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What is Resilience?

Resilience is a property of an energy system that reflects its 
ability to adapt to changing operational conditions and 

recover rapidly from disruptions
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What is Resilience?

Resilience is a property of an energy system that reflects its 
ability to adapt to changing operational conditions and 

recover rapidly from disruptions

As opposed to reliability, resilience mostly concerns with low-
probability high-impact events
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Scientific Challenges

What mathematical frameworks can rigorously assess and 
ensure resilient operation of complex energy systems?

How to assess and ensure system resilience in conditions of 
uncertainties in data and models and with human-in-the-loop?

How to leverage highly distributed system structure for resilience?

What is the formal definition of energy system resilience?
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The main scientific goal is to develop analytical 
foundations for adaptive control algorithms that:

• utilize data efficiently
• leverage the highly-distributed network 

structure
• tackle highly uncertain system dynamics

in order to steer energy systems throughout 
disruption events.

• Need inputs from:
• Social science experts
• Cyber security experts

• Need to advance foundational science in:
• Adaptive control theory
• Machine learning/artificial intelligence
• Graph/network theory
• Solvability theory of uncertain differential 

equations and projected dynamical systems

Social 
Science



Resilience 
Science

The main scientific goal is to develop analytical 
foundations for adaptive control algorithms that:

• utilize data efficiently
• leverage the highly-distributed network 

structure
• tackle highly-uncertainty system dynamics

in order to represent a complex energy system and 
adaptively steer it throughout a disruption event.

• Need inputs from:
• Social science experts
• Cyber security experts

• Need to advance foundational science in:
• Adaptive control theory
• Machine learning/artificial intelligence
• Graph/network theory
• Solvability theory of uncertain differential 

equations and projected dynamical systems

ML/AI

Adaptive
Control

Uncertain
Dynamical 

Systems

Graph/Network
Theory

Cyber 
Security
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The main outcome:
Modeling and algorithmic 
framework for real-time 

resilience of energy systems
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Goals

Identify contingency and steer 
the system from an established 
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Goals Develop multi-dimensional 
representation of complex 
network resilience metrics

Identify contingency and steer 
the system from an established 

disrupted condition to acceptable 
operation

Steer the system from a nascent 
disruption to acceptable 

operation 
= ``riding through contingencies’’
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Focus: Real-Time 
Resilience

Develop multi-dimensional 
representation of complex 
network resilience metrics Identify contingency and steer 

the system from an established 
disrupted condition to acceptable 

operation

Steer the system from a nascent 
disruption to acceptable 

operation 
= ``riding through contingencies’’

Real-Time Resilience

Planning for Resilience

• How to plan a more resilient 
energy system?

• Which investments should be 
made?
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Outcomes

• Establishing energy systems real-time resilience science 
field

• Scalable, adaptive algorithms to autonomously manage 
system response to a nascent disruption, minimizing net 
impact, and tying into the previous methodology to optimize 
the degradation/ recovery sequence.

• Apply to steer power systems through contingencies
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Summary of FY22 Accomplishments

• Co-simulation of power grid and human network
• Application of emergency real-time control on Texas hurricane 

scenario
• Development of control algorithms accounting for human 

behavior
• Development of optimal shutoff methods for equitable wildfire 

mitigation
• International AES Workshop, fifth in the series of AES workshops 

(held on July 13-15, in person)
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Co-Simulation of Grid and Human Behavior



Extreme event happens and:

1. Recover quickly to normal operations (serve all loads within operational bounds)
2. Robust operation: ability to “limp” along out of voltage bounds but eventually get back to normal operation
3. Partial recovery: prioritize critical loads

How do we do this: 
• Build up a simulation infrastructure
• Introduce extreme events
• Demonstrate outcomes with and 
      without operational resilient controls



Why do we care about human behavior?
• Distribution systems have increasing amounts of generation 

and storage
• Changes in our controls are required to handle device-owner 

decisions
• In resilience scenarios, behavior is particularly non-standard

What about the humans?

If human behavior is so illogical and 
unpredictable, how are we supposed to model it? 



ABM stochastically models each agent separately to explore emergent behavior

Agent-Based Modeling

Baseline Human Behavior Event-Based Human BehaviorNo Human Behavior



Human Behavior Modeling Flowchart
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Complex Network Problem

Power network
(roughly static)

Communication 
Network

(can be dynamic especially 
when under attack)

Social network
Highly dynamic
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Electrical network Co-simulated with Behavior network

Electrical network

Social network

• Co-simulate impact of human 
behavior on electrical grid. 

