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Overview

Goal: enable full 3D inverse design of wind turbine blades
using machine learning techniques

• Design workflows generally rely on engineering tools 
e.g., blade element momentum (BEM) theory

• For larger offshore rotors, nonlinear 
aerodynamic effects dominate, and BEM 
assumptions break down

• Use ML to bring computational fluid dynamics (CFD) 
fidelity in the design process

• Grassmann-based shape representations
• Invertible neural network (INN) framework
• Trained on high-fidelity CFD data
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Inverse problems and INNs

Consider a forward mapping 𝒇𝒇: 𝒳𝒳 ⊂ ℝ𝑚𝑚 → ℱ ⊂ ℝ𝑑𝑑 with 
the input space weighted by 𝜌𝜌: 𝒳𝒳 ⊂ ℝ𝑚𝑚 → ℝ+

We seek to characterize the inverse image
𝒇𝒇−1 ̅𝐟𝐟 = 𝐱𝐱 ∈ 𝒳𝒳 ∶ 𝒇𝒇 𝐱𝐱 = ̅𝐟𝐟 ,     𝜌𝜌 𝐱𝐱 ̅𝐟𝐟

for some conditional value ̅𝐟𝐟 ∈ ℱ

Use an invertible neural network that learns a bijection

𝒇𝒇𝐼𝐼𝐼𝐼𝐼𝐼 𝐱𝐱;𝚯𝚯 = 𝐟𝐟
𝐳𝐳

where the latent variables 𝐳𝐳 → ℝ𝑚𝑚−𝑑𝑑 parameterize the set 𝒇𝒇−1

𝑥𝑥1
𝑥𝑥2

𝑓𝑓

𝑥𝑥1

𝑥𝑥2

→
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INN architecture
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Invertible blocks

Partition the incoming vector into two equal pieces and apply

𝜙𝜙𝑖𝑖 𝐱𝐱𝑖𝑖 = 𝜙𝜙𝑖𝑖
𝐮𝐮𝑖𝑖
𝐯𝐯𝑖𝑖 = 𝐮𝐮𝑖𝑖⨀𝑒𝑒𝑠𝑠1 𝐯𝐯𝑖𝑖 + 𝑡𝑡1 𝐯𝐯𝑖𝑖

𝐯𝐯𝑖𝑖⨀𝑒𝑒𝑠𝑠2 𝐮𝐮𝑖𝑖 + 𝑡𝑡2 𝐮𝐮𝑖𝑖
=

𝐮𝐮𝑖𝑖+1
𝐯𝐯𝑖𝑖+1 = 𝐱𝐱𝑖𝑖+1

which has the closed–form invertible mapping

𝜙𝜙𝑖𝑖−1 𝐱𝐱𝑖𝑖+1 = 𝜙𝜙𝑖𝑖−1
𝐮𝐮𝑖𝑖+1
𝐯𝐯𝑖𝑖+1 =

𝐯𝐯𝑖𝑖+1 − 𝑡𝑡2 𝐮𝐮𝑖𝑖+1 ⨀𝑒𝑒−𝑠𝑠2 𝐮𝐮𝑖𝑖+1

𝐮𝐮𝑖𝑖+1 − 𝑡𝑡1 𝐯𝐯𝑖𝑖+1 ⨀𝑒𝑒−𝑠𝑠1 𝐯𝐯𝑖𝑖+1
=

𝐮𝐮𝑖𝑖
𝐯𝐯𝑖𝑖 = 𝐱𝐱𝑖𝑖

regardless of the form of 𝑠𝑠1, 𝑡𝑡1, 𝑠𝑠2, 𝑡𝑡2:ℝ𝑚𝑚/2 → ℝ𝑚𝑚/2

[Ardizzone, et al., 2019]
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Training losses

• Supervised quantities are trained using MSE losses
ℒ𝐟𝐟 = 𝐟𝐟 − 𝐟𝐟INN 𝐱𝐱;𝚯𝚯 1:𝑑𝑑 2

2

• Unsupervised quantities are trained using the maximum mean discrepancy (MMD)
[Gretton, et al. 2012]

Two probability distributions are identical if and only if

𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝, 𝑞𝑞 ≔ sup
𝜙𝜙∈ℋ

𝔼𝔼𝑥𝑥∼𝑝𝑝 𝜙𝜙 𝑥𝑥 − 𝔼𝔼𝑦𝑦∼𝑞𝑞 𝜙𝜙 𝑦𝑦 = 0

In practice, we compute

𝑀𝑀𝑀𝑀𝐷𝐷2 𝑝𝑝, 𝑞𝑞 = 𝔼𝔼𝑥𝑥,𝑥𝑥′∼𝑝𝑝 𝑘𝑘 𝑥𝑥, 𝑥𝑥𝑥 − 2𝔼𝔼𝑥𝑥 ∼𝑝𝑝,𝑦𝑦∼𝑞𝑞 𝑘𝑘 𝑥𝑥,𝑦𝑦 + 𝔼𝔼𝑦𝑦,𝑦𝑦′∼𝑞𝑞 𝑘𝑘 𝑦𝑦,𝑦𝑦′

where 𝑘𝑘 ⋅,⋅ is some kernel function

→ for this work, we use 𝑘𝑘 𝑥𝑥,𝑦𝑦 = 1
1+ 𝑥𝑥−𝑦𝑦 2

2
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Blade Shape Representation

• We need a framework for blade shape representations that to enable 
design with the INN model

– Blade is comprised of a sequence of landmark airfoils

– Each airfoil shape is defined using the Class-Shape Transformation (CST)

• 5 landmark shapes × 20 shape parameters = 100 dimensions
– Doesn’t account for chord or twist
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Blade Shape Representation

• Treating airfoil shape perturbations independently can 
result in bad blade shapes with undesirable features 
(e.g., kinks or dimples) 
– Define cohesive perturbations applied to each airfoil
– Pathway for dimension reduction

• Consistent perturbations applied to CST coefficients does 
not map to consistent shape deformations
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• Represent shapes as 𝑛𝑛 (𝑥𝑥,𝑦𝑦)-landmarks along the curve

• Perform landmark-affine (LA) standardization to shapes
– Treats each airfoil shape as an element of the 

Grassmann manifold 𝒢𝒢(𝑛𝑛, 2)
– Remaining differences in shapes are driven by higher 

order variations

• Perform principal geodesic analysis on Grassmann shapes
– A generalization of principal component analysis (PCA) 

to Riemannian manifolds
– Defines principal components within the central 

tangent space 𝑇𝑇 �𝐗𝐗0 𝒢𝒢(𝑛𝑛, 2) at some point �𝐗𝐗0

Grassmannian Shape Representations

𝑇𝑇 �𝐗𝐗0 𝒢𝒢(𝑛𝑛, 2)

�𝐗𝐗0
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Goal: Seek to apply cohesive perturbations to the 
landmark airfoils in the blade blade

• PGA coordinates are defined relative to a central tangent space of 
the Grassmannian defined at a specific point 𝑇𝑇 �𝐗𝐗0 𝒢𝒢 𝑛𝑛, 2

• Parallel transport is a process by which we can smoothly translate 
the PGA coordinates to a new tangent space 𝑇𝑇 �𝐗𝐗𝑘𝑘 𝒢𝒢 𝑛