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• Simulate the large-scale electricity system 
(generation, load, transmission line flows) in 
5-minute to 1-hour intervals for days, weeks, 
or a year

• Typically involves some sequence of Unit 
Commitment and Economic Dispatch 
problems

Production Cost Modeling

• Outputs: dispatch, transmission line flows, locational marginal prices (LMPs)
• Software:

– Open Source: PowerSimulations.jl, Prescient
– Propriety: PLEXOS, GridView, PROMOD

• Requires a robust unit commitment and economic dispatch engine
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• EGRET – Electrical Grid Research and Engineering Tools
• Python-base package for electrical grid optimization built on the Pyomo

algebraic modeling library
• Major Features:

– Expression and solution of unit commitment problems
– Expression and solution of economic dispatch and optimal power flow 

problems (e.g., DCOPF, ACOPF)
– Library of formulations, approximations, and relaxations
– Generic handling of data across model formulations and types

• EGRET serves as the unit commitment and economic dispatch engine for the 
Prescient Production Cost Modeling Engine

• EGRET is available under a BSD license at https://github.com/grid-parity-
exchange/Egret

EGRET Overview

https://github.com/grid-parity-exchange/Egret
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• Transmission Constraints serve to limit the flow of electricity through 
a transmission line or transformer
– More flow -> more heat -> line expansion and sagging
– Transformers have their own power ratings for reliable operation

• In typical unit commitment and economic dispatch problems the line 
flow calculation used is a linear approximation of the AC power flow 
equations:

Transmission Constraints

�
𝑙𝑙∈𝐹𝐹+(𝑖𝑖)

𝑓𝑓𝑙𝑙 − �
𝑙𝑙∈𝐹𝐹− 𝑖𝑖

𝑓𝑓𝑙𝑙 = 𝑛𝑛𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

𝑓𝑓𝑙𝑙 = 𝐵𝐵𝑙𝑙 𝜃𝜃𝑙𝑙(𝑖𝑖) − 𝜃𝜃𝑙𝑙(𝑗𝑗) ∀𝑙𝑙 ∈ 𝐿𝐿
−𝐹𝐹𝑙𝑙 ≤ 𝑓𝑓𝑙𝑙 ≤ 𝐹𝐹𝑙𝑙 ∀𝑙𝑙 ∈ 𝐿𝐿
𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 0

𝑛𝑛𝑖𝑖 = �
𝑔𝑔∈𝐺𝐺(𝑖𝑖)

𝑝𝑝𝑔𝑔 − 𝐿𝐿𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

Variables: 2 𝐵𝐵 + 𝐿𝐿 + |𝐺𝐺|
Equalities: 2 𝐵𝐵 + 𝐿𝐿 + 1

Decision variables: 𝑝𝑝𝑔𝑔
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Transmission Constraints

�
𝑙𝑙∈𝐹𝐹+(𝑖𝑖)

𝑓𝑓𝑙𝑙 − �
𝑙𝑙∈𝐹𝐹− 𝑖𝑖

𝑓𝑓𝑙𝑙 = 𝑛𝑛𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

𝑓𝑓𝑙𝑙 = 𝐵𝐵𝑙𝑙 𝜃𝜃𝑙𝑙(𝑖𝑖) − 𝜃𝜃𝑙𝑙(𝑗𝑗) ∀𝑙𝑙 ∈ 𝐿𝐿
−𝐹𝐹𝑙𝑙 ≤ 𝑓𝑓𝑙𝑙 ≤ 𝐹𝐹𝑙𝑙 ∀𝑙𝑙 ∈ 𝐿𝐿
𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 0

Rewrite in matrix notation:
– 𝑨𝑨 is the |𝐿𝐿| × ( 𝐵𝐵 − 1) incidence matrix

• 𝑎𝑎𝑙𝑙,𝑖𝑖 = 1 if line 𝑙𝑙 starts at bus 𝑖𝑖
• 𝑎𝑎𝑙𝑙,𝑖𝑖 = −1 if line 𝑙𝑙 ends at bus 𝑖𝑖
• Remove the column corresponding to 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 0

