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Abstract—Increase in the proliferation of distributed energy
resources require real-time situational awareness for efficient grid
operations. State estimation plays an important role for the real-
time control and management of the power grid. As the sensing
infrastructure grows, aggregating and handling high volumes of
data at a centralized location is extremely difficult. To address
this challenge, this paper first proposes a novel and efficient hier-
archical spectral clustering-based network partitioning algorithm
followed by a decentralized compressive sensing (DCS)-based
state estimation. The applicability of the proposed network parti-
tioning algorithm is tested on an IEEE 123-bus network, an IEEE
8,500-node system, and a 6,000+ node distribution network. The
results shows that the proposed approach efficiently divides the
network into multiple sub-networks with the minimum number of
edge connections among the neighbors. Then, we perform DCS-
based state estimation on the 6,000+ node distribution network
after dividing the network into 18 optimal partitions. Simulation
results show that the DCS-based state estimation recovers the
system states with high accuracy and low complexity.

Index Terms—Network partition, Spectral clustering, Decen-
tralized state estimation (DSE), Compressive sensing, Power
distribution network, alternating direction method of multipliers
(ADMM).

I. INTRODUCTION

The increasing penetrations of renewable energy resources
and responsive electric loads demand better situational aware-
ness for safe and reliable grid operation. State estimation is
key for maintaining advanced situational awareness. Typically,
the state estimation task is designed to infer the system’s state
from physical measurements. State estimation in transmission
networks relies on the available accurate measurements and
network model information. In such cases, state estimation
methods are typically formulated as least-squares variants
[1]. These assumptions, however, do not work in the power
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distribution network because of limited real-time measure-
ments compared to the unknown state variables. The model
information might also be unknown or incorrect because of
aging infrastructure or undocumented topology changes. One
way to solve this problem is to use pseudo measurements in the
form of load or energy forecasts [2]. Recently, sparsity-based
approaches have found applications in distribution network
state estimation [3], [4]. Sparsity-based techniques exploit the
network and the data structures to achieve reliable estimation
under limited observability. Further, when historical data are
available, Bayesian estimation approaches are proposed to
learn the underlying mapping from measurements to states
[5], [6]; however, all these methods consider the whole power
distribution network as a single entity and estimate the system
states in a centralized location. Some major disadvantages
of centralized state estimations are (i) low reliability, (ii)
high computational complexity, and (iii) large communication
bandwidth. On the contrary, decentralized state estimation
(DSE) concentrates on estimating the system states by dividing
the large network into smaller sub-networks and solves them
in parallel [7], [8]. Although the control center is capable
of parallel computing, the large volume of measurements
transmitted from remote data sources causes a significant
communication burden. This creates long delays, which further
increases the response time of DSE [9]. Network partitioning
plays an important role in DSE; however, limited research
has been reported in the literature [10], [11]. A network
reconfiguration problem for loss reduction and load balancing
is presented in [10], [12]–[14]. Optimal phasor measurement
units and communication links placement method for DSE in
distribution networks is presented in [15]. A network parti-
tioning approach based on a community detection algorithm
for zonal voltage control is discussed in [11].

In addition to distributed state estimation, distributed opti-
mal power flow [16], distributed Volt/VAR control [17], dis-
tributed frequency control [18], distributed optimization [19],
and distributed wide-area control [20] are also gaining popular-
ity. In all these approaches, there is a specific goal for network
partitioning, such as loss reduction or local voltage control;
however, none of them generalizes the network partitioning
algorithm, which can work for all distributed/decentralized
control or optimization problem.
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In this article, we propose a generic and efficient net-
work partitioning algorithm. The proposed approach uses
hierarchical spectral clustering to obtain the optimal network
partitioning. The partitioning of the network ensures minimum
boundary variables among the neighboring areas. Once the
network partitioning is obtained, the resultant distributed net-
work can be used for all distributed/decentralized studies, i.e.,
distributed state estimation, distributed Volt/VAR control etc.

A. Contributions

Distributed/decentralized state estimation/control signifi-
cantly reduces the computational time; however, a suboptimal
network partitioning leads to a larger volume of data sharing
among the partitions and can slow down the convergence of
the decentralized/distributed algorithm. This article proposes a
novel and efficient hierarchical spectral clustering-based distri-
bution network partitioning algorithm. The major contributions
of the research article are as follows:

• A novel and efficient hierarchical spectral clustering-
based network partitioning algorithm that partitions the
network with minimized overlap is proposed. The pro-
posed approach can be applied to all types of dis-
tributed/decentralized tasks in a power distribution net-
work.