• Human behavior modeling in MESA 
framework (agent-based modeling 
framework in Python).  

• Electrical grid with controllable DERs 
modeling in Simulation/Emulation of 
Advanced Energy Systems (SEAS) 
framework. HELICS is the co-
simulation engine. 

• Synthetic electrical grid from the 
SMART-DS project with 251 houses =>
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Modeling information spread over time

• MESA framework is used to model 
information spread. 

• Communication links between 
houses are modeled using a network. 

• Spread of information is modeled 
within the social network. 

• Houses/nodes on social network are 
colored based on when they become 
informed of an event.

Blue

Red
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Dataflow diagram for grid-controller and behavior

• Real-time Optimal Power 
Flow (RTOPF) controller from 
the ARPA-E NODES / AES

• Virtual Power Plant (VPP) 
service using distributed 
energy resources (DERs)  (PV 
and EVSE)

• VPP control is overridden by 
human behavior 
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Co-simulation status 
Two use-cases: 
• 50% of the houses have 3.3 kw level-2 EV charger and 

Rooftop PV of 3kW.
• 100% of the houses have 3.3 kw level-2 EV charger and 

Rooftop PV of 3kW.
In preparation: Journal Article- “Incorporating Human 
Behavior and Distributed Control for Grid Resilience” 
Caitlyn Clark, Deepthi Vaidhynathan, Jennifer King, 
Patricia Romero-Lankao and Andrey Bernstein EV consumption

PV injection

No behavior With behavior
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Emergency Control during Hurricane
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Fragility curves: main idea via wind plant example 

100 2MW turbines;
toss a biased coin 100 
times

Use WTK windspeed data 
to define biased coin

obtain 10-min wind speed  
maximum 

Fragility curve: Fisk CDF

Coin toss:
sample from U(0,1)

damaged

operational

𝐹𝐹 𝑢𝑢;𝛼𝛼,𝛽𝛽 =
𝑢𝑢
𝛼𝛼

𝛽𝛽

1 + 𝑢𝑢
𝛼𝛼

𝛽𝛽

Wind plant

Using Wind Toolkit wind speed data and fragility curves to damage structures
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Hurricane Dolly’s caused damages

Path of the Hurricane Dolly (July 20 -27) and 
synthetic TAMU 2000-bus transmission 
grid.  Size of the blue circles corresponds to 
hurricane’s radii and their color intensity 
correspond to maximum wind speed.

Landing and overland period: July 23, 
00:00 – July 25, 00:00. Most damage 
occurs during 8-hour period: July 23, 
18:00 – July 24, 02:00 
 

Substations: a realization when max number 
of substations (red dots) were damaged

Transmission lines: a realization when max 
number of branches were damaged. Damaged 
lines (red lines) and damaged poles (black dots)

Wind turbines: 3 wind farms (heat map) 
composed of individual wind sites. Most wind sites 
had at least one damaged turbine (black dots). 

Hurricane Dolly: WIND Toolkit wind field at 100m above ground
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Voltage control use-case scenario 

• Creating scenarios of hurricane damage leading to voltage drops

• Low-voltage scenarios are then used for application of Ripple-
Type Control (developed last year)

Original PF solution on 
TAMU2k (pandapower, using 
Newton-Raphson with 
Iwamoto multiplier)

Lines 519, 542, 702 (red) connect to node 4089 with 9 
coal generators to the rest of the grid.

Scenario PF solution for Ripple-Type control 
algorithm:
breaking line 519 causes 22 bus voltages to 
dip below .9
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Specific scenario with 13 buses under required minimum: 

Zone 19 (red): 71 nodes, 84 edges

13 nodes with voltage 
violations below 0.94

Initial ACPF solution with under-
voltage buses concentrated in the 
middle of the zone 19

• We use this specific contingency 
scenario to test ripple-type algorithm

• Communication network is assumed 
over zone 19 subgraph.
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Ripple-type control Paradigm

• First, agents try to fix local voltages autonomously
• Agents ask assistance when they depleted their 

control resources
• The process continues until all the voltages are 

within desired limits

Algorithm: agent n performs
1- Actuation
    Compute increment Δn (Δn≠0 if vn < vmin or if n is helping another agent)
    Update the control input un(t) = un(t-1) + Δn

2- Request of help
     If un(t) = umax and vn < vmin

     If un(t) = umax and n is helping another agent

3- Reset  request of help
     If vn(t-1) < vmin and vn(t) ≥ vmin
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Communication network details
• Communication network follows 84 physical connections in zone 19 of 

