

TANDEM SOLAR CELLS PART₁

AUTHOR: PART 1: RYAN FRANCE, NREL

Milan, 25 Sept. 2022

Outline TANDEM SOLAR CELLS

Part 1

- Multijunction basics
	- Why multijunction? Efficiency!
	- Operation and characterization
- III-V Multijunctions
	- Materials, components, integration
	- MJ pathways, applications and current topics

Part 2

- Introduction to perovskites
- 4-terminal perovskite/silicon tandems
- 2-terminal perovskite/silicon tandems
- Current challenges and outlook
- Other tandems ?

Sunday 25th September 2022 | Milan, Italy Museo Nazionale Scienza e Tecnologia Leonardo da Vinci

Dr. Ryan France NREL

Prof. Christophe Ballif EPFL

Introduction PHOTOVOLTAIC TECHNOLOGIES

1st generation 22-25 % efficiency \rightarrow efficient, low cost

Sunday 25th September 2022 | Milan, Italy Museo Nazionale Scienza e Tecnologia Leonardo da Vinci

Thin film

2nd generation ~20-22 % efficiency \rightarrow cheap, large areas

Silicon PV **III-Vs** and tandems

3rd generation 30-47 % efficiency \rightarrow highest efficiency and cost

example of market can we also make these high state of the can we also make these high efficiency cells affordable?

Introduction HIGH EFFICIENCY APPLICATIONS

Photovoltaic

Sunday 25th September 2022 | Milan, Italy Museo Nazionale Scienza e Tecnologia Leonardo da Vinci

ACADEMY

Energy storage applications

Other future applications

Introduction PHOTOVOLTAIC TECHNOLOGIES

Best Research-Cell Efficiencies

Sunday 25th September 2022 | Milan, Italy Museo Nazionale Scienza e Tecnologia Leonardo da Vinci **ACADEMY**

Tandems are no longer just made of III-Vs

MINREL

Multijunction background SOLAR CELL FUNDAMENTALS

- Current is proportional to the number of absorbed photons
- Voltage varies approx. linearly with the bandgap: $V_{oc} \approx E_g/q 0.4$
- Power = Current x Voltage

Multijunction background BROADBAND SOLAR SPECTRUM

The sun is not a laser

Multijunction background BROADBAND SOLAR SPECTRUM

Museo Nazionale Scienza e Tecnologia Leonardo da Vinci

ACADEMY

3000

3500

4000

Source: http://rredc.nrel.gov/solar/spectra/am1.5/ Water absorption

Multijunction background SINGLE JUNCTION LOSSES

ACADEMY

Conventional, single-junction cells have two unavoidable losses which put a fundamental ceiling on cell efficiency:

- Absorption losses
- Thermalization losses

Multijunction background FUNDAMENTAL LOSSES

Multijunction background MULTIJUNCTION ADVANTAGES

Global spectrum (photons/m2/nm/s)

Single junction, optimal bandgap

Reduced thermalization losses

Increased voltage from additional cells

Multijunction background DIVIDING THE SOLAR SPECTRUM

- Requires current matching
- Sensitive to spectral variations

3-Terminal

 E_{g1}

 E_{g2}

 E_{g3}

Multijunction operation SERIES-CONNECTED TANDEMS

Multijunction operation SERIES-CONNECTED TANDEMS

Museo Nazionale Scienza e Tecnologia Leonardo da Vinci **ACADEMY**

Multijunction design CURRENT MATCHING

Pretend you've designed a 2-terminal multijunction device and the subcell currents are very mismatched. What tactics can be used to make the subcell currents equivalent?

ACADEMY

1.9 eV

1.4 eV

Multijunction device characterization QUANTUM EFFICIENCY

Quantum Efficiency = # of electrons collected / # of incident photons

- Scan one wavelength at a time and compare current response to calibrated device
- Multijunction devices: use monochromated AC light for QE measurement
	- Use DC bias light to force current to be limited by one particular subcell

Multijunction device characterization J-V FOR DEVICE EFFICIENCY

- scan voltage and collect current to determine power
- Multijunction measurement requires adjustable solar simulators!

External Quantum Efficiency

Break Q&A

What happens to the fill factor of the tandem as the subcell currents become matched?

What happens to the fill factor of the tandem if the JV solar simulator is not correctly balanced between junctions?

Olson, Friedman, Kurtz, handbook of photovoltaic science and engineering, 2003

Break Q&A

What happens when you shine a laser on a multijunction solar cell?

• These are the JV curves of record efficiency multijunction devices with a different number of junctions. Can you determine the number of junctions in each?