– 𝑩𝑩𝒅𝒅 is a |𝐿𝐿| × |𝐿𝐿| diagonal matrix with 𝐵𝐵𝑙𝑙 on the 
diagonals

– 𝜽𝜽𝑩𝑩 is the vector of 𝜃𝜃𝑖𝑖 variables, 𝑖𝑖 ≠ 𝑟𝑟𝑟𝑟𝑟𝑟
– 𝒇𝒇𝑳𝑳 is the vector of 𝑓𝑓𝑙𝑙 variables
– 𝒏𝒏𝑩𝑩 is the vector of 𝑛𝑛𝑖𝑖 variables, 𝑖𝑖 ≠ 𝑟𝑟𝑟𝑟𝑟𝑟

𝒏𝒏𝑩𝑩 = 𝑨𝑨𝑻𝑻 ⋅ 𝒇𝒇𝑳𝑳
𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
𝒇𝒇𝑳𝑳 = 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
−𝑭𝑭𝑳𝑳 ≤ 𝒇𝒇𝑳𝑳 ≤ 𝑭𝑭𝑳𝑳

𝒏𝒏𝑩𝑩 = 𝑨𝑨𝑻𝑻 ⋅ 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
𝒇𝒇𝑳𝑳 = 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
−𝑭𝑭𝑳𝑳 ≤ 𝒇𝒇𝑳𝑳 ≤ 𝑭𝑭𝑳𝑳
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Calculating Flows from 𝒏𝒏𝑩𝑩
𝒏𝒏𝑩𝑩 = 𝑨𝑨𝑻𝑻 ⋅ 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
𝒇𝒇𝑳𝑳 = 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
−𝑭𝑭𝑳𝑳 ≤ 𝒇𝒇𝑳𝑳 ≤ 𝑭𝑭𝑳𝑳

Given �𝒏𝒏𝑩𝑩 with 𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0:

• Solve �𝒏𝒏𝑩𝑩 = (𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ 𝜽𝜽𝑩𝑩 -> �𝜽𝜽𝑩𝑩
• �𝒇𝒇𝑳𝑳 <- (𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ �𝜽𝜽𝑩𝑩

How to put in algebraic model?

• 𝜽𝜽𝑩𝑩 = 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨
−𝟏𝟏
⋅ 𝒏𝒏𝑩𝑩

• 𝒇𝒇𝑳𝑳 = 𝑩𝑩𝒅𝒅𝑨𝑨 ⋅ 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨
−𝟏𝟏
⋅ 𝒏𝒏𝑩𝑩

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩

𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
−𝑭𝑭𝑳𝑳 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 ⋅ 𝒏𝒏𝑩𝑩 ≤ 𝑭𝑭𝑳𝑳

With:

𝑛𝑛𝑖𝑖 = �
𝑔𝑔∈𝐺𝐺(𝑖𝑖)

𝑝𝑝𝑔𝑔 − 𝐿𝐿𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

Variables: 𝐵𝐵 + |𝐺𝐺|
Equalities: 𝐵𝐵 + 1 See Van den Bergh et al. (2014) for details
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Comparing Models

𝒏𝒏𝑩𝑩 = (𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ 𝜽𝜽𝑩𝑩
𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0

−𝑭𝑭𝑳𝑳 ≤ (𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ 𝜽𝜽𝑩𝑩≤ 𝑭𝑭𝑳𝑳

𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
−𝑭𝑭𝑳𝑳 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 ⋅ 𝒏𝒏𝑩𝑩 ≤ 𝑭𝑭𝑳𝑳

• Sparse if 𝑨𝑨 is sparse
• 2 𝐵𝐵 − 1 variables
• 𝐵𝐵 equalities
• 𝐿𝐿 range constraints

