customers
per hour during the event impact duration; it can be
calculated using Ri =

Oi
Ti

2) Recovery rate (Rr ): the rate of restoring service per
hour during the event recovery duration; it can be cal-
culated using Rr =

Oi
Tr

3) Recovery/impact ratio (Rri): the ratio between the
recovery and the impact duration; it can be calculated
using Rri =

Tr
Ti

Though some events do not follow linear impact or recov-
ery rates, most events follow a monotonically increasing
behavior before reaching the maximum impact level and a
monotonically decreasing behavior after reaching the maxi-
mum impact level. Also, the linear rate function is adopted
based on the triangular resilience curve described in [34].
This provides a simple, straightforward model to measure
outage characteristics. A detailed piecewise linear func-
tion can be used to create a comprehensive mathemat-
ical model representing power outage behaviors. Fig. 7
projects the defined metrics on a single event. The impact
of Hurricane Harvey on Jefferson County in Texas during
August/September 2017 is used for clarification.

FIGURE 7. Event characteristics curve.

C. PROBABILISTIC CURVE FITTING
Reliability metrics usually consider power outages due to
normal failures of power grid components. To distinguish
between resilience-based and reliability-based metrics, only
events exceeding the αh threshold are identified. In this work,
the outage level is leveraged to quantify extreme events
because the EAGLE-I data do not provide the customer-level
specified outage duration. Because short-duration events
have a higher probability to happen than long-duration events,
averaging them will underestimate the significance of the
resilience events. In fact, reliability studies usually consider
the average of all events. In determining the likelihood and
duration of power outages for resilience valuation, PDFs
are created from historical data after discarding low-impact
events.

The main goal of this work is to determine the proba-
bility distributions for the proposed event metrics based on
extracted extreme outages from the EAGLE-I data set. These
PDFs can be used to simulate diverse extreme outage events
for resilience-based studies and to estimate the cost versus
benefit of resilience mitigation strategies. For each state, a list
of extreme outage events at the county level is obtained.
The corresponding characteristics of these events are com-
puted. Curve fitting approaches are used to evaluate the best
fit PDF governing the behavior of each metric. More than
80 PDFs are tested, including normal, exponential, pareto,
double weibull, t, gamma, lognormal, beta, and loggamma.
The detailed list and information regarding each PDF can be
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found in [35] and [36]. The residual sum of squares criteria
is used to evaluate the goodness of fit of each PDF.

IV. IMPLEMENTATION AND RESULTS
The methodology outlined in the previous section was
applied to the EAGLE-I data set, which includes more than
130 million customer outage record values. This section pro-
vides detailed statistical analysis at the state level across the
United States. The PDFs governing the behavior of extreme
outage events were calculated and evaluated, and the results
are detailed in this section.

A. EXTREME OUTAGE STATISTICS
The proposed method mainly depends on the chosen value
of the filtration thresholds. A higher value of αh results in
missing outages that can be classified as extreme events.
Also, a higher αl will yield an inaccurate representation of
the event characteristics, resulting in biased results. This case
provides the sensitivity analysis between the threshold values
and the number of extracted events.

To validate the efficiency of the proposed filtrationmethod,
the major outage event data (OE-417) [16] are used as a
benchmark. The total number of reported events in OE-417
should be the same number of extracted events from the
EAGLE-I data for the same duration after applying the DOE
threshold. Our previous work in [19] provided extensive
analysis on the OE-417 data. Based on the OE-417 data,
605 events took place from November 2014–March 2021,
compared to 598 events extracted from the EAGLE-I data.
This shows that the proposed filtration method is capable of
extracting outage records corresponding to reported major
events.

As mentioned before, the DOE threshold of identifying
extreme events is convenient for highly populated regions,
specifically in large cities and metropolitan areas; however,
outages in rural communities with fewer than 50,000 cus-
tomers will not be considered. Using a fixed threshold value
has its own disparity because of the high variations in the geo-
graphic and population characteristics among different states
and counties. In this work, we propose the dynamic threshold
as a function of the county population level. The population-
based threshold is defined to be a filtration threshold that
relies on the population and the number of utility customers
in a specific geographical location to refine extreme power
outage events. To compensate for the trade-off between the
‘‘customer’’ in the EAGLE-I data and the ‘‘resident’’ in the
population statistics, a scaling factor of two is used. In other
words, it is assumed that a single customer is equivalent to
two residents because multiple residents might have a single
tariff. The scaling factor of two is used based on available data
from EIA-861. With a total of almost 158 million installed
electric meters representing utility customers and a popula-
tion of almost 330 million residents in the United States,
a utility customer is equivalent to 2.07 residents. Accord-
ingly, an outage exceeding 25% of subscribed customers is
assumed to be an extreme outage. In short, values of αl and

αh are selected to be 5% and 25% of subscribed customers,
respectively.