30 $\mathbf N$ 25 20 15 10 5 Ω -5 5 $\mathcal P$ 3 6 \mathcal{O} Voltage (V)

- Wide variety of materials and bandgaps
- P- and N- type dopants available

III-V Introduction EPITAXY

The deposition of an overlayer on a crystalline substrate, where the overlayer is in registry with the substrate

Metalorganic vapor phase epitaxy (MOVPE / MOCVD)

- Expensive organometallic and hydride sources
- \sim 10-60 μ m/hr
- Industry standard

Molecular beam epitaxy (MBE)

- Elemental sources
- \sim 1 µm/hr
- Ultrahigh vacuum

Hydride vapor phase epitaxy (HVPE)

- Metallic and hydride sources
- >500 µm/hr for some materials

III-V components SERIES CONNECTED 2-JUNCTION DEVICE

Museo Nazionale Scienza e Tecnologia Leonardo da Vinci

ACADEMY

Au back contact

2.8 **III-V binary** Optimal **AIP ZnSe III-V ternary** $\mathbf O$ 2.4 3-junction **AIAs** CdS \mathbf{O} bandgaps GaP **ZnTe** Bandgap (eV) **II-VI** 2.0 BO **IV** Gainp **J1** $\begin{matrix} 0 \\ CdSe \end{matrix}$ 1.6 **J2 AISb GaAs** 1.2 **InP** GainAs **J3** Si 0.8 O **GaSb** Ge 0.4 **DInAs** 6.20 25 5.4 5.6 5.8 6.0 **Global Lattice Constant (Å)** spectrum

 $\overline{\mathbf{S}}$ $\overline{\mathbf{S}}$ $\overline{\mathbf{S}}$ $\overline{\mathbf{S}}$ **Can you foresee a challenge integrating 3 optimal III-V materials together?**

III-V Introduction WIDE BANDGAP RANGE

ACADEMY

Material integration challenges III-V CRYSTAL STRUCTURE

Zincblende crystal structure Unit cell contains 4 Ga and 4 As atoms

Lattice-mismatched InGaAs on GaAs

Lattice constants : $a_2 > a_1$

Excellent crystalline material quality when all materials have the same lattice constant

Material integration challenges LATTICE-MISMATCHED MATERIALS

Threading dislocation density (TDD) $< 10⁶$ cm-2 needed for good solar cell performance

surfaktor Sunday 25th September 2022 Lattice mismatched layers can only be included when the TDD is low

Theoretical : C. Andre, PhD Thesis, Ohio State University (2004). Experimental: T. Roesener, PhD Thesis, Universität Konstanz, Germany (2013

High efficiency devices III-V MULTIJUNCTION PATHWAYS *Lattice-matched approaches*

 A $(A$ D H Standard Ge-based Quaternary GaInNAs Wafer bonded *Lattice-mismatched approaches* Upright Metamorphic Inverted Metamorphic

- Lattice-matched, high-performance
- High efficiency despite not having optimal bandgaps
- Ge is indirect, has low bandgap

 $A(\lambda A)$

Lattice-matched approaches

Standard Ge-based

Quaternary GaInNAs Wafer bonded

Lattice-mismatched approaches

Upright Metamorphic Inverted Metamorphic

- Lattice-matched, more optimal bandgap combination
- GaInNAs tends to have low diffusion length and high non-radiative recombination

Lattice-matched approaches Standard Ge-based Quaternary GaInNAs M Wafer bonded *Lattice-mismatched approaches* Upright Metamorphic Inverted Metamorphic

- Optimal bandgap combination
- All lattice-matched, high-quality materials
- Requires two growths and bonding

Image credit: 50-percent.de

- *Lattice-matched approaches* Standard Ge-based Quaternary GaInNAs Wafer bonded *Lattice-mismatched approaches* **Upright Metamorphic** Inverted Metamorphic
	- Current-balanced
	- Low mismatch buffer \sim 1.2%
	- High efficiency 3J design

 $A(\lambda)$

Museo Nazionale Scienza e Tecnologia Leonardo da Vinci **ACADEMY**

Lattice-matched approaches

Standard Ge-based Quaternary GaInNAs Wafer bonded

Lattice-mismatched approaches

Upright Metamorphic

- \triangle Inverted Metamorphic
	- Top cell grown first, substrate removed
	- Near ideal bandgap combination
	- Flexible design, up to 6 junctions

Materials Research METAMORPHIC MATERIAL

- Intentionally introduce dislocations to alter in-plane lattice constant
- Need to minimize threading dislocation density for performance
- *Maximize dislocation glide*