• No computation to implement
• Solver must solve 𝒏𝒏𝑩𝑩 =

(𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ 𝜽𝜽𝑩𝑩 to calculate and 
enforce any line’s flow

• Dense even if 𝑨𝑨 is sparse
• 𝐵𝐵 variables
• 1 equality
• 𝐿𝐿 range constraints

• Need to calculate 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩

• Only need calculate rows of 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 for active lines

• Roald & Molzahn (2019) show only a 
small subset (~1%) of these need to 
be enforce for a given load profile
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Simple Algorithm for PTDF-model

PTDF-DCOPF

min ∑𝑔𝑔∈𝐺𝐺 𝑐𝑐𝑔𝑔(𝑝𝑝𝑔𝑔)
𝑃𝑃𝑔𝑔 ≤ 𝑝𝑝𝑔𝑔 ≤ 𝑃𝑃

𝑔𝑔
∀𝑔𝑔 ∈ 𝐺𝐺

𝑛𝑛𝑖𝑖 = �
𝑔𝑔∈𝐺𝐺(𝑖𝑖)

𝑝𝑝𝑔𝑔 − 𝐿𝐿𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
−𝐹𝐹𝑙𝑙 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒍𝒍×𝑩𝑩 ⋅ 𝒏𝒏𝑩𝑩 ≤ 𝐹𝐹𝑙𝑙 ∀𝑙𝑙 ∈ 𝐿𝐿𝐴𝐴

• Calculate 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩

• Initialize 𝐿𝐿𝐴𝐴 = ∅; 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
• While 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣:

• �𝒏𝒏𝑩𝑩 ← Solve PTDF-DCOPF with 𝐿𝐿𝐴𝐴
• Check for violations by calculating:

• �𝒇𝒇𝑳𝑳 ← 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 ⋅ �𝒏𝒏𝑩𝑩
• 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑎𝑎𝑎𝑎𝑎𝑎(�𝒇𝒇𝑳𝑳 > 𝑭𝑭𝑳𝑳, �𝒇𝒇𝑳𝑳 < −𝑭𝑭𝑳𝑳)
• Update 𝐿𝐿𝐴𝐴 by adding at least one 

violated line

This is basically the algorithm implemented by EGRET 
when the PTDF-DCOPF model was originally added in 2019



NREL    |    10

Simple Lazy-PTDF Model vs. B-theta
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buses



NREL    |    11

Simple Algorithm for PTDF-model

PTDF-DCOPF

min ∑𝑔𝑔∈𝐺𝐺 𝑐𝑐𝑔𝑔(𝑝𝑝𝑔𝑔)
𝑃𝑃𝑔𝑔 ≤ 𝑝𝑝𝑔𝑔 ≤ 𝑃𝑃

𝑔𝑔
∀𝑔𝑔 ∈ 𝐺𝐺

𝑛𝑛𝑖𝑖 = �
𝑔𝑔∈𝐺𝐺(𝑖𝑖)

𝑝𝑝𝑔𝑔 − 𝐿𝐿𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
−𝐹𝐹𝑙𝑙 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒍𝒍×𝑩𝑩 ⋅ 𝒏𝒏𝑩𝑩 ≤ 𝐹𝐹𝑙𝑙 ∀𝑙𝑙 ∈ 𝐿𝐿𝐴𝐴

• Calculate 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩

• Initialize 𝐿𝐿𝐴𝐴 = ∅; 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
• While 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣:

• �𝒏𝒏𝑩𝑩 ← Solve PTDF-DCOPF with 𝐿𝐿𝐴𝐴
• Check for violations by calculating:

• �𝒇𝒇𝑳𝑳 ← 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 ⋅ �𝒏𝒏𝑩𝑩
• 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑎𝑎𝑎𝑎𝑎𝑎(�𝒇𝒇𝑳𝑳 > 𝑭𝑭𝑳𝑳, �𝒇𝒇𝑳𝑳 < −𝑭𝑭𝑳𝑳)
• Update 𝐿𝐿𝐴𝐴 by adding at least one 

violated line

𝐵𝐵 × |𝐵𝐵| matrix inverse
𝐿𝐿 × 𝐵𝐵 with ( 𝐵𝐵 × 𝐵𝐵 )

matrix-matrix multiplication

𝐿𝐿 × 𝐵𝐵 with 𝐵𝐵 matrix-
vector multiplication each loop
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PTDF Calculation is Expensive
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“large-scale” systems 
(>10000 buses)
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Storing 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩

All networks in pglib-opf v21.07 
(Babaeinejadsarookolaee, 2021):
• >1,000 buses (n=39)
• Number of branches increases 

linearly with number of buses

y = 1.3381x + 77.823
R² = 0.9774
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30000 buses X 35233 branches  
-> ~7.9GB!
-> Invert a 30k X 30k matrix!

24464 buses X 34693 branches  
-> ~6.3GB!
-> Invert a 24k X 24k matrix!
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𝑨𝑨 is Sparse!

All networks in pglib-opf v21.07 
(Babaeinejadsarookolaee, 2021):
• >1,000 buses (n=39), the 

average degree is 2.3 – 3.2
• The number of buses (nodes) 

does not seem to influence 
the average degree

y = 9E-06x + 2.5938
R² = 0.0493
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This means (𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨) is also 
(very) sparse – maintaining this 
sparsity is critical for performance



NREL    |    15

Revisiting the PTDF Calculation

𝒏𝒏𝑩𝑩 = 𝑨𝑨𝑻𝑻 ⋅ 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
𝒇𝒇𝑳𝑳 = 𝑩𝑩𝒅𝒅 ⋅ 𝑨𝑨 ⋅ 𝜽𝜽𝑩𝑩
−𝑭𝑭𝑳𝑳 ≤ 𝒇𝒇𝑳𝑳 ≤ 𝑭𝑭𝑳𝑳

Given �𝒏𝒏𝑩𝑩 with 𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0:
• Solve �𝒏𝒏𝑩𝑩 = (𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ 𝜽𝜽𝑩𝑩 -> �𝜽𝜽𝑩𝑩
• �𝒇𝒇𝑳𝑳 <- (𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ �𝜽𝜽𝑩𝑩

Recall 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩:= 𝑩𝑩𝒅𝒅𝑨𝑨 ⋅ 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨
−𝟏𝟏

Or 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 ⋅ 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨 = 𝑩𝑩𝒅𝒅𝑨𝑨
𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0

−𝑭𝑭𝑳𝑳 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩 ⋅ 𝒏𝒏𝑩𝑩 ≤ 𝑭𝑭𝑳𝑳
So, given a line 𝑙𝑙, we can calculate a single 
PTDF row by solving 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨 on the left!

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑙𝑙×𝑩𝑩 ⋅ 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨 = 𝑩𝑩𝒅𝒅𝑨𝑨 𝑙𝑙

So, we can calculate the flows without 
inverting (𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨)!
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Factorizing 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨

• The matrix 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨 is sparse, 
symmetric, and (typically) positive 
semidefinite.

• These facts suggest we should 
pre-compute a Cholesky (𝐿𝐿𝐿𝐿𝑇𝑇) 
or 𝐿𝐿𝐷𝐷𝐿𝐿𝑇𝑇 factorization of 
𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨

• However, while scipy (Virtanen, 
2020) has Cholesky and 𝐿𝐿𝐷𝐷𝐿𝐿𝑇𝑇
factorization routines, none are 
sparsity-preserving!

• scipy does, however, have a sparsity-
preserving 𝐿𝐿𝑈𝑈-factorization routine 
available, SuperLU (Li, 2005)

• SuperLU (and similar codes, e.g., 
HSL_ma57) have advanced pivoting 
methods to ensure sparsity in the 
original matrix is maintained in the 
factors.

