

High efficiency multijunction devices: Solar cells, Thermophotovoltaics, LEDs

Ryan France 1/30/23

Optimal III-V materials for incident spectrum

Record 3J components: optimizing bandgaps

Outline

- 3-Junction cell device components
 - High performance GaInP
 - Quantum well solar cells
 - Graded buffers and mismatched solar cells
 - High bandgap tunnel junction
 - Thin film device with reflective contact
- 3J cell results
- Other uses of device components
 - Thermophotovoltaics
 - LEDs

Quantum-well Solar Cells

Quantum-well solar cell background

Sayed and Bedair, JPV 9, 402 (2019)

Challenges with QW solar cells

GaInAs/GaAsP materials challenges

- Strain-balancing
- Interfacial layers
- Strained-surface control

Transmission Electron Microscopy low magnification

Material quality in QWs

Eg = 1.34 eV
Voc > 1.02 V

- Growth conditions limit surface segregation, improves solar cell performance
- 300 QWs possible, enabling optically thick QW solar cells

High performance optically-thick QW devices

- Jsc increase wrt GaAs of 2.5 mA/cm² AM1.5G and 3.1 mA/cm² AM0
- Max 1J QW efficiency of 27.5% AM1.5G and 23.9% AM0
- 50% ERE for planar device

Demonstrated optically-thick QW device with excellent performance

Metamorphic solar cells

Metamorphic Material

- Intentionally introduce dislocations to alter in-plane lattice constant
- Need to minimize threading dislocation density for performance
- Maximize dislocation glide

Dislocation glide

Dislocation glide kinetics

 $\rho_{t} = \frac{R_{g}R_{gr}e^{U/kT}}{C\mathcal{E}_{eff}^{m}} \qquad \begin{array}{l} \rho_{t} = \text{threading dislocation density} \\ \varepsilon_{eff} = \text{effective stress} = \varepsilon_{\text{line}} - \varepsilon_{\text{misfit}} \\ R_{g} = \text{growth rate (um/hr)} \\ R_{gr} = \text{misfit grade rate (%/um)} \end{array}$

Dislocation pinning: Phase separation

N. Quitoriano et al., J. Appl. Phys. 102, 033411 (2007)

GalnP

buffer

Metamorphic GaInAs cell performance

with collection spanning large portion of solar spectrum

Used in 3J

3-junction Multijunction cell results

3-junction cell results: subcell analysis

Woc = E_g/q - Voc : GalnP = 0.41 V / GaAs-QW = 0.35 V / LMM GalnAs = 0.35 V

Record 3-Junction GaInP / GaAs+MQW / GaInAs cells

New world record!

NREL | 16

.

۲

Green et al., Prog. Photovolt., 30, 3, (2022)

Other applications of III-V MJ components

- Area-constrained applications, concentrators, space PV
- Thermophotovoltaics (TPV), laser power converters (LPC), other optoelectronics

Thermophotovoltaics

nature

Article

Thermophotovoltaic efficiency of 40%

Alina LaPotin', Kevin L. Schulte², Myles A. Steiner², Kyle Buznitsky¹, Colin C. Kelsall¹, Daniel J. Friedman², Eric J. Tervo², Ryan M. France², Michelle R. Young², Andrew Rohskopf⁴, Shomik Verma¹, Evelyn N. Wang¹ & Asegun Henry¹³⁸

Joule

Article Efficient and scalable GaInAs thermophotovoltaic devices

Eric J. Tervo, ^{1,4} Ryan M. France, ¹ Daniel J. Friedman, ¹ Madhan K. Arulanandam, ^{1,2} Richard R. King, ² Tarun C. Narayan, ¹ Cecilia Luciano, ¹ Dustin P. Nizamian, ¹ Benjamin A. Johnson, ¹ Alexandra R. Young, ¹ Leah Y. Kuritzky, ¹ Emmett E. Perl, ¹ Moritz Limpinsel, ¹ Brendan M. Kayes, ¹ Andrew J. Ponec, ¹ David M. Bierman, ¹ Justin A. Briggs, ¹ and Mylea A. Steiner^{1,1,4}

TPV Efficiency =

Power Output

Power Incident – Power Reflected

Thermophotovoltaics

1 junction

2 junctions

2100C

1.2

2400C

1900C

E_{g(,bot)} (eV)

1.0

2400C

2-junction efficiency Emitter temperature

2100C

Cell Design Requirements:

- Highly reflective back mirror ۰
- Low parasitic absorption in cell, all wavelengths
- Material bandgaps optimized for emitter temperature, reflectance, and required power density

1.4

Management of resistive power loss

NREL | 19

Friedman and Steiner, PVSC proc. pp 3215. (2019)

Two MJ Device Strategies

Optimal 2-junction cell targets 2400°C emitter 1900°C emitter

- Lower current minimizes I²R losses, but lower power output
- Grade left inside, could parasitically absorb
- Higher current and . power, but resistive losses could dominate

1.2 eV/1.0 eV

Compositional

Graded Buffer

GalnAs

Al_{0 14}Ga_{0 56}In_{0 30}As

1.2 eV

Ga_{0.7}In_{0.3}As

1.0 eV

handle

Grade removed •

TPV characterization

Benefit of Multijunction LEDs:

- Reduce current for a given # of emitted photons
- Reduce series resistance losses, heating, efficiency droop
- Increase voltage (system integration)

Experiment:

- Compare from 1-junction, 2-junction, and 4-junction GaInAs emitters at 925 nm
- Any major loss mechanisms introduced with extra junctions?
- EQE of 4 J> 2J > 1J?

Relaxed lattice constant

- High operating voltage, low current 4-junction GaInAs device
- Ideality factors add \rightarrow no major extra loss introduced

Conclusions

Efficiency (%) 00 00

10

Component development

- QW solar cells
- Lattice-mismatched solar cells

Multijunction (MJ) Devices demonstrations for PV/non-PV applications

- Terrestrial/space PV: 3-junction MJ
 - 39.5% / 34.2% PV efficiency
- Thermophotovoltaics
 - 41% TPV efficiency
- Multijunction LEDs
 - EQE addition, no major losses

Acknowledgements

NREL

- Myles Steiner
- Dan Friedman
- John Geisz
- Kevin Schulte
- Bill McMahon
- Tao Song
- Jeronimo Buencuerpo
- Meadow Bradsby
- Harvey Guthrey
- Matt Young
- Michelle Young
- Waldo Olavarria
- Alan Kibbler
- Kirstin Alberi
- Andrew Norman
- Jenny Selvidge

NREL/PR-5900-84346

External

- Kunal Mukherjee (Stanford)
- Ned Ekins-Daukes (UNSW)
- Ase Henry (MIT)
- Alina LaPotin (MIT)
- Brendan Kayes (Antora Energy)
- Leah Kuritzky (Antora Energy)
- Emmett Perl (Antora Energy)

U.S. Department of Energy Energy Efficiency & Renewable Energy

Solar Energy Technologies Office