Materials research MATERIAL CHARACTERIZATIONS

Material nonuniformities

R. France et al., J. Photovolt., **4**, 193 (2014) S. B. Samavedam et al, J. Appl. Phys. **81**, 3108 (1997). N. Quitoriano et al.,*,* J. Appl. Phys. **102**, 033411 (2007) R. France et al., MRS Bulletin, **41**, 202 (2016)

Electron channeling contrast imaging Misfit dislocation

Atomic force microscopy Surface analysis

Metamorphic devices METAMORPHIC GAINAS CELL PERFORMANCE

Bandgap (eV): 1.2, 1.1, 1.0, 0.9, 0.8, 0.74, 0.70

Graded buffers can be used for lattice-mismatched GaInAs subcells with collection spanning large portion of solar spectrum

Metamorphic devices 6-JUNCTION INVERTED METAMOPRHIC

ACADEMY

- 3 subcells lattice-matched to GaAs
- 3 independently mismatched GaInAs subcells

Metamorphic devices HIGH EFFICIENCY RESULTS

2019: 6-junction records: 39.2% at 1-sun, 47.1% at 143 suns \rightarrow 2022: 39.5%, 1-sun, 3-junction IMM with quantum wells \rightarrow 2022: 47.6%, 665 suns, 4-junction wafer bonded

 10

Suns

100

1000

ACADEMY

III-V application requirements CONCENTRATORS, HIGH CURRENT APPLICATIONS

GaInP BSF layer

ACADEMY

III-V application requirements SPACE PV

- Radiation hardness
- Thermal cycling
- Lightweight

https://www.nasa.gov/sites/default/files/images/725156main_rbsp-belts-orig_full.jpg Image credit: NASA

Sunday 25th September 2022 | Milan, Italy Museo Nazionale Scienza e Tecnologia Leonardo da Vinci

- Design for end-of-life efficiency
	- diffusion length, voltage
- Radiation shielding

S.R. Messenger et al. Prog. Photovolt., 9, 103 (2001).

Current topics LOW COST III-VS

High efficiency architectures

- Absorb as many photons as possible
- Minimize voltage losses
- Spectral insensitivity?

Low-cost growth and fabrication

- Inexpensive source material
- High throughput
- Good source utilization
- Low-cost metallization & processing

Low-cost substrates

ACADEMY

- Remove and reuse the substrate
- Grow on something very inexpensive

Sunday 25th September 2022 | Milan, Italy Museo Nazionale Scienza e Tecnologia Leonardo da Vinci Spalling

Hydride Vapor Phase Epitaxy

Device Material

0.5 wavelength (μm) Sunday 25th September 2022 | Milan, Italy

Current topics NEW APPLICATIONS

5

 $|3|$

 $\mathsf{2}$

11.5G Spectrum
(10²⁰ photons/m²/nm/s)

AM1

- Other uses of high quality III-Vs with tunable bandgaps
	- Hydrogen Production
	- Laser power converters (LPC)

AM1.5G

 10

• Thermophotovoltaics (TPV)

Current topics LASER POWER CONVERSION

LPCs used for power transmission to difficult to reach areas

- Multijunction reduces I, increases V
- Eg can be tuned to laser wavelength

Galvanic isolation, other difficult environments

Sunday 25th September 2022 | Milan, Italy Museo Nazionale Scienza e Tecnologia Leonardo da Vinci S. Fafard et al., J. Appl. Phys., 160901 (2021)

Contract Contract

> 70% efficiency demonstrated!

S. Farad et al., Photonics, 9, 59 (2022). H. Helmers et al., phys. Stat. sol., 15, 2100113 (2021).

Current topics THERMOPHOTOVOLTAICS

Article

Thermophotovoltaic efficiency of 40%

Alina LaPotin¹, Kevin L. Schulte², Myles A. Steiner², Kyle Buznitsky¹, Colin C. Kelsall¹, Daniel J. Friedman², Eric J. Tervo², Ryan M. France², Michelle R. Young², Andrew Rohskopf¹, Shomik Verma¹, Evelyn N. Wang¹ & Asegun Henry^{1⊠}

Metamorphic 2-junction cells

Break Q&A

• Combining 1.7 eV III-V cell with a 1.1 eV Si cell would target the optimal 2J bandgap combination. What materials integration challenges exist?

• Consider a reflective rear contact. How can the reflector benefit a photovoltaic device? What about a thermophotovoltaic device?

Mirror and Back Contact

Handle

ACADEM

Thank you!

NREL/PR-5900-83985

Sunday 25th September 2022 | Milan, Italy Museo Nazionale Scienza e Tecnologia Leonardo da Vinci

Ryan France Ryan.France@nrel.gov

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.