Table 4 shows a summary of the number of extracted
events using the DOE threshold and dynamic population-
based threshold as values for αh at the state level. It is
obvious that the population-based threshold provides a higher
frequency of events because low-populated counties have
been taken into consideration. Also, the value of the DOE
threshold seems relatively high for many counties, result-
ing in extracting zero extreme events in some states. The
population-based threshold provides a larger set of events for
each state, which can be used to estimate PDFs governing
event characteristics. It is worth noting that higher scaling
factors of the population-based threshold results in lowering
the value of the αh yielding increased number of extracted
events.

Some important remarks include the dramatic increase
in the number of extreme outages when using population-
based thresholds. Though some states recorded zero outage
events using the DOE threshold, a noticeable number of
events are captured using the population-based threshold.
This implies the ability of the proposed population-based
threshold to capture extreme outage events, specifically in
regions with smaller rural communities. The top ten states in
terms of the number of extreme outage events are ranked as
follows: Texas, Virginia, West Virginia, Georgia, Kentucky,
Louisiana, Oklahoma, North Carolina, Arkansas, andKansas.
Five of the ten states are also in the top ten for extreme
weather events exceeding billion-dollar economic losses for
the same study period [10], including Texas, Georgia, North
Carolina, Virginia, and Oklahoma.

B. SINGLE STATE ANALYSIS
Once the filtration threshold is implemented on the prepro-
cessed EAGLE-I data, extreme outage events are identified.
This case shows the implementation of the proposed assess-
ment framework on a single state. For clarification, Florida is
selected, and the analysis is conduced using the population-
based threshold with a scaling factor of two. The following
figures show the statistical analysis of the extracted events for
each metric, highlighting the average and maximum values.
Each figure represents a specific metric and reveals insightful
information about the behavior of extreme outage events.

Fig. 8 shows the Florida probabilistic histogram of the Te
metric. On average, extreme outages last almost 36 hours,
with a tendency to have a shorter duration. Though many
events have a total duration less than 40 hours, a non-
negligible number of events last more than 100 hours. This
aligns with the fact that Florida is one of the states most
impacted by hurricanes. Less than 35% of the events have a
total duration of 5 hours, which are usually events that barely
exceed the cutting threshold value.

Fig. 9 shows the Florida probabilistic histogram of the Ti
metric. This shows how long outages are impacting a specific
region. The impact duration metric has an average of almost
9 hours. Forty percent of the extreme outages reach their

VOLUME 11, 2023 7689



M. Abdelmalak et al.: Quantitative Resilience-Based Assessment Framework Using EAGLE-I Power Outage Data

TABLE 4. Sensitivity analysis of filtration thresholds.

maximum impact within 2 hours. A high maximum value is
observed caused by the long impact duration of hurricanes
that might last a few days.

Fig. 10 shows the Florida probabilistic histogram of the
Tr metric. The recovery metric measures the capability of
the power system to return to the pre-event status. Though
the EAGLE-I data do not track the customer status at each
interval, the value measured here can simplify the overall
restoration behavior of a specific state. In Florida, extreme
outages take, on average, 40 hours to restore power to almost

FIGURE 8. Histogram of Te metric of the State of Florida.

FIGURE 9. Histogram of Ti metric of the State of Florida.

FIGURE 10. Histogram of Tr metric of the State of Florida.

all customers. Though most events have a recovery duration
of less than 35 hours, a noticeable number of events have a
recovery duration of more than 50 hours.

Fig. 11 shows the Florida probabilistic histogram of the
Oi metric. More than 70% of the extreme outage events
impact less than 20,000 customers per county. Note that
extreme weather-related events might affect multiple coun-
ties because of the diverse spatiotemporal propagation char-
acteristics. Correlating geographic and temporal informa-
tion about these events with EAGLE-I data will result in
extensive analysis based on events; however, the lack of
information imposes a challenging burden. The spontaneous
maximum number of unserved customers during Hurricane
Irma is 1.8 million, 1.4 million, and 1.1 million customers in
Miami-Dade, Broward, and Palm Beach counties in Florida,
respectively.
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FIGURE 11. Histogram of Oi metric of the State of Florida.

FIGURE 12. Histogram of Ri metric of the State of Florida.

FIGURE 13. Histogram of Rr metric of the State of Florida.

