
Bernard Knueven
2022 INFORMS Annual Meeting
16 October 2022

Transmission Constraint
Screening for Production
Cost Modeling at Scale

1
2
3
4

5

6
7

NREL | 2

Contents

Introduction to Production Cost Modeling

DC-approx. transmission flow: B-theta vs PTDF

Lazy-PTDF Algorithm

Revisiting the PTDF Calculation

Sparsity-Preserving Algorithm

Application to Production Cost Modeling

Conclusions

NREL | 3

• Simulate the large-scale electricity system
(generation, load, transmission line flows) in
5-minute to 1-hour intervals for days, weeks,
or a year

• Typically involves some sequence of Unit
Commitment and Economic Dispatch
problems

Production Cost Modeling

• Outputs: dispatch, transmission line flows, locational marginal prices (LMPs)
• Software:

– Open Source: PowerSimulations.jl, Prescient
– Propriety: PLEXOS, GridView, PROMOD

• Requires a robust unit commitment and economic dispatch engine

NREL | 4

• EGRET – Electrical Grid Research and Engineering Tools
• Python-base package for electrical grid optimization built on the Pyomo

algebraic modeling library
• Major Features:

– Expression and solution of unit commitment problems
– Expression and solution of economic dispatch and optimal power flow

problems (e.g., DCOPF, ACOPF)
– Library of formulations, approximations, and relaxations
– Generic handling of data across model formulations and types

• EGRET serves as the unit commitment and economic dispatch engine for the
Prescient Production Cost Modeling Engine

• EGRET is available under a BSD license at https://github.com/grid-parity-
exchange/Egret

EGRET Overview

https://github.com/grid-parity-exchange/Egret

NREL | 5

• Transmission Constraints serve to limit the flow of electricity through
a transmission line or transformer
– More flow -> more heat -> line expansion and sagging
– Transformers have their own power ratings for reliable operation

• In typical unit commitment and economic dispatch problems the line
flow calculation used is a linear approximation of the AC power flow
equations:

Transmission Constraints

�
𝑙𝑙∈𝐹𝐹+(𝑖𝑖)

𝑓𝑓𝑙𝑙 − �
𝑙𝑙∈𝐹𝐹− 𝑖𝑖

𝑓𝑓𝑙𝑙 = 𝑛𝑛𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

𝑓𝑓𝑙𝑙 = 𝐵𝐵𝑙𝑙 𝜃𝜃𝑙𝑙(𝑖𝑖) − 𝜃𝜃𝑙𝑙(𝑗𝑗) ∀𝑙𝑙 ∈ 𝐿𝐿
−𝐹𝐹𝑙𝑙 ≤ 𝑓𝑓𝑙𝑙 ≤ 𝐹𝐹𝑙𝑙 ∀𝑙𝑙 ∈ 𝐿𝐿
𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 0

𝑛𝑛𝑖𝑖 = �
𝑔𝑔∈𝐺𝐺(𝑖𝑖)

𝑝𝑝𝑔𝑔 − 𝐿𝐿𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

Variables: 2 𝐵𝐵 + 𝐿𝐿 + |𝐺𝐺|
Equalities: 2 𝐵𝐵 + 𝐿𝐿 + 1

Decision variables: 𝑝𝑝𝑔𝑔

NREL | 6

Transmission Constraints

�
𝑙𝑙∈𝐹𝐹+(𝑖𝑖)

𝑓𝑓𝑙𝑙 − �
𝑙𝑙∈𝐹𝐹− 𝑖𝑖

𝑓𝑓𝑙𝑙 = 𝑛𝑛𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

𝑓𝑓𝑙𝑙 = 𝐵𝐵𝑙𝑙 𝜃𝜃𝑙𝑙(𝑖𝑖) − 𝜃𝜃𝑙𝑙(𝑗𝑗) ∀𝑙𝑙 ∈ 𝐿𝐿
−𝐹𝐹𝑙𝑙 ≤ 𝑓𝑓𝑙𝑙 ≤ 𝐹𝐹𝑙𝑙 ∀𝑙𝑙 ∈ 𝐿𝐿
𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 0