ACTIVSg2000 test grid (does not have to)
• 48 PQ buses (green): load or static generators, control Q 
• 14 PV buses (red): active generators, control V
• 8 PQ-zero buses (green): neither load not generator buses, no control

Initial network topology
• BLUE: PQ buses
• RED: PV buses
• GREEN: neither buses

• Initial solution on the 
damaged network (displayed 
over zone 19 only) results in 
13 buses being under 
minimum required voltage of 
0.94 pu
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Ripple-type control results

• STARRED: initially under-voltage
• BLUE: helping PQ buses
• RED: helping PV buses
• GREEN: not helping buses

30 PQ buses that participate in 
ripple-type control

6 PV buses that participate in ripple-
type control

Restored voltage at the 13 buses that were 
initially under required minimum voltage
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Ripple hop distance increases as available help decreases 
PQ bus effort = 10 Mvar PQ bus effort = 3 MvarPQ bus effort = 4 Mvar PQ bus effort = 1.5 Mvar

• BLUE: helping PQ buses
• RED: helping PV buses
• GREEN: not helping buses
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Control fraction step: convergence speed vs. overshooting 

Control fraction step = 1%
PQ: 0.015 Mvar
PV: 0.003 pu

Control fraction step = 2%
PQ: 0.03 Mvar
PV: 0.006 pu

All buses in zone 19

All buses in zone 19

Only under-voltage buses in zone 
19

Only under-voltage buses in zone 
19
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Next Steps

• Consider multi-step problem where the hurricane progressively trip lines 
as it moves

• Consider other extreme scenario application, such as cold/hot weather
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Control Algorithms Accounting for Human 
Behavior
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Model update
• With increased observability and controllability in distribution 

systems, more customer-level edge devices are incorporated. Human 
behavior/response plays an important role in these problems.

• Extreme events lead to an increased number of unplanned scenarios 
(e.g., large-scale restoration) that require human intervention.

• Advancing energy justice requires the modeling of human dimension 
in various operation and planning problems to ensure equity in 
decision making.

We explore one specific example: Distribution system voltage control with 
human in the loop. 

Human-in-the-Loop Optimization 
in Power Systems

Incorporating human factor in power system modeling 
and decision making is more important than ever.  

User

SystemOptim. 
Process

ControlResult

Model 
update

Optim. 
Process System

Control
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Formulation: Chance-Constrained Optimization 

• Objective: Minimize customer interruption while ensuring constraint satisfaction.
• Modeling: Since customer participation is voluntary, we can only guarantee 

constraint satisfaction with high probability by chance-constrained optimization.

Power demand reduction from customer

Actual power demand 
(original consumption - reduction) 

Linearized power flow equations

Bound on the probability of 
voltage upper bound violation
Bound on the probability of 
voltage lower bound violation

Customer participation follows Bernoulli distribution
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Solution Method: Convex Safe Approximation

• Goal: replace the complicating chance constraint with a safe approximation.

Safe 
Approx.

Original 
chance 

constraint

Deterministic
convex (SOC)

constraint

Safe Approximation (SOCP)
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Solution Method: Mixed-Integer Reformulation 
and Iterative Algorithm

Original formulation MILP reformulation (scenario enumeration)

• Problem: large problem size (exp. in # 
customers). Efficient algorithm needed!

• Solution: iterative algorithm based on 
Augmented Lagrangian Decomposition 
(ALD). 

 Guarantee on convergence  
 No guarantee on optimality 

ALD Algorithm:
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Numerical Simulation

IEEE 13-bus test system with 1 substation bus and 12 customers 
(with 90% participation probability). 

Optimal load curtailment strategies by different approaches. Original power 
consumption of each customer shown by blue dots.
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Conclusion & Future Research

Conclusion:
• A chance constrained optimization formulation is proposed to model stochasticity from human 

behaviors in distribution system voltage control problem.

• An exact formulation based on scenario enumeration is proposed, which works well for small size 
system.

• Two approximate solution approaches based on safe convex approximation and Augmented 
Lagrangian decomposition are presented, strike good balances between optimality and time 
complexity.

Future research:
• Improve the performance of the ALD algorithm through specialized techniques such as warm start 

and network partition.