Fig. 12 shows the Florida probabilistic histogram of the Ri
metric. This measures how fast extreme events cause power
outages in specific counties. Very high values are noticed
caused by the fast negative impacts of hurricane events in
Florida. The values provided by this metric can used to quan-
tify the resilience capability of a specific county or utility.
More than 80% of the extracted events have an impact rate of
less than 25,000 customers per hour.

Fig. 13 shows the Florida probabilistic histogram of the
Rr metric. This measures how fast power is restored after
an extreme event. The higher the recovery rate is, the more
resilient the power system is. On average, 28,000 customers
regained their service within 1 hour in Florida. Though
this might seem like an acceptable recovery rate, it mainly
depends on the number of customers who lost power. For
instance, for a hurricane affecting millions of customers,

it might take a few days to restore power to all who were
impacted.

Fig. 14 shows the Florida probabilistic histogram of the
Rri metric. In general, the restoration (recovery) duration is
longer than the impact duration; however, thismetric provides
a more concise evaluation of the relationship between the
restoration and the impact at the state level. In Florida, the
recovery duration is usually less than 28 times the impact
duration. Also, this metric provides an evaluation indicator
of the utility’s performance within a specific county or state.

FIGURE 14. Histogram of Rri metric of the State of Florida.

C. EVENT CHARACTERISTIC ANALYSIS
The methodology described in Section III-B was applied
to the extracted events for each state. A population-based
threshold with a scaling factor of three is adopted to create
reasonable-size event sets for each state. Table 5 summarizes
the mean and standard deviation values of all metrics for
each state. This can be used to provide a comparison among
all states with respect to extreme power outages. In general,
values with high standard deviations show the large spectrum
of diverse events; however, small variance values imply the
closeness to an overall average value. This can be used to
identify states with high power outage levels or prolonged
outage durations.

Note that some states experience long-duration outage
events, including Colorado, Connecticut, Idaho, Minnesota,
Montana, Nebraska, Nevada, North Dakota, Oklahoma,
and South Dakota, though many of these states have not
recorded high numbers of extreme events. Also, the list of
states exposed to outages with impacts exceeding 24 hours
before the system starts to restore curtailed loads includes
Alaska, Arizona, Arkansas, California, Colorado, Idaho,
Iowa, Kansas, Michigan, Minnesota, Missouri, Montana,
Nebraska, Nevada, North Dakota, Oklahoma, South Dakota,
Tennessee, Texas, and Wyoming. Further investigation is
required to trace the real causes of the impact durations. For
instance, Nevada and California might exhibit long impact
times due to high wildfire alert areas, which usually extend
a few days to a couple of weeks. The recovery metric shows
the list of states that usually suffer from extended restoration
times that exceed 2 days on average, including Alaska, Col-
orado, Connecticut, Idaho, Minnesota, Montana, Nebraska,
Nevada, North Dakota, Oklahoma, and South Dakota.
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TABLE 5. Mean and standard deviation values of all metrics across the United States.

The Oi metric reveals the average value of the number
of unserved customers per county per event. For example,
there exists a maximum of 7,000 customers who lost power
per extreme event in Alabama. It is clear that many states
have average customer counts that are less than the 50,000
DOE threshold. This implies that the DOEmajor outage level
cannot capture extreme outage events at the county level,
yielding underestimated resilience values.

The Ri and Rr metrics are important factors to measure
the system restoration capabilities. These metrics measure

the average number of customers lost or restored power per
hour, respectively. Florida, New Jersey, and Delaware are the
top states with high impact rates, whereas Arizona, Florida,
and New Jersey are the top states with high recovery rates.
Because of the trade-off between the causes of extreme events
and the number of impacted customers, further investigation
is required to correlate these metrics to the resilience level
of the system. For example, Florida is highly impacted by
hurricanes, resulting in high impact rates, but it also shows
fast recovery rates.
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TABLE 6. State PDFs for Te, Ti , Tr , and Oi .

The relative relationship between Ti and Tr is captured
in the Rri metric. The smaller the Rri metric is, the better
the system resilient is. For instance, Hawaii has a impact-
recovery ratio of almost one, implying that it takes the system
a relatively little amount of time to return to the pre-event
status. In North Dakota, however, the restoration time is
more than 130 times the impact time. The significantly high
values is because of the existence of many events with impact
durations less than 15 minutes. In other words, for an event
with a recovery duration of 1 hour and an impact duration of
5 minutes (1/12 hour), the Rri value will be 12. To provide

more realistic values, smaller recorded time steps would be
required.

