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Abstract — Distribution system resilience enhancement is an im-
portant topic to ensure customers have access to power supply 
during extreme events. In fact, certain weather-related extreme 
events can be predicted ahead of time. Therefore, it is important 
to investigate how to predict grid outages using extreme weather 
forecasts, and how outage predictions can be incorporated into 
distribution system resilience enhancement. In this paper, a pre-
ventative scheduling model for distribution systems is proposed. 
The model targets at allocating resources, especially mobile re-
sponsive resources such as mobile backup generators and mobile 
energy storage systems, to prepare for an extreme event in the 
day-ahead context. To achieve efficient resource allocation and 
scheduling, a machine learning-based outage prediction module 
is developed to predict vulnerable or risky segments of the distri-
bution system based on historical operating records and extreme 
weather event forecast. By integrating the outage prediction re-
sults into the scheduling model, optimal resource allocation can 
be derived to help distribution systems prepare for an upcoming 
event and improve resilience performance. A real distribution 
feeder in North Carolina, U.S. is used in the case study to validate 
the proposed approach. 

Index Terms—Distributed energy resources, forecast-based pre-
ventative scheduling, machine learning, outage prediction, power 
system resilience, responsive resource allocation 

I. INTRODUCTION

Power system resilience has been a hot topic in recent years, 

which addresses the power supply reliability and security 

against high impact low probability events such as extreme 

weather events and cyberattacks [1]. As far as distribution sys-

tems are concerned, resilience focuses on securing the power 

supply to end customers during disastrous events to minimize 

economic and social losses associated with power outages. For 

typical distribution systems that rely heavily on the upstream 

transmission system for power supply, little can be done on the 

distribution end to enhance resilience other than strengthening 

the grid due to the lack of controllable generation resources.  

With the growing integration of distributed energy re-

sources (DERs), distribution systems could still have genera-

tion capability from their DERs when there is a major blackout 

at their upstream transmission system. Hence, reasonable utili-

zation of DER capability becomes a key to improving distribu-

tion system resilience [2]. In [3], the authors formulate an 

islanding strategy in the event of line failures in distribution 

systems, and they propose a decentralized, multi-agent system 

to control the DERs. Reference [4] investigates the collabora-

tion of various DERs and legacy devices in distribution system 

service restoration. Here, mixed-integer, second-order cone 

programming is used to model the restoration problem. The au-

thors in [5] built a cooptimization method, in where the repair 

crew and mobile power source were jointly dispatched for elec-

tric service restoration. In [6], the authors focus on comparing 

the load restoration performances using fixed and variable time 

steps. Here, the restoration model for the distribution system is 

a mixed-integer, linear programming (MILP) problem. Refer-

ence [7] develops a new set of quantitative metrics with clear 

physical interpretation to comprehensively evaluate power sys-

tem resilience and integrate them into power system optimiza-

tion models for resilience enhancement. Behind-the-meter 

DERs were controlled to improve distribution system resilience 

in [8]. The restoration of secondary distribution network with 

distributed generators was studied in [9].  

Overall, existing works have explored the feasibility of im-

plementing DERs to assist distribution system service recovery 

and resilience enhancement. However, their focuses are either 

on long-term planning (e.g., grid strengthening) or real-time 

DER control. For certain extreme events such as hurricane and 

flood, it is possible to get a pretty good prediction of the event 

propagation hours or days ahead. If this event prediction infor-

mation can be leveraged by utility operators, it is possible for 

them to adjust their operating schedules and allocate emergency 

responsive resources such as backup generators to the most vul-

nerable grid segments to improve resilience. To achieve this, 

the following two questions need to be addressed: 

• For extreme events that can be predicted, how to effi-

ciently map the extreme event prediction to grid outage

prediction, and how to improve the outage prediction ac-

curacy.

• With a credible outage prediction result, what measures

can be taken to allocate responses and controllable assets

to prepare for the outage event.

To this end, the major contents and contributions of this pa-

per includes: 

This work was authored in part by the National Renewable Energy Laboratory, 
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• An outage forecast-based preventative scheduling (FPS) 

model is developed to incorporate outage prediction re-

sults and responsive resource allocation into conven-

tional distribution system restoration problems. The FPS 

model is formulated as a mixed-integer linear program-

ming model, where mobile resources are allocated to crit-

ical locations based on the outage predictions to improve 

system resilience. 

• Two machine learning models, namely decision tree (DT) 

and ensemble boosted tree (EBT), are employed to gen-

erate outage prediction results based on historical data. 

• The effectiveness of the proposed solution is demon-

strated on the model of a real distribution feeder in North 

Carolina. The real outage data of the past ten years are 

utilized for outage prediction.  

