Market-integrated optimization of Wind-Battery-Hydrogen hybrids for

peaking capacity via storage

Darice Guittet, Ben Knueven, Xian Gao, Jaffer Ghouse, Ignas Satkauskas, Alexander Dowling, Wes Jones, John Siirola, David Miller

INFORMS 2022

rerer

Decarbonization and challenge of increasing renewables

DISPATCHES

Design Integration and Synthesis Platform to Advance Tightly Coupled Hybrid Energy Systems Figures. Left: D. Millstein, et al. Solar and wind grid system value in the United States: The effect of transmission congestion, generation profiles, and curtailment. Joule. 2021. November 2, 2022 Center: O.J. Guerra, et al. The value of seasonal energy storage technologies for the integration of wind and solar power. Joule 2020.

Right: E. Larson, et al. Net-Zero America: Potential Pathways, Infrastructure, and Impacts. 2021

Dynamic and flexible operation is part of IES design

RTS-GMLC. Not intended to represent existing infrastructure.

IESs provide greater operational flexibility by optimally coordinating material flows and energy conversions

Dispatched to have any type of profile and bidding strategy for a focus on services to markets

DISPATCHES

Challenge of operating the IES in an electricity market

How to design a Wind + Battery + Hydrogen plant?

Design Integration and Synthesis

Platform to Advance Tightly Coupled Hybrid Energy Systems Institute for the Design of Advanced Energy Systems

How does the IES communicate with the market?

PRESCIENT

Price-taker misses market depth and storage utilization

1.0

0.6

Battery vs. \ ^o

0.2 | 50

Wind Pmax Ratio 0.8

NPV increases without • bound with Wind and Battery size

200 250 300 350

Wind Pmax [MW]

400 450

500

Log NPVs of

Price-taker w/ Full-year Horizon

Optimal design is largest • possible

- Bidding the price-taker dispatch leads to no battery value
- Optimal design is no • battery at all

Bid varies with wind ۰ resource and is stochastically optimized w/ LMPs

200 250 300 350

Wind Pmax [MW]

Log NPVs of

Optimal design has ٠ moderate battery size

100

150

1.0

Battery vs. Wind Pmax Ratio

0.2

100 150

DISPATCHES

Design Integration and Synthesis Platform to Advance Tightly **Coupled Hybrid Energy Systems**

 $\overrightarrow{\mathbf{x}}$

400

450 500

IES bids as the sum of a pair of wind and NG plants

Wind + Battery + Hydrogen Turbine Retrofit Designed to Follow Existing Load at

- A wind plant and natural gas ٠ plant pair is selected
- Example shows very low-capacity • factor peaker
- Curtailment is reduced but not eliminated
- NG output replaced by • combination of battery and turbine output

Platform to Advance Tightly

Datetime

Parametric design results with varying cost inputs

Most impactful inputs:

- 1. Battery energy capital cost
- 2. Battery power capital cost
- 3. Turbine conversion rate

Least impactful inputs:

- 1. Turb capital cost
- 2. Tank capital cost
- 3. PEM capital cost

Wind + Battery + Hydrogen IES can have a <u>better</u> Greenfield NPV

And a **Positive Retrofit NPV**

Design Integration and Synthesis Platform to Advance Tightly Coupled Hybrid Energy Systems

DISPATCHES

n and Synthesis vance Tightly

IES achieves yearly dispatch with day-timescale operation

GRID MODERNIZATION LABORATORY CONSORTIUM U.S. Department of Energy

Adding constraints of a 24-hr operation strategy into the design increases the battery sizes and turbine size

No operating constraints results in missed dispatch for all strategies except Tank Target Min SOC equivalent to 1 hr of storage allows daily operation to meet desired full year load

DISPATCHES

Market surrogates co-optimizes load, bid and design

Dispatch surrogate

- Model the battery and hydrogen turbine output • after the output of NG plants
- Cumulative Capacity Factor varies by Bid Price • and Plant Capacity

Revenue surrogate

Revenue per MWh of peaking capacity also • varies by Bid Price and Plant Capacity

Lighter colors show plants with lower bid prices

Design Integration and Synthesis Platform to Advance Tightly **Coupled Hybrid Energy Systems**

DISPATCHES

Curve parameters are functions of Bid Price [\$/MWh] and Plant Capacity [MW]

Revenue per MWh of Natural Gas Plants in RTS-GMLC

Lighter colors show plants with lower bid prices

Thank you!

12

Acknowledging support from the Grid Modernization Laboratory Consortium through FE, NE, & EERE

National Energy Technology Laboratory: David Miller, Andrew Lee, Jaffer Ghouse, Andres Calderon, Naresh Susarla, Radhakrishna Gooty

Sandia National Laboratories: John Siirola, Michael Bynum, Edna Soraya Rawlings, Jordan Jalving

Idaho National Laboratory: Cristian Rabiti, Andrea Alfonsi, Konor Frick, Jason Hansen

National Renewable Energy Laboratory: Wes Jones, Darice Guittet, Ben Knueven, Ignas Satkauskas

Lawrence Berkeley National Laboratory: Dan Gunter, Keith Beattie, Ludovico Bianchi

University of Notre Dame: Alexander Dowling, Xian Gao, Xinhe Chen