The last two rows of Table 5 provide the average values
across the whole country. The weighted average is computed
using the frequency of events provided in Table 4. These
values can be used to rank and quantify the outage behavior in
each state with respect to the country level. Also, such values
provide average estimate values of extreme power outages
across the United States. For instance, extreme outages usu-
ally last 76 hours, with impact rates of 6, 268 customers per
hour, and recovery rates of 4, 105 customers per hour.

VOLUME 11, 2023 7693



M. Abdelmalak et al.: Quantitative Resilience-Based Assessment Framework Using EAGLE-I Power Outage Data

TABLE 7. State PDFs for Ri , Rr , and Rri .

D. PDF MODELS FOR EACH STATE
The proposed assessment framework is applied to each state
to determine the best fit PDF of each metric. A population-
based threshold with a scaling factor of two is adopted to
create reasonably sized event sets for each state. Referring
to Table 4, Delaware, the District of Columbia, and Hawaii
have very limited numbers of events, resulting in less accurate
PDF representations. The obtained results are provided in
Table 6 and Table 7. In this study, we tested the goodness
of fit of 84 PDFs to each metric using the residual sum of
squares. The list of PDF names is provided in Table 8 in the
appendix.

Table 6 and Table 7 show the best PDF representing each
metric in each state. The list of parameters governing each
PDF is also provided. The index column (#) refers to the PDF
index provided in Table 8. For example, in Alabama, the event
duration metric (Te) can be represented by the ‘‘Fatiguelife’’
distribution (index 68), with a location value of−0.17, a scale
parameter of 11.21, and an argument parameter of 1.69,
respectively. Following the same convention, one can easily
allocate the PDF representing a specific metric in a selected
state. The presence of different PDFs representing the same
metric is noticed across all states. This is caused by the
diverse and unique extracted outages for each state; however,
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TABLE 8. List of PDFs.

the most frequenlty occurring PDFs are ‘‘Gilbrat’’ for Te,
Ti, Tr , and Ri; ‘‘Foldcauchy’’ for Oi; ‘‘Wald’’ for Rr ; and
‘‘Halflogistic’’ for Rri.

V. CONCLUSION
This paper has proposed a resilience assessment framework
to evaluate the characteristics of extreme outage events at
the state level in the United States. The proposed approach
extracts extreme events based on recorded outages in the
EAGLE-I data. An aggregation process is conducted to sum
the outages occurring at the same time across different
service providers at the county level. A population-based
threshold is identified and used to filter abnormal outages.
Various evaluation metrics are used to capture the char-
acteristics of extreme outage events, including magnitude
and temporal behaviors. Extensive statistical analyses are
conducted to test and determine the best fit PDF model
governing the behavior of each metric across all states.
The results show the capability of the proposed assessment
framework to extract extreme outages while accounting for
diverse jurisdictional properties and sizes. The proposed
framework provides a systematic statistical approach to
understand the behavior of extreme weather impacts on the
U.S. power grid based on real recorded outages across the
nation. This also provides researchers with PDFs governing
the behavior of extreme outage events for resilience-based
studies.

Though the efficiency of the proposed framework has
been validated, a few remarks need to be highlighted. First,
the proposed method ignores the temporal changes in the
number of counties, the county population levels, and the
number of customer subscribers for each utility; however,
it provides a single snapshot based on existing static values
of these parameters. Also, the EAGLE-I data do not cover
all counties, resulting in biased results for states that are
missing accurate county information. Note that the proposed
methodology overweights the evaluation metrics caused by
significant amounts of non-reported data on the utility level
and ignoring the frequency of occurrence of each event.

The frequency and duration of extended power outages
are critical inputs in resilience planning and underpin any
probabilistic approach to valuing the benefits of resilience
investments. Therefore, this work contributes to quantita-
tive resilience analysis; however, there is still significant
additional work to be done. Future research can improve
on the accuracy of the estimates and determine how out-
age durations vary by underlying causes. Second, while
this analysis presents state level data, this work does not
present a state-level inter comparison. Although one state
has a higher average outage duration (or other metric), each
state also has a different risk profile of extreme events.
Comparing the outage profile of California wildfires and
Florida hurricanes, for example, would be inappropriate;
this work does not propose that any state is better or
worse at resilience based on the analyzed metrics. Also,
future power outages might have different characteristics
than historical power outages, especially because of climate
change. Additional work could model changes in under-
lying hazards to determine how outage frequencies and
durations will vary over time. Further, a resilience-based
outage curve can be developed to represent the temporal and
magnitude behaviors of extreme outages based on specific
weather-related causes. Extended power outage events are
inevitable, but understanding their causes, probabilities, and
impacts are important steps to reducing their likelihood and
consequences.
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