The rest of this paper is organized as follows. Section II 

briefly describes the FPS model. Section III introduces the out-

age prediction approach with machine learning techniques. Sec-

tion IV demonstrates the simulation results on a real distribu-

tion feeder. Section V concludes the paper. 

II. FPS MODEL WITH MOBILE RESPONSIVE RESOURCES 

A. FPS Model Formulation with Outage Prediction and 
Mobile Responsive Resources Allocation 

In the FPS model, the outage event is predicted and informed 
to the operator. The following assumptions are adopted when 
developing this FPS model:  

▪ The developed FPS model targets a three-phase unbal-

anced microgrid. Power loss in the microgrid is ignored. 

This FPS model can easily be modified to model balanced 

distribution networks and transmission networks. 

▪ Distributed generators (DGs), photovoltaics (PVs), and 

battery energy storage systems (BESSs) are the primary 

DERs in the microgrid. Other types of DERs can also be 

integrated into the proposed model. 
In addition, the FPS model needs to consider the allocation 

of responsive resources in response to a given outage predic-
tion. In this paper, three types of mobile resources are consid-
ered and explained in Table I.  

TABLE I MOBILE RESOURCES FOR FPS MODEL 

 Capability Constraints 

Mobile generator Power generation 
Capacity; 

Fuel; 
Rating power 

Mobile BESS 
Power generation 
or consumption 

Capacity; 
Stage-of-charge; 

Rating power 
Mobile transformer Connection Capacity 

Among these three mobile resources, mobile generator (typ-
ically diesel generators mounted on the truck) can be used to 
generate electricity. Mobile BESS is more flexible because the 
BESS can be operated in charging mode as well. Mobile trans-
former, on the other hand, is not a traditional DER because it 
does not have any power generation or consumption capability. 
However, mobile transformer can restore the connection be-
tween critical node and the grid. Furthermore, we consider there 
will be a number of access points where mobile responsive re-
sources can be connected to the feeder to provide power supply. 
The conceptual diagram is shown in Figure 1. In Figure 1, re-
sponsive resources are originally located at the substation. 
Along the feeders, there are multiple access points for the 

mobile resources, denoted by a green circle. In the FPS model, 
microgrid operators will allocate these mobile resources to can-
didate access points using outage predictions. 

 
Fig. 1. Conceptual diagram of mobile resource integration 

Based on the assumptions, the FPS model includes an objec-
tive function to maximize distribution system resilience while 
minimizing resource allocation costs. A compact version of the 
FPS model is described below due to space limit.  

𝑚𝑎𝑥: 𝑓𝑅(𝒈, 𝒎) − 𝐶(𝒎)  

𝑠. 𝑡.: ℎ(𝒈, 𝒎) ≤ 𝟎  

where 𝒈 and 𝒎 are variables associated with DER and distri-
bution system operation, and mobile responsive resource oper-
ation, respectively. 𝑓𝑅 is a function to quantify distribution sys-

tem resilience [10], and 𝐶 is a function to quantify mobile re-

source allocation costs. ℎ is the set of constraints that includes 
1) power flow constraints; 2) DER operating constraints; and 3) 
mobile DER constraints. The mobile DER constraints will be 
elaborated in Section II.B, while the other constraints are con-
ventional and can be referred to existing studies such as [3]-[9].  

B. Mobile DER Contsraints 

Mobile DERs are constrained by both their inherit operating 

boundaries such as rated power, power factor, and runtime, and 

by the transportation network constraints such as travel time 

from one location to another. In this section, a general mobile 

DER model is developed to cover the three types of mobile re-

sources considered in this study.  

The inherit mobile DER constraints can be expressed as: 

∑ 𝑦𝑚,𝑖,𝑡𝑖 𝑃𝑚
M,min ≤ 𝑃𝑚,𝑡

M ≤ ∑ 𝑦𝑚,𝑖,𝑡𝑖 𝑃𝑚
M,max

  

−𝜑𝑚
M𝑃𝑚

M,min ≤ 𝑄𝑚,𝑡
M ≤ 𝜑𝑚

M𝑄𝑚,𝑡
M  

𝐸𝑚
M,min ≤ ∑ 𝑃𝑚,𝑡

M
𝑡 ≤ 𝐸𝑚

M,max
  

where 𝑃𝑚,𝑡
M  and 𝑄𝑚,𝑡

M  denote the active and reactive power out-

put from mobile DER m at time t, respectively. 𝑃𝑚
M,max

 and 

𝑃𝑚
M,mim

 are the maximum and minimum active power output, 

respectively. 𝜑𝑚
M  is the power factor limitation. 𝐸𝑚

M,max
 and 

𝐸𝑚
M,min

 denote the maximum and minimum energy output, re-

spectively. 𝑦𝑚,𝑖,𝑡  is a binary variable indicating whether the 

mobile DER m is connected to bus i at time t of the distribution 

system concerned. Hence, it is clear that the key variable in the 

mobile DER model is 𝑦𝑖,𝑡. This variable will be linked to the 

transportation network for mobile resource dispatch.  