Rewrite in matrix notation:
– 𝑨𝑨 is the |𝐿𝐿| × (𝐵𝐵 − 1) incidence matrix

• 𝑎𝑎𝑙𝑙,𝑖𝑖 = 1 if line 𝑙𝑙 starts at bus 𝑖𝑖
• 𝑎𝑎𝑙𝑙,𝑖𝑖 = −1 if line 𝑙𝑙 ends at bus 𝑖𝑖
• Remove the column corresponding to 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 0

– 𝑩𝑩𝒅𝒅 is a |𝐿𝐿| × |𝐿𝐿| diagonal matrix with 𝐵𝐵𝑙𝑙 on the
diagonals

– 𝜽𝜽𝑩𝑩 is the vector of 𝜃𝜃𝑖𝑖 variables, 𝑖𝑖 ≠ 𝑟𝑟𝑟𝑟𝑟𝑟
– 𝒇𝒇𝑳𝑳 is the vector of 𝑓𝑓𝑙𝑙 variables
– 𝒏𝒏𝑩𝑩 is the vector of 𝑛𝑛𝑖𝑖 variables, 𝑖𝑖 ≠ 𝑟𝑟𝑟𝑟𝑟𝑟

𝒏𝒏𝑩𝑩 = 𝑨𝑨𝑻𝑻 ⋅ 𝒇𝒇𝑳𝑳
𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
𝒇𝒇𝑳𝑳 = 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
−𝑭𝑭𝑳𝑳 ≤ 𝒇𝒇𝑳𝑳 ≤ 𝑭𝑭𝑳𝑳

𝒏𝒏𝑩𝑩 = 𝑨𝑨𝑻𝑻 ⋅ 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
𝒇𝒇𝑳𝑳 = 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
−𝑭𝑭𝑳𝑳 ≤ 𝒇𝒇𝑳𝑳 ≤ 𝑭𝑭𝑳𝑳

NREL | 7

Calculating Flows from 𝒏𝒏𝑩𝑩
𝒏𝒏𝑩𝑩 = 𝑨𝑨𝑻𝑻 ⋅ 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
𝒇𝒇𝑳𝑳 = 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
−𝑭𝑭𝑳𝑳 ≤ 𝒇𝒇𝑳𝑳 ≤ 𝑭𝑭𝑳𝑳

Given �𝒏𝒏𝑩𝑩 with 𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0:

• Solve �𝒏𝒏𝑩𝑩 = (𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ 𝜽𝜽𝑩𝑩 -> �𝜽𝜽𝑩𝑩
• �𝒇𝒇𝑳𝑳 <- (𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ �𝜽𝜽𝑩𝑩

How to put in algebraic model?

• 𝜽𝜽𝑩𝑩 = 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨
−𝟏𝟏
⋅ 𝒏𝒏𝑩𝑩

• 𝒇𝒇𝑳𝑳 = 𝑩𝑩𝒅𝒅𝑨𝑨 ⋅ 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨
−𝟏𝟏
⋅ 𝒏𝒏𝑩𝑩

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩

𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
−𝑭𝑭𝑳𝑳 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 ⋅ 𝒏𝒏𝑩𝑩 ≤ 𝑭𝑭𝑳𝑳

With:

𝑛𝑛𝑖𝑖 = �
𝑔𝑔∈𝐺𝐺(𝑖𝑖)

𝑝𝑝𝑔𝑔 − 𝐿𝐿𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

Variables: 𝐵𝐵 + |𝐺𝐺|
Equalities: 𝐵𝐵 + 1 See Van den Bergh et al. (2014) for details

NREL | 8

Comparing Models

𝒏𝒏𝑩𝑩 = (𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ 𝜽𝜽𝑩𝑩
𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0

−𝑭𝑭𝑳𝑳 ≤ (𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ 𝜽𝜽𝑩𝑩≤ 𝑭𝑭𝑳𝑳

𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
−𝑭𝑭𝑳𝑳 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 ⋅ 𝒏𝒏𝑩𝑩 ≤ 𝑭𝑭𝑳𝑳