• The efficacy of the proposed approach is tested on a
standard IEEE 123-bus network, an IEEE 8,500-node
system, and a real 6000+ node distribution network.

• The network partitioning is applied to decentralized com-
pressive sensing (DCS)-based state estimation and the re-
sults demonstrate a gain in the computational complexity
without a loss in performance.

II. HIERARCHICAL NETWORK PARTITIONING

We model the power distribution network as a connected
and undirected graph, G = (V, E), and then apply hierarchical
spectral clustering to the graph to divide it into multiple sub-
graphs.

Consider a power distribution network that consists of n
nodes and e edges. The network can be represented as a graph,
G = (V, E), where V = 1, 2, · · · , n is the set of nodes, and
E ⊆ V × V is the set of edges. The graph adjacency matrix
A, is used to represent the connection among the nodes. The
entries of A are defined as,

ai,j =

{
1, if there is a connection from node i to node j

0, otherwise
(1)

For efficient optimal network partitioning, we need a similarity
matrix of the network graph. For our study, we used the graph
Laplacian matrix, L, as the similarity matrix. The entries of
matrix L are defined as:

Li,j =


di, if i = j

−1, if i and j are adjacent
0, Otherwise

(2)

Fig. 1: Flow diagram of hierarchical network partitioning

where di is the degree of node i and is calculated as di =∑n
j=1 Ai,j . Because the Laplacian matrix of a planner graph

is positive semidefinite, the vector of all ones is always an
eigenvector corresponding to the 0 eigenvalues, and all other
eigenvalues are nonnegative. We focus on the second smallest
eigenvalue, λ2, or the algebric connectivity of a graph, and
the corresponding eigenvector, v, called the Fiedler vector.
For any vector, u, the Fiedler value, λ2, of a graph is given
by:

λ2 =min
u⊥1

uTLu

uTu
, (3)

The minimum value of (3) is obtained when u = v, i.e, the
unknown vector is the Fiedler vector. In this work, we exploit
a key theorem validated in [21].

Theorem 1. Let G = (V, E) be a graph on n nodes of
maximum degree, dmax. Let L be the Laplacian matrix and
ϕ be the isoperimetric number. For any vector u ∈ Rn such
that uT1 = 0:

uTLu

uTu
≥ ϕ2

2dmax
. (4)

Moreover, there exists a splitting value, s, for which ({i : ui ≤
s}, i : xi > s) has a ratio at most ϕ2

2dmax
. More details on this

theorem can be found in [21].
Using Theorem 1, with v the Fiedler vector of the graph

Laplacian, the spectral partitioning is to find a splitting value,
s, that partitions the vertices of G into sets such that vi ≤ s and
vi > s. Although there are several values to choose for s, we
choose the sign cut for which s = 0. We successively apply the
discussed method to obtain the desired number of subgraphs
for an equivalent large graph. We limit the subgraph creation
based on the computational capability of the particular region.
Fig. 1 shows a pictorial representation of the hierarchical
spectral graph partitioning, and the step-by-step procedure is
given in Algorithm 1. Next, we discuss the DSE proposed in
[22] using the optimally partitioning algorithm discussed.

III. DISTRIBUTED STATE ESTIMATION

State estimation in the distribution grid involves the char-
acterization of the voltage magnitude and the angle at each
node based on the available measurements. With accurate
model information, the voltage phasors at all nodes are enough
to find other electrical quantities, such as nodal power con-
sumption/injection and line current flows; however, accurate

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

2



Algorithm 1: Hierarchical spectral clustering-based
network partitioning
Input Admittance matrix: Y, Minimum number of
nodes in a single partition k

Initialize: K = 0
while k > K do

Obtain: Adjacency matrix A
Obtain: Degree matrix of graph D
Obtain: graph Laplacian L = D−A
Obtain: The Fiedler vector v of L
Obtain:
Subgraph1 ← v > 0 and Subgraph2 ← v ≤ 0

Update K =
max(V olume(Subgraph1), V olume(Subgraph2))

end
Return: Number of partitions with their node index

network information might not be always available to the
distribution network operator. This is due to the change in
line parameters and/or undocumented changes in network
topology. Therefore, we propose a model-free compressive
sensing-based distributed state estimation to recover all the
nodal voltage phasors using limited measurements in power
distribution grids. Toward this end, we first briefly review the
compressive sensing technique, followed by the distributed
compressive sensing-based state estimation in power distribu-
tion grids.

