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Production Cost Modeling

* Simulate the large-scale electricity system 2007-10
(generation, load, transmission line flows) in ™
5-minute to 1-hour intervals for days, weeks,
or a year
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Typically involves some sequence of Unit = Feevaes uraied
2,000 Implicit Reserve
Commitment and Economic Dispatch 1000
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Outputs: dispatch, transmission line flows, locational marginal prices (LMPs)

Software:

— Open Source: PowerSimulations.jl, Prescient

— Propriety: PLEXQOS, GridView, PROMOD

Requires a robust unit commitment and economic dispatch engine
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EGRET Overview

EGRET — Electrical Grid Research and Engineering Tools

Python-base package for electrical grid optimization built on the Pyomo
algebraic modeling library

Major Features:
— Expression and solution of unit commitment problems

— Expression and solution of economic dispatch and optimal power flow
problems (e.g., DCOPF, ACOPF)

— Library of formulations, approximations, and relaxations
— Generic handling of data across model formulations and types

EGRET serves as the unit commitment and economic dispatch engine for the
Prescient Production Cost Modeling Engine

EGRET is available under a BSD license at https://github.com/grid-parity-
exchange/Egret
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https://github.com/grid-parity-exchange/Egret

Transmission Constraints

* Transmission Constraints serve to limit the flow of electricity through
a transmission line or transformer

— More flow -> more heat -> line expansion and sagging
— Transformers have their own power ratings for reliable operation

* In typical unit commitment and economic dispatch problems the line
flow calculation used is a linear approximation of the AC power flow
equations:

Efl_ 2fl=ni VieB ni=2pg—Li VieRB

LeFT (i) LeF~(i) g9e6@®
fi= Bl(Qz(i) - Hl(j)) VIEL Variables: 2|B| + |L| + |G|
—F, < fi <F vieL Equalities: 2|B| + |L]| + 1
Href =0
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Transmission Constraints

LEFT (i)

fi - Z fi=n; Vi€B
leF~(i)

fl = Bl(gl(i) — 91(1)) VIE L
F<fi<F Vel

Qref =0

-

ng=A"-f;
1TnB+nref=O
fir=B;-A-0p
—F <f,<F,

% nB=AT-Bd-A-BB

Rewrite in matrix notation:

— Aisthe |[L| X (|B| — 1) incidence matrix
* a;; = lifline [ starts at bus i
* a;; = —1iflinel endsatbusi
* Remove the column corresponding to 6.y = 0

— Bgisa|L| X |L| diagonal matrix with B; on the
diagonals

— @Op is the vector of 6; variables, i # ref

— f is the vector of f; variables

— ng is the vector of n; variables, i # ref

1TnB+nref=O
fr=Bgq-A-0p
—F; < f, <F,
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Calculating Flows from ng

ng=AT -B;-A-0p Given fig with 1'ng + n,.r = 0:
i"j et 2: * Solve fi = (ATB4A) - 0 > O
—F < f <F, * fL<-(Bg4A) - 0p
1Tng + nper = 0 How to put in algebraic model?
—F, < PTDFYB .np < F, . Oy = (ATBdA)_l g
e * fL=(BaA) - (ATB4A) " -mp

n; = :zg:: }?57 — l‘i Vi eEB

|
geG(i) PTDFLXB
Variables: |B| + |G|

Equalities: [B] + 1 See Van den Bergh et al. (2014) for details
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Comparing Models

ng = (ATB4A) - 0
1TnB + Tlref =0

1TnB + nref =0
—F; < PTDF"™B .nz < F,

—F; < (B4A) - 0g< F;

Sparse if A is sparse
2|B| — 1 variables
|B| equalities

|L| range constraints

No computation to implement
Solver must solve ng =
(ATB4A) - 0 to calculate and
enforce any line’s flow

Dense even if 4 is sparse
|B| variables

1 equality

|L| range constraints

Need to calculate PTDF*B

Only need calculate rows of
PTDF*B for active lines

Roald & Molzahn (2019) show only a
small subset (~¥1%) of these need to
be enforce for a given load profile
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Simple Algorithm for PTDF-model

Calculate PTDFL*B
Initialize L4 = @; viol <« True
While viol:
* 7 < Solve PTDF-DCOPF with L4

* Check for violations by calculating:
e f, < PTDF*B .5,
e viol « any(fy > Fy, fL < —F})
« Update L4 by adding at least one
violated line

PTDF-DCOPF

min ZgEG Cg(pg)
-9
Py<psg =P Vg €G

n; = z pg_Li Vi €B
gEeG (1)
1TnB + Tlref =0
—F, < PTDF™B .ng <F, vlelA

This is basically the algorithm implemented by EGRET
when the PTDF-DCOPF model was originally added in 2019
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(Babaeinejadsarook

pglib-opf v21.07
olaee, 2021)
instances >1000
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Simple Algorithm for PTDF-model

- CCalculate PTDFPB >

Initialize LY = @; viol « True
While viol
* 7 < Yolve PTDF-DCOPF with L4
 Check
* fi 1 1

e viol <« qny(f; > Fy, f1 < —
« Update A by adding at least on

violated ljne

r violations by calculating:

PTDF-DCOPF

minZ ec ¢7(p?)
P,<p, <P’ VgeG

z pg—Li Vi€EB

geG(i)
1TnB + Tlref =0

—F, < PTDF™B .ng <F, vlelA

|B| X |B| matrix inverse
(IL] x |B]) with (|B| x |B])
matrix-matrix multiplication

\ (|L| x |B]|) with |B| matrix-

vector multiplication each loop
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Becomes significant for
“large-scale” systems

(>10000 buses)
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Storing PTDF'*B

45000 All networks in pglib-opf v21.07
40000 y=13381x+ 77823 (Babaeinejadsarookolaee, 2021):
35000 /,/ e >1,000 buses (n=39)
> * Number of branches increases
g * 7 linearly with number of buses
g 25000 ,//
§ 20000 v,’/ 30000 buses X 35233 branches
§ 15000 .°/’/ ->~7.9GB!
° -> Invert a 30k X 30k matrix!
10000 o7
e
5000 J
, 24464 buses X 34693 branches
0 -> ~6.3GB!
0 5000 10000 15000 20000 25000 30000 35000
Number of Buses -> |nvert a 24k X 24k matriX!
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A is Sparse!

3.4
All networks in pglib-opf v21.07
_ 32 " (Babaeinejadsarookolaee, 2021):
: e . « >1,000 buses (n=39), the
® ° .
S average degree is 2.3 —-3.2
» ® °
IS ° e adnet * The number of buses (nodes)
S 28 & e . .
£ ‘e PR does not seem to influence
5 e e the average degree
% ' e @ °
Q [ ]
% o * . T .
20 | e This means (A" B4A) is also
an . . . . .
5 (very) sparse — maintaining this
< . . ey
22 sparsity is critical for performance
2
0 5000 10000 15000 20000 25000 30000 35000

Number of Buses
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Revisiting the PTDF Calculation

ng=A" -B;-A-0pg
1Tn3+7'lref=0
fL=Bg-A-0p
—F, < f, <F|

Given fig with 1"ng + n,.r = 0:

* Solve fig = (ATB4A) - 0 -> 0y

* fL< (BaA) - 85
So, we can calculate the flows without
inverting (ATB4A)!

1TnB ~+ nref =0
—F; < PTDF"*B .ng < F,

Recall PTDF*B:= (B4A) - (ATBdA)_l
Or PTDF™¥B . (ATB4A) = (B4A)

So, given a line [, we can calculate a single
PTDF row by solving (AT B4A) on the left!

PTDF™B . (ATB4A) = (B4A),
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Factorizing AT B 4A

 The matrix ATB4A is sparse,

symmetric, and (typically) positive
semidefinite.

* These facts suggest we should
pre-compute a Cholesky (LLT)
or LDLT factorization of
ATB, A

However, while scipy (Virtanen,
2020) has Cholesky and LDLT
factorization routines, none are
sparsity-preserving!

scipy does, however, have a sparsity-
preserving LU-factorization routine
available, SuperLU (Li, 2005)
SuperLU (and similar codes, e.g.,
HSL mab57) have advanced pivoting
methods to ensure sparsity in the
original matrix is maintained in the
factors.

Instead of pre-computing PTDF*B,
Egret instead computes a single, sparse,
LU factorization of AT B4A, utilizing
SuperLU’s solve method for both
computing @5 and PTDF"*B for need |
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Sparsity-Preserving Algorithm for

PTDF-model
* Factorize ATB4A = LU PTDF-DCOPF
 |Initialize L4 = @; viol « True
« While viol: minz ec ¢ (p9)

e g < Solve PTDF-DCOPF with L4

P,<p,<P’ VgeG
Check for violations by calculating:

e 0Oy « LU.solve(7ig) z pg—Li Vi€EB
* fL < (B4A)-0p gEG(D)
e viol « any(f, > Fy, f < —F}) 1"ng + Nyer = 0
« Update L4 by adding at least one —F, < PTDF™B .ng <F, vielA
violated line

« PTDF"™B « LU.solve((BzA);,'T"
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* Significant for building
the B-theta DCOPF
model &
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Gurobi
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Network Formulation has a big
iImpact on PCM Runtimes

 Week-long simulation of the RTS-GMLC system using Prescient:

e 73 buses
e 120 branches
e XpressMP solver

e Solved Unit Commitment problems (7 total) to various MIP Gaps

MIP Gap EGRET B-theta EGRET Lazy PTDF % Improvement

1.00%
0.10%
0.01%
0.00%

252 s
311s
5525
621 s

213 s
231 s
257 s
336s

15.4%
25.8%
53.5%
45.9%
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Conclusions

* The screening and calculation of transmission
constraints is critical for Unit Commitment and
helpful for DCOPF

— Performance can be significantly improved
with initial set of active constraints

* Maintain sparsity up until the point where a
dense representation is required

* scipy.sparse has excellent tools for doing
this, enabling a performant workflow in Python
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