• Sparse if 𝑨𝑨 is sparse
• 2 𝐵𝐵 − 1 variables
• 𝐵𝐵 equalities
• 𝐿𝐿 range constraints

• No computation to implement
• Solver must solve 𝒏𝒏𝑩𝑩 =

(𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ 𝜽𝜽𝑩𝑩 to calculate and
enforce any line’s flow

• Dense even if 𝑨𝑨 is sparse
• 𝐵𝐵 variables
• 1 equality
• 𝐿𝐿 range constraints

• Need to calculate 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩

• Only need calculate rows of
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 for active lines

• Roald & Molzahn (2019) show only a
small subset (~1%) of these need to
be enforce for a given load profile

NREL | 9

Simple Algorithm for PTDF-model

PTDF-DCOPF

min ∑𝑔𝑔∈𝐺𝐺 𝑐𝑐𝑔𝑔(𝑝𝑝𝑔𝑔)
𝑃𝑃𝑔𝑔 ≤ 𝑝𝑝𝑔𝑔 ≤ 𝑃𝑃

𝑔𝑔
∀𝑔𝑔 ∈ 𝐺𝐺

𝑛𝑛𝑖𝑖 = �
𝑔𝑔∈𝐺𝐺(𝑖𝑖)

𝑝𝑝𝑔𝑔 − 𝐿𝐿𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
−𝐹𝐹𝑙𝑙 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒍𝒍×𝑩𝑩 ⋅ 𝒏𝒏𝑩𝑩 ≤ 𝐹𝐹𝑙𝑙 ∀𝑙𝑙 ∈ 𝐿𝐿𝐴𝐴

• Calculate 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩

• Initialize 𝐿𝐿𝐴𝐴 = ∅; 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
• While 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣:

• �𝒏𝒏𝑩𝑩 ← Solve PTDF-DCOPF with 𝐿𝐿𝐴𝐴
• Check for violations by calculating:

• �𝒇𝒇𝑳𝑳 ← 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 ⋅ �𝒏𝒏𝑩𝑩
• 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑎𝑎𝑎𝑎𝑎𝑎(�𝒇𝒇𝑳𝑳 > 𝑭𝑭𝑳𝑳, �𝒇𝒇𝑳𝑳 < −𝑭𝑭𝑳𝑳)
• Update 𝐿𝐿𝐴𝐴 by adding at least one

violated line

This is basically the algorithm implemented by EGRET
when the PTDF-DCOPF model was originally added in 2019

NREL | 10

Simple Lazy-PTDF Model vs. B-theta

0

20

40

60

80

100

120

13
54

18
88

19
51

20
00

23
12

23
83

27
36

27
37

27
42

27
46

27
46

28
48

28
53

28
68

28
69

30
12

30
22

31
20

33
75

39
70

40
20

46
01

46
19

46
61

48
37

49
17

64
68

64
70

64
95

65
15

83
87

92
41

95
91

10
00

0
10

48
0

13
65

9
19

40
2

24
46

4
30

00
0

Total Solution Time (Egret + Gurobi) in seconds

B-theta DCOPF PTDF DCOPF

284

pglib-opf v21.07
(Babaeinejadsarook
olaee, 2021)
instances >1000
buses

NREL | 11

Simple Algorithm for PTDF-model

PTDF-DCOPF

min ∑𝑔𝑔∈𝐺𝐺 𝑐𝑐𝑔𝑔(𝑝𝑝𝑔𝑔)
𝑃𝑃𝑔𝑔 ≤ 𝑝𝑝𝑔𝑔 ≤ 𝑃𝑃

𝑔𝑔
∀𝑔𝑔 ∈ 𝐺𝐺

𝑛𝑛𝑖𝑖 = �
𝑔𝑔∈𝐺𝐺(𝑖𝑖)

𝑝𝑝𝑔𝑔 − 𝐿𝐿𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
−𝐹𝐹𝑙𝑙 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒍𝒍×𝑩𝑩 ⋅ 𝒏𝒏𝑩𝑩 ≤ 𝐹𝐹𝑙𝑙 ∀𝑙𝑙 ∈ 𝐿𝐿𝐴𝐴