• Modeling and control of human behavior as a function of incentives. 
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Equitable Wildfires Mitigation
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Power Systems-Induced Wildfires

Credit: Priyanka Boghani (PBS)

• Camp Fire was the deadliest wildfire in the history of 
California

• A nearly 100-year-old electrical transmission 
line owned and operated by Pacific Gas and Electric was 
identified as the cause of the Camp Fire

• $8.4 billion in insured losses were reported to the 
California Department of Insurance as of January 2019

Q: How to plan transmission networks operations to 
minimize wildfires risks?

Many wildfire events were ignited by electrical components failures.  
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Wildfire Ignition Sources

Syphard, et al. (2015). Location, timing and extent of wildfire vary by 
cause of ignition. International Journal of Wildland Fire.

Pr
op

or
tio

n

• Wildfires ignited by power lines tend to be larger

• Wildfires ignited by power lines in San Diego County 
account for 5% of all ignitions, but 25% of the total 
acres burned

• Wind can lead to both higher fault probability and 
fire spread
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Wildfires Risk Modelling

Wildfires Risk = ×Probability of 
Ignition

Impact of 
Wildfire 

Power Outage Risk = ×Probability of 
Outage

Impact of 
Outage 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = 𝜶𝜶 𝑹𝑹Fire − 𝟏𝟏 − 𝜶𝜶  𝑫𝑫total

• Infrastructure updates and vegetation management represent long-term solutions 
and are NOT our focus

• This work focuses on operational decisions, e.g., line switching and load shedding, to 
manage wildfire risks
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Multi-Period Optimal Power 
Shutoff Scheduling
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Test Case: IEEE RTS-GMLC 

RTS GMLC test system consists of 73 buses, 120 transmission lines, 
and 96 active generators. Red dots depict energy storage units.

Power demand throughout July 4, 2020

Temperature throughout July 4, 2020
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Numerical Example

• Optimized the operations over one day with 
different settings of 𝛼𝛼.

• Added six energy storage unites (2 units in 
each area).

Demand vs Risk of Wildfire for a range of 𝛼𝛼 values

Map of the operational 
system when α = 0.3 at 
12:00 PM.
Blue squares represent 
shutoff generators.

A. Astudillo, B. Cui and A. Zamzam, “Managing Power Systems-Induced Wildfire Risks Using Optimal Scheduled 
Shutoffs,” PESGM, 2022.
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Social Equity Considerations

Socially vulnerable communities are disproportionately impacted 
by power shutoffs1 and wildfires.

Challenges:
• Ability to purchase emergency items (incl. back-up generators)
• Ability to evacuate
• Health concerns (e.g. electrically powered medical equipment, 

heat-related illnesses)
• Food spoilage
• Communication barriers

1 Ham, Youngjib and Lee, Seulbi “Behavior Analysis of Socially Vulnerable Households Responding to Planned Power 
Shutoffs.” University of Colorado-Boulder, Natural Hazards Center. 2022.

Image: time.com/5732376/california-power-wildfire
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Representing Social Equity 
in Our Modeling

Topology and switching constraints
Power balance constraints
Branch, bus, load, generation, constraints (incl. 
binary on/off variables)
Inverter, storage, and transformer constraints

social vulnerability 
to wildfires 

social vulnerability 
to power outagess.t.

• Social vulnerability – extent to 
which a community can absorb and 
recover from the impacts of a 
natural or human-caused hazard

• Influenced by intersecting factors 
such as income, medical conditions, 
linguistic isolation, and more

• In this model, the vulnerability 
parameters weigh the importance of 
serving particular loads and de-
energizing particular components
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Vulnerability to Power 
Outages

Numerous social equity map tools are leveraged 
to determine community vulnerability level:

• CDC Social Vulnerability Index 

• US Census Community Resilience Estimates 

• US Council on Envt. Quality Climate and 
Economic Justice Screening Tool 

• US DOE Disadvantaged Community Reporter

• HHS emPOWER – Medically vulnerable 
communities

CDC Social Vulnerability Index map
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Conclusion & Future Research

• We modeled how to mitigate wildfire risk from an existing power network 
while serving a significant amount of the power demand.

• Significant reduction in wildfire risks was achieved with relatively small power 
shutoffs.

• We presented an energy justice-aware modeling approach to manage climate 
change-induced extreme weather events in the operation of future grids.

Future research:
• Model the optimal shut-off problem for joint transmission-distribution operation.

• Security constrained optimal shut-off formulation considering N-1 contingencies.
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Other Outcomes

Presentations/Workshops:
• Organized the 5th  Autonomous Energy Systems international 

workshop at NREL, July 13-15 2022 
• Presented work at American Control Conference, PES GM, 

Conference on Decision and Control.
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