The transportation network constraints can be described as:  

𝑦𝑚,𝑖,𝑡 = 𝑦𝑚,𝑖,𝑡−1 + ∑ 𝑦𝑚,𝑗𝑖,𝑡
A

𝑗 − ∑ 𝑦𝑚,𝑖𝑗,𝑡
D

𝑗   

∑ 𝑦𝑚,𝑖,𝑡
𝑡+∆𝜏
𝜏=𝑡 ≥ ∆𝜏(𝑦𝑚,𝑖,𝑡 − 𝑦𝑚,𝑖,𝑡−1)  

∑ 𝑦𝑚,𝑖,𝑡𝑖 ≤ 1  
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𝑦𝑚,𝑖𝑗,𝑡
D ≥ 𝑦𝑚,𝑖,𝑡−1 − 𝑦𝑚,𝑖,𝑡 

𝑦𝑚,𝑖𝑗,𝑡
D ≤ 𝑦𝑚,𝑖,𝑡−1 

𝑦𝑚,𝑖𝑗,𝑡
D ≤ 1 − 𝑦𝑚,𝑖,𝑡 

𝑦𝑚,𝑖𝑗,𝑡+∆𝜏𝑖𝑗

A = 𝑦𝑚,𝑖𝑗,𝑡
D  

𝑦𝑚,𝑖𝑗,𝑡
A  , 𝑦𝑚,𝑖𝑗,𝑡

D  , 𝑦𝑚,𝑖,𝑡 ∈ {0,1} 

where 𝑦𝑚,𝑖𝑗,𝑡
A  and 𝑦𝑚,𝑖𝑗,𝑡

D  are binary variables indicating 

whether the mobile DER m has departed from bus i to bus j or 

arrive at bus i from bus j, respectively. ∆𝜏 denotes the discre-

tized loading/unloading time to constrain a mobile DER to be 

connected to the grid for at least ∆𝜏 time steps before being re-

allocated.  

III. OUTAGE PREDICTION WITH MACHINE LEARNING 

In the FPS model discussed in Section II, the allocation of 
responsive resources and microgrid formation strategy are 
highly dependent on distribution system outage information. To 
improve the accuracy of system outage prediction, a machine 
learning-based outage prediction approach has been proposed 
to estimate which sections of the network will be out during an 
upcoming extreme weather event and which sections will expe-
rience actual physical damage.  

In this paper, the focus is to provide zone-based, device-
level predictions, i.e.: 

i). Predict outages associated with each protection zone for 
the next time horizon (e.g., 24 hours); 

ii). Provide an indication of the physically affected sections 
of each protection zone for the next time horizon. 

A. Data Collection and Feature Selection 

Protection zones are defined based on each recloser and its 
downstream fuses. Outage predictions for each protection zone 
include recloser and fuse-related components. Recloser outage 
prediction is essentially a classification problem that produces 
a 1 or 0 outcome. Fuse outage prediction is more complicated 
because of its large number. Therefore, the total number of fuse 
events will be predicted instead.  

To build the dataset for model training, 10 years historical 
data of 25 substations are collected and processed. In addition 
to utility operating data such as recloser/fuse operations, num-
ber of customers influenced, and outage duration, the weather 
data is also included to build connection between outage and 
extreme weather event. Specifically, the following weather fea-
tures are used in this paper: 

• Rmax: Maximum relative humidity each day (in %); 

• Rmin: Minimum relative humidity each day (in %); 

• Th:  Average daily wind direction (in degrees clockwise 

from north); 

• tmmn: Daily minimum temperature (in oK); 

• tmmx: Daily maximum temperature (in oK); 

• vs: Daily average windspeed associated. 

The complete dataset includes 18 extreme weather events 
and contains 22,050 records. Among these 18 extreme event 
data, 16 of them will be used for model training and 2 will be 
used for validation.  

B. Machine Learning Models 

In this paper, we implemented two machine learning models 
to predict outages, namely decision tree (DT) and ensemble 
boosted tree (EBT). The overall workflow of implementing the 
proposed machine learning models for outage predictions is 
also illustrated in Fig. 2. 