A. Compressive Sensing

Compressive sensing finds the sparse solution to an undeter-
mined linear system by exploiting the sparsity of the signal on
a linear transformation basis [23]. Let x ∈ RN be the original
signal of interest compressible in a linear transformation basis
Ψ, i.e., x = Ψb, where, b has at most K << N significant
coefficients. If the sensing mechanism is y = Φx, where
y ∈ RM is the measurement vector, and Φ ∈ RM×N is
projection matrix. The entries of Φ could be i.i.d random
Gaussian variables with zero mean and 1/M variance. The
goal of compressive sensing is to recover x from y. The most
common approach to recover x is to solve the l1 minimization
problem as:

â = min
q∈RN

∥q∥1 subject to y = ΦΨq (5)

The optimization problem of (5) reconstructs x̂ = Ψâ. The
state recovery using (5) becomes computationally expensive
as the system size increases.

B. Decentralized Compressive Sensing

To reduce the computational complexity of compressive
sensing-based state estimation in large distribution networks,
we propose a DCS-based state estimation approach in power
distribution grids. First, we use the hierarchical network par-
titioning algorithm, as discussed in Section II, to divide the
power distribution network into D subareas. Next, we use DCS
to recover the states in each subarea.

Let us define the sates of the power distribution
network for a particular area, a, as xa =[
ℜ(sa)T ,ℑ(sa)T ,ℜ(va)

T ,ℑ(va)
T , |va|T

]T
, i.e., the

concatenation of active power, reactive power, real part
of the voltage, imaginary part of the voltage, and voltage
magnitude. The state variables, xa, include internal variables,
xa,int, and boundary variables, xa,adj . Boundary variables are
the variables that overlap with other subareas. Although the
optimization problem (5) is used to recover the system states
in each subarea, we must ensure that the boundary variables
in each area are equal. To make the boundary variables equal,
we introduce a global variable, ga,b, for two neighboring
areas, a and b, as ga,b = xab

a,adj = xb,adj . Note that the global
variable for any two adjacent areas, a and b, should be equal,
i.e., ga,b = gb,a. The decentralized model of the compressive
sensing-based state estimation problem corresponds to:

argmin
xa

D∑
a=1

fa(xa)

subject to: xa ∈ Xa a = 1 · · ·D
xab
a,adj = ga,b ∀(a, b) ∈ J

(6)

where fa(xa) = ||Ψaxa||1 + λa

2 ||ya − ΦaΨaxa||22, and ya

is the available measurement in area a. The alternating direc-
tion method of multipliers (ADMM) is the most commonly
used method for solving (6). ADMM takes the form of a
decomposition-coordination procedure, in which solutions to
small local problems are coordinated to find a solution to a
large global problem [24]. In the context of the formulation in
(6), the dual variables λa,b correspond to consensus boundary
constraints of areas a and b; the cardinality of the neighbor
sets |J a| is the number of neighbors of area a. Define the
local variables λa = {λa,b|b ∈ J a} and ga = {ga,b|b ∈ J a}
as the concatenation of dual and global variables, respectively;
and λ and g as the concatenation of the corresponding local
and global variables. The augmented Lagrangian formulation
for (6) is given as:

L(x,g,λ) =
D∑

a=1

La ({xa}, {ga}, {λa}) (7)

where:

La({xa}, {ga}, {λa}) =

fa(xa) +
∑
b∈J a

[
λT
a (xa,adj − ga) +

ρ

2
||xa,adj − ga||22

]
(8)

where ρ is a predefined constant. The ADMM iterates through:

xt+1
a = argmin

xa

La(xa,g
t
a,λ

t
a) (9)

gt+1
a = argmin

ga

La(x
t+1
a ,ga,λ

t
a) (10)

λt+1
a = λt

a + ρ(xt+1
a,adj − gt+1

a ) ∀b ∈ J a (11)

The iterates (9)–(11) converge to a solution of (6) [24]. The
decentralized algorithm described in (9)–(11) can be solved in
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a parallel manner. The subareas estimate their respective states
based on their respective available measurements [22].