• Instead of pre-computing 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑳𝑳×𝑩𝑩, 
Egret instead computes a single, sparse, 
𝐿𝐿𝐿𝐿 factorization of 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨, utilizing 
SuperLU’s solve method for both 
computing 𝜽𝜽𝑩𝑩 and 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑙𝑙×𝑩𝑩 for need 𝑙𝑙
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Sparsity-Preserving Algorithm for 
PTDF-model

PTDF-DCOPF

min ∑𝑔𝑔∈𝐺𝐺 𝑐𝑐𝑔𝑔(𝑝𝑝𝑔𝑔)
𝑃𝑃𝑔𝑔 ≤ 𝑝𝑝𝑔𝑔 ≤ 𝑃𝑃

𝑔𝑔
∀𝑔𝑔 ∈ 𝐺𝐺

𝑛𝑛𝑖𝑖 = �
𝑔𝑔∈𝐺𝐺(𝑖𝑖)

𝑝𝑝𝑔𝑔 − 𝐿𝐿𝑖𝑖 ∀𝑖𝑖 ∈ 𝐵𝐵

𝟏𝟏𝑻𝑻𝒏𝒏𝑩𝑩 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 0
−𝐹𝐹𝑙𝑙 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑙𝑙×𝑩𝑩 ⋅ 𝒏𝒏𝑩𝑩 ≤ 𝐹𝐹𝑙𝑙 ∀𝑙𝑙 ∈ 𝐿𝐿𝐴𝐴

• Factorize 𝑨𝑨𝑻𝑻𝑩𝑩𝒅𝒅𝑨𝑨 = 𝐋𝐋𝐋𝐋
• Initialize 𝐿𝐿𝐴𝐴 = ∅; 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
• While 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣:

• �𝒏𝒏𝑩𝑩 ← Solve PTDF-DCOPF with 𝐿𝐿𝐴𝐴
• Check for violations by calculating:

• �𝜽𝜽𝑩𝑩 ← 𝐋𝐋𝐋𝐋. solve(�𝒏𝒏𝑩𝑩)
• �𝒇𝒇𝑳𝑳 ← (𝑩𝑩𝒅𝒅𝑨𝑨) ⋅ �𝜽𝜽𝑩𝑩

• 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝑎𝑎𝑎𝑎𝑎𝑎(�𝒇𝒇𝑳𝑳 > 𝑭𝑭𝑳𝑳, �𝒇𝒇𝑳𝑳 < −𝑭𝑭𝑳𝑳)
• Update 𝐿𝐿𝐴𝐴 by adding at least one 

violated line 
• 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑙𝑙×𝑩𝑩 ← 𝐋𝐋𝐋𝐋. solve( 𝑩𝑩𝒅𝒅𝑨𝑨 𝑙𝑙 , ′T′)
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EGRET Lazy-PTDF Model vs. B-theta
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Active Transmission Constraints
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Network Formulation has a big 
impact on PCM Runtimes

MIP Gap EGRET B-theta EGRET Lazy PTDF % Improvement
1.00% 252 s 213 s 15.4%
0.10% 311 s 231 s 25.8%
0.01% 552 s 257 s 53.5%
0.00% 621 s 336 s 45.9%

• Week-long simulation of the RTS-GMLC system using Prescient:
• 73 buses
• 120 branches

• XpressMP solver
• Solved Unit Commitment problems (7 total) to various MIP Gaps
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• The screening and calculation of transmission 
constraints is critical for Unit Commitment and 
helpful for DCOPF
– Performance can be significantly improved 

with initial set of active constraints
• Maintain sparsity up until the point where a 

dense representation is required
• scipy.sparse has excellent tools for doing 

this, enabling a performant workflow in Python

Conclusions
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