• DT is a series of decision nodes (‘if-then’ statements) 
that, starting from a ‘root node’, allows to recursively 
split the training data into subsets of similar values for 
the response variable. During training, the DT is fitted 
with any historical data that is relevant to the problem 
domain and the true value we want the model to learn to 
predict. The model learns any relationships between the 
data and the target variable.  

• EBT combines several decision trees to produce better 
predictive performance than utilizing a single decision 
tree. Boosting is an ensemble technique to create a col-
lection of predictors. In this technique, learners are 
learned sequentially with early learners fitting simple 
models to the data and then analyzing data for errors. In 
other words, we fit consecutive trees and at every step, 
the goal is to solve for net error from the prior tree.  

 
Fig. 2. Outage prediction workflow with machine learning models. 

TABLE II ERROR METRICS FOR THE MACHINE LEARNING-BASED OUTAGE 

PREDICTIONS ON A REAL HURRICANE EVENT 

Metric DT EBT 

RMSE 0.3504 0. 3421 

R2 Score 0.79 0.83 

NMAE 5.96% 5.37% 

To verify the performance of the machine learning-based 
outage prediction models, three primary performance metrics – 
root mean square error (RMSE), normalized mean average er-

ror (NMAE) and 𝑅2 – were considered. For RMSE and NMAE, 
smaller values imply better performance. On the other hand, 
larger R2 values are desired. Table II listed the prediction error 
on a real hurricane event. Both DT and EBT produce good pre-
diction of outages. Using other machine learning outage predic-
tion techniques, such as deep neural network-based methods, 
implies using more complex architectures [10]; the choices of 
DT and EBT models are due to its simplicity and lightweight, 
in view of its implementation on an industrial level. 
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IV. CASE STUDY 

To validate the developed translation scheme, we imple-

ment the tests on the model of a real feeder in North Carolina, 

the topology is shown in Fig. 3. The feeder model consists of 

1,484 nodes, and it has a peak load of 3,970 kW. To simulate 

the impacts caused by predicted extreme events, here are the 

assumptions in the test: 

• 7 reclosers are deployed across the system as shown in 

Fig. 3. There is 1 recloser deployed near substation, lower 

load cluster, and medium load cluster, respectively. 5 re-

closers deployed in the upper cluster. 9 nodes of mobile 

DER connection are deployed based on the similar rule. 

• The scheduling timeframe is 24-hour with 15-minute 

time-resolution, which contains 96-time steps in total. 

During this timeframe, the 7 reclosers and 9 nodes may be 

tripped off according to the outage prediction results. For 

each component, the recovery time is randomly generated 

using normal distribution with 5 hours as the mean and 1 

hour as the standard deviation. Since outage prediction re-

sults contain probability of outages, a total of 20 outage 

scenarios are generated based on the outage predictions to 

account for prediction error.  

• This feeder has a total PV capacity of 60% of its peak load 

(i.e., 2,100 kW), and 60% of the PV are randomly picked 

to be equipped with a BESS. Each BESS is assumed to be 

capable of supporting charging/discharging at PV-rated 

power for 3 hours. 

• A simplified transportation network with 9 nodes is intro-

duced for mobile DER dispatch. The network is shown in 

Fig. 3. Each line in Fig. 3 denotes a transportation route 

with its travel time listed. For example, a route with 4𝜏 

means the travel time is 4 time steps, which is 60 minutes. 

 
Fig. 3. Topology, mobile DER connection node, and the traffic routine of the 

real feeder in North Carolina 

A. FPS without Mobile DER Deployment 

In this section, we first disable mobile DER deployment and 

focus on validating the impacts of outage prediction. The fol-

lowing assumptions are made to initialize mobile DERs: i) a 

mobile diesel generator (rating power 200 kW) is deployed to 

the node III; ii) a mobile BESS (rating power 200 kW/600 

kWh) is deployed to the node IX; iii) a mobile transformer (rat-

ing capacity 250 kVA) is deployed at the substation node .To 

validate the effectiveness and benefits of the proposed FPS 

model, two comparative cases are studied: 

▪ Case 0: FPS without forecast information, all BESS will 

be discharging whenever the outage event starts; 

▪ Case 1: FPS model using the proposed outage prediction 

results as input. 

First, we run simulation on the 20 outage scenarios, each 

with a different outage prediction result. For the outage scenario 

#10, the resilience trapezoid and load shedding results gener-

ated by the proposed FPS model are shown in Fig. 4 below. The 

y-axis of upper and lower subplots are the uninterrupted system 

load supply (%) and system load shedding (kW), respectively. 

The resilience metric values and statistics are listed in Table III. 