C. Computational Complexity

The compressive sensing-based state estimation method
involves an l1 minimization that is solved by linear program-
ming. Let M be the number of variables and N the number
of constraints. The computational complexity of solving one
Newton step is O(MN.min(M,N)). The same argument is
valid for DCS; however, the number of variables in a par-
ticular area reduces, reducing execution time. The execution
time in the DSE method is always less than the centralized
state estimation method. The total time for the DSE method
depends on the time taken for the estimation process in the
area having the highest number of variables and the inter-
communication among the neighboring areas. The proposed
hierarchical spectral clustering approach minimizes the overlap
among partitions, reducing the communication burden across
subareas/partitions.

IV. SIMULATION RESULTS

In this section, we present the simulation results of the
efficient hierarchical graph partitioning algorithms followed by
the DSE. We test the proposed hierarchical spectral clustering-
based graph partitioning algorithm on the standard IEEE 123-
bus system and the IEEE 8,500-node system. We also test the
algorithm on a real power distribution network having 6,000+
single-phase nodes. The distribution network data is taken
from a distribution network operator in Kansas, USA. The
5-area partitioning of the IEEE 123-bus system and 12-area
partitioning of the IEEE 8,500-node system are shown in Fig. 2
and Fig. 3, respectively. As shown, the hierarchical spectral
clustering divides the network such that the neighboring area
shares minimum edges. Similar performance is also observed
for the 6,000+ node distribution network. An 18-area partition
of the network is shown in Fig.4. A comparative analysis of the
proposed hierarchical spectral network partitioning with the k-
means partitioning is given in TABLE. I. It can be seen, that
the total number of shared links among the neighbors using
the proposed algorithm is much less than k-means network
clustering.

Next, we evaluate the performance of the DCS-based state
estimation on the 18-area partitioned distribution network.

Fig. 2: Five-area optimal partitioning of the IEEE 123-bus
network

Fig. 3: Twelve-area optimal partitioning of the IEEE 8,500-
node system

Fig. 4: Eighteen-area optimal partitioning of the real 6,000+
node system

We evaluate the performance of the DSE methods using
mean absolute percentage error (MAPE) for the voltage
magnitude and the mean integrated absolute error (MIAE) for
the voltage angle, respectively [4]. In the results, we present
the MAPE and MIAE for the voltage magnitude and angle
estimations, respectively.

Fig. 5 (a) and (b) show the voltage magnitude and voltage
angle recovery of the 6,000+ node distribution network. It is
observed that the estimation error both in voltage magnitude

10 20 30 40 50 60 70 80 90

CMR (%)

1.6

1.8

2

2.2

2.4

M
A

P
E

Voltage magnitude recovery

(a)

10 20 30 40 50 60 70 80 90

CMR (%)

1.5

2

2.5

M
IA

E

Voltage angle recovery

(b)

Fig. 5: (a) Voltage magnitude and (b) angle recovery of 6,000+
node system
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TABLE I: Performance of proposed partitioning algorithm

Test system No of
partitions

No of shared links
k-means
partition

Hierarchical
network partition

IEEE 8500 12 123 86
6000+ 18 500+ 140

and angle is maximum when the compressed measurement
ratio (CMR) is 10%. The MAPE and MIAE in the voltage
magnitude and the angle decrease as the CMR (%) increases.
This is because as the CMR value increases, the available
measurement increases, which increases the estimation accu-
racy and reduces the estimation error.

Next, we present a comparative analysis of computation
time in centralized and decentralized state estimation method
in Table II. It can be seen that, with effective partitioning,
the simulation time reduced drastically from 631.72 seconds
in the centralized approach to 20.19 seconds in the proposed
decentralized approach.

TABLE II: Simulation time for 1 run and 1 CMR

Approach Time(sec)
Centralized CS based state estimation 631.72

Decentralized CS based state estimation 20.19

V. CONCLUSION AND FUTURE WORK

This paper proposes an efficient hierarchical spectral
clustering-based network partitioning algorithm. The proposed
algorithm divides the network with minimum edge sharing
among the neighboring partitions/areas. Because the informa-
tion shared among the neighboring areas is limited, this can
be effective in reducing the communication overhead in dis-
tributed/DSE and control. We tested the algorithm performance
on standard IEEE systems and a real 6,000+ distribution net-
work. Next, we performed decentralized compressive sensing-
based state estimation on the 6,000+ distribution network by
optimally dividing the network into 18 smaller subnetworks
and reported the simulation results. The simulation results
show that the estimation error in the voltage magnitude and
the voltage angle is 2.2% and 2.4%, respectively, even when
the CMR is only 10%, and the estimation accuracy further
increases with an increase in CMR%. For future work, we
will test the accuracy of DSE under cyber attacks [25].
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