• Calculate 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩

• Initialize 𝐿𝐿𝐴𝐴 = ∅; 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
• While 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣:

• �𝒏𝒏𝑩𝑩 ← Solve PTDF-DCOPF with 𝐿𝐿𝐴𝐴
• Check for violations by calculating:

• �𝒇𝒇𝑳𝑳 ← 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 ⋅ �𝒏𝒏𝑩𝑩
• 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑎𝑎𝑎𝑎𝑎𝑎(�𝒇𝒇𝑳𝑳 > 𝑭𝑭𝑳𝑳, �𝒇𝒇𝑳𝑳 < −𝑭𝑭𝑳𝑳)
• Update 𝐿𝐿𝐴𝐴 by adding at least one

violated line

𝐵𝐵 × |𝐵𝐵| matrix inverse
𝐿𝐿 × 𝐵𝐵 with (𝐵𝐵 × 𝐵𝐵)

matrix-matrix multiplication

𝐿𝐿 × 𝐵𝐵 with 𝐵𝐵 matrix-
vector multiplication each loop

NREL | 12

PTDF Calculation is Expensive

0

20

40

60

80

100

120

13
54

18
88

19
51

20
00

23
12

23
83

27
36

27
37

27
42

27
46

27
46

28
48

28
53

28
68

28
69

30
12

30
22

31
20

33
75

39
70

40
20

46
01

46
19

46
61

48
37

49
17

64
68

64
70

64
95

65
15

83
87

92
41

95
91

10
00

0
10

48
0

13
65

9
19

40
2

24
46

4
30

00
0

PTDF Calculation Time in seconds

Becomes significant for
“large-scale” systems
(>10000 buses)

NREL | 13

Storing 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩

All networks in pglib-opf v21.07
(Babaeinejadsarookolaee, 2021):
• >1,000 buses (n=39)
• Number of branches increases

linearly with number of buses

y = 1.3381x + 77.823
R² = 0.9774

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5000 10000 15000 20000 25000 30000 35000

N
um

be
r o

f B
ra

nc
he

s

Number of Buses

30000 buses X 35233 branches
-> ~7.9GB!
-> Invert a 30k X 30k matrix!

24464 buses X 34693 branches
-> ~6.3GB!
-> Invert a 24k X 24k matrix!

NREL | 14

𝑨𝑨 is Sparse!

All networks in pglib-opf v21.07
(Babaeinejadsarookolaee, 2021):
• >1,000 buses (n=39), the

average degree is 2.3 – 3.2
• The number of buses (nodes)

does not seem to influence
the average degree

y = 9E-06x + 2.5938
R² = 0.0493

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0 5000 10000 15000 20000 25000 30000 35000

Av
er

ag
e

de
gr

ee
 (#

 o
f c

on
ne

ct
io

ns
 a

t e
ac

h
bu

s)

Number of Buses

This means (𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨) is also
(very) sparse – maintaining this
sparsity is critical for performance

NREL | 15

Revisiting the PTDF Calculation

𝒏𝒏𝑩𝑩 = 𝑨𝑨𝑻𝑻 ⋅ 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
𝒇𝒇𝑳𝑳 = 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
−𝑭𝑭𝑳𝑳 ≤ 𝒇𝒇𝑳𝑳 ≤ 𝑭𝑭𝑳𝑳

Given �𝒏𝒏𝑩𝑩 with 𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0:
• Solve �𝒏𝒏𝑩𝑩 = (𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ 𝜽𝜽𝑩𝑩 -> �𝜽𝜽𝑩𝑩
• �𝒇𝒇𝑳𝑳 <- (𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ �𝜽𝜽𝑩𝑩

Recall 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩:= 𝑩𝑩𝒅𝒅𝑨𝑨 ⋅ 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨
−𝟏𝟏

Or 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 ⋅ 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨 = 𝑩𝑩𝒅𝒅𝑨𝑨
𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0

−𝑭𝑭𝑳𝑳 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 ⋅ 𝒏𝒏𝑩𝑩 ≤ 𝑭𝑭𝑳𝑳
So, given a line 𝑙𝑙, we can calculate a single
PTDF row by solving 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨 on the left!

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑙𝑙×𝑩𝑩 ⋅ 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨 = 𝑩𝑩𝒅𝒅𝑨𝑨 𝑙𝑙

So, we can calculate the flows without
inverting (𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨)!

NREL | 16

Factorizing 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨

• The matrix 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨 is sparse,
symmetric, and (typically) positive
semidefinite.

• These facts suggest we should
pre-compute a Cholesky (𝐿𝐿𝐿𝐿𝑇𝑇)
or 𝐿𝐿𝐷𝐷𝐿𝐿𝑇𝑇 factorization of
𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨

• However, while scipy (Virtanen,
2020) has Cholesky and 𝐿𝐿𝐷𝐷𝐿𝐿𝑇𝑇
factorization routines, none are
sparsity-preserving!

• scipy does, however, have a sparsity-
preserving 𝐿𝐿𝑈𝑈-factorization routine
available, SuperLU (Li, 2005)

• SuperLU (and similar codes, e.g.,
HSL_ma57) have advanced pivoting
methods to ensure sparsity in the
original matrix is maintained in the
factors.

• Instead of pre-computing 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩,
Egret instead computes a single, sparse,
𝐿𝐿𝐿𝐿 factorization of 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨, utilizing
SuperLU’s solve method for both
computing 𝜽𝜽𝑩𝑩 and 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑙𝑙×𝑩𝑩 for need 𝑙𝑙

NREL | 17

Sparsity-Preserving Algorithm for
PTDF-model

PTDF-DCOPF

min ∑𝑔𝑔∈𝐺𝐺 𝑐𝑐𝑔𝑔(𝑝𝑝𝑔𝑔)
𝑃𝑃𝑔𝑔 ≤ 𝑝𝑝𝑔𝑔 ≤ 𝑃𝑃

𝑔𝑔
∀𝑔𝑔 ∈ 𝐺𝐺

𝑛𝑛𝑖𝑖 = �
𝑔𝑔∈𝐺𝐺(𝑖𝑖)

𝑝𝑝𝑔𝑔 − 𝐿𝐿𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
−𝐹𝐹𝑙𝑙 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑙𝑙×𝑩𝑩 ⋅ 𝒏𝒏𝑩𝑩 ≤ 𝐹𝐹𝑙𝑙 ∀𝑙𝑙 ∈ 𝐿𝐿𝐴𝐴

• Factorize 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨 = 𝐋𝐋𝐋𝐋
• Initialize 𝐿𝐿𝐴𝐴 = ∅; 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
• While 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣:

• �𝒏𝒏𝑩𝑩 ← Solve PTDF-DCOPF with 𝐿𝐿𝐴𝐴
• Check for violations by calculating:

• �𝜽𝜽𝑩𝑩 ← 𝐋𝐋𝐋𝐋. solve(�𝒏𝒏𝑩𝑩)
• �𝒇𝒇𝑳𝑳 ← (𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ �𝜽𝜽𝑩𝑩

• 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑎𝑎𝑎𝑎𝑎𝑎(�𝒇𝒇𝑳𝑳 > 𝑭𝑭𝑳𝑳, �𝒇𝒇𝑳𝑳 < −𝑭𝑭𝑳𝑳)
• Update 𝐿𝐿𝐴𝐴 by adding at least one

violated line
• 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑙𝑙×𝑩𝑩 ← 𝐋𝐋𝐋𝐋. solve(𝑩𝑩𝒅𝒅𝑨𝑨 𝑙𝑙 , ′T′)