Fig. 4 and Table III clearly demonstrated that outage predic-

tion has done a great job in anticipating most vulnerable areas 

and allocate resource accordingly. It is clearly shown in Fig. 4 

that case 0 has very high load shedding and a longer outage 

duration, which is reasonable because the capability of DERs 

cannot be fully utilized without proper optimization and coor-

dination. Based on the developed FPS scheme, case 1 can re-

duce the maximum load shedding by 115 kW, mitigate the in-

terruption of energy supply by 14,764 kWh, and shorten the 

outage time by 2.75 hours. Hence, it is validated that outage 

predictions are important inputs for FPS models and key to im-

prove distribution system resilience. 

 
Fig. 4. Resilience trapezoids with the FPS model under event 10 

TABLE III RESILIENCE METRICS WITH THE FPS MODEL UNDER EVENT 10 

 Case 0 Case 1 

Energy shortage (kWh) 25,311 10,547 

Maximum load shedding (kW) 2,009 1,895 

Resilience objective [11] (kWh) 55,446 36,603 

B. FPS with Mobile DER Deployment 

The following case will be simulated to validate the contri-
butions from mobile DERs: 

▪ Case 2: FPS model using the proposed outage prediction 

results and mobile DER dispatch approach.  

Case 2 result is compared against case 1 where no mobile 

DERs are considered to validate whether the introduction of 

mobile DERs can improve system resilience performance. Out-

age scenario 10 is employed, and the simulation results are 

shown in Fig. 5. In Fig. 5, it is observed that introducing mobile 

DERs can further reduce the load shedding and energy shortage 

and accelerate service restoration by 267 kW, 1,105 kWh, and 

1.25 hours, respectively. The resilience metric values and sta-

tistics are listed in Table IV. Fig. 5 and Table IV clearly validate 
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that the deployment of mobile DERs can significantly improve 

distribution system resilience. 

 
Fig. 5. Resilience trapezoids of Case 1 and Case 2 under event 10 

TABLE IV RESILIENCE METRICS WITH AND WITHOUT MOBILE DER  

 Case 1 Case 2 

Energy shortage (kWh) 10,547 9,442 
Maximum load shedding (kW) 1,895 1,628 

Resilience objective [11] (kWh) 36,603 28,571 

TABLE V MOBILE DER DISPATCH SCHEME IN CASE 2 

Time slot Mobile diesel 

generator 

Mobile BESS Mobile Trans-

former 

1 II IX I 
2 II → III IX → IV I 

3 II → III IX → IV I 

4 III IX → IV I 
5 III IX → IV I 

6 III IX → IV I 

7 III IX → IV I 
8 III IV I→ IX 

9 III IV I→ IX 

10 III IV I→ IX 
11 III IV I→ IX 

12 III IV I→ IX 

13 III IV IX 
14 III IV IX 

15 III IV IX 

16 III IV IX 
17 III IV→ V IX 

18 III IV→ V IX 

19 III IV→ V IX 
20 III→ I V IX 

21 III→ I V IX 

22 III→ I V IX→VII 
23 I V IX→VII 

24 I V IX→VII 
25 I V VII 

26 I V VII 

27 I V VII 
28 I V→ IV VII 

29 I V→ IV VII 

30 I V→ IV VII 
31->END I IV VII 

Table V listed the detailed mobile DER dispatch and alloca-
tion scheme. Mobile diesel generator has the least frequent re-
allocation. After the diesel fuel is exhausted, mobile diesel gen-
erator can no longer provide generation. Mobile BESS, on the 
other hand, has the most frequent dispatch. This is because mo-
bile BESS can travel to feeder segments with abundant power 
supply to charge its battery, and then travel to an outage area to 
discharge the battery to provide power supply. Mobile BESS 
has the highest flexibility, thus it will be dispatched most fre-
quently. Mobile transformer will be dispatched to nodes with 
sufficient generation capacity but without proper connection to 
the power grid due to faults. The mobile transformer will be 
reallocated according to the prediction of outage events and the 
remaining generation capability at the node to which it is con-
nected.  

V. CONCLUSIONS 

In this paper, we developed a preventative scheduling 
model for distribution systems to improve resilience perfor-
mance against upcoming extreme events. Mobile DERs are 
considered as responsive resources in this scheduling model so 
that they are dispatched and allocated to locations where their 
capabilities are needed the most. A machine learning-based 
outage prediction module is integrated to estimate the possibil-
ity of substation and recloser outages based on historical data 
and extreme weather forecasts. A real feeder is used for simu-
lation validation, simulation results confirmed that the proac-
tive deployment of mobile DERs and consideration of outage 
predictions both help distribution systems to improve resili-
ence performance. 
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