NREL | 18

EGRET Lazy-PTDF Model vs. B-theta

0

20

40

60

80

100

120

13
54

18
88

19
51

20
00

23
12

23
83

27
36

27
37

27
42

27
46

27
46

28
48

28
53

28
68

28
69

30
12

30
22

31
20

33
75

39
70

40
20

46
01

46
19

46
61

48
37

49
17

64
68

64
70

64
95

65
15

83
87

92
41

95
91

10
00

0
10

48
0

13
65

9
19

40
2

24
46

4
30

00
0

Total Solution Time (EGRET + Gurobi) in Seconds

B-theta DCOPF Egret PTDF DCOPF

273 Includes time in Pyomo
• Significant for building

the B-theta DCOPF
model &
communicating it to
Gurobi

• Significant for building
individual PTDF-
constraints for PTDF-
DCOPF

NREL | 19

Active Transmission Constraints

0

10

20

30

40

50

60

70

80

90

100

13
54

18
88

19
51

20
00

23
12

23
83

27
36

27
37

27
42

27
46

27
46

28
48

28
53

28
68

28
69

30
12

30
22

31
20

33
74

39
70

40
20

46
01

46
19

46
61

48
37

49
17

64
68

64
70

64
95

65
15

83
87

92
41

95
91

10
00

0
10

48
0

13
65

9
19

40
2

24
46

4
30

00
0

Number of Active Transmission Constraints
162 107 145 688 Performance outlier

for EGRET’s PTDF-
DCOPF code,
pglib_opf_case
8387_pegase.m,
has >5% of its
transmission lines
binding

NREL | 20

Network Formulation has a big
impact on PCM Runtimes

MIP Gap EGRET B-theta EGRET Lazy PTDF % Improvement
1.00% 252 s 213 s 15.4%
0.10% 311 s 231 s 25.8%
0.01% 552 s 257 s 53.5%
0.00% 621 s 336 s 45.9%

• Week-long simulation of the RTS-GMLC system using Prescient:
• 73 buses
• 120 branches

• XpressMP solver
• Solved Unit Commitment problems (7 total) to various MIP Gaps

NREL | 21

• The screening and calculation of transmission
constraints is critical for Unit Commitment and
helpful for DCOPF
– Performance can be significantly improved

with initial set of active constraints
• Maintain sparsity up until the point where a

dense representation is required
• scipy.sparse has excellent tools for doing

this, enabling a performant workflow in Python

Conclusions

NREL | 22

References

Roald, Line A., and Daniel K. Molzahn. "Implied constraint satisfaction in power system
optimization: The impacts of load variations." 2019 57th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). IEEE, 2019.

Van den Bergh, Kenneth, Erik Delarue, and William D’haeseleer. "DC power flow in unit
commitment models." KU Leuven TME WP EN2014-12. (2014).

Babaeinejadsarookolaee, Sogol, et al. "The power grid library for benchmarking ac optimal
power flow algorithms." arXiv preprint arXiv:1908.02788 (2019).

Virtanen, Pauli, et al. "SciPy 1.0: fundamental algorithms for scientific computing in Python."
Nature methods 17.3 (2020): 261-272.

Li, Xiaoye S. "An overview of SuperLU: Algorithms, implementation, and user interface." ACM
Transactions on Mathematical Software (TOMS) 31.3 (2005): 302-325.

www.nrel.gov

NREL/PR-2C00-84287

Q&A

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy,
LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This work was conducted as
part of the Design Integration and Synthesis Platform to Advance Tightly Coupled Hybrid Energy Systems
(DISPATCHES) project through the Grid Modernization Lab Consortium with funding from the U.S. Department of
Energy’s Office of Fossil Energy and Carbon Management, Office of Nuclear Energy, and Hydrogen and Fuel Cell
Technology Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S.
Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges
that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this work, or allow others to do so, for U.S. Government purposes. A portion of this research
was performed using computational resources sponsored by the U.S. Department of Energy's Office of Energy
Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory.

	Contents
	Production Cost Modeling
	EGRET Overview
	Transmission Constraints
	Transmission Constraints
	Calculating Flows from 𝒏 𝑩
	Comparing Models

	Simple Algorithm for PTDF-model
	Simple Lazy-PTDF Model vs. B-theta
	Simple Algorithm for PTDF-model
	PTDF Calculation is Expensive
	Storing 𝑷𝑻𝑫𝑭 𝑳×𝑩
	𝑨 is Sparse!

	Revisiting the PTDF Calculation
	Factorizing 𝑨 𝑻 𝑩 𝒅 𝑨

	Sparsity-Preserving Algorithm for PTDF-model
	EGRET Lazy-PTDF Model vs. B-theta
	Active Transmission Constraints
	Network Formulation has a big impact on PCM Runtimes

	Conclusions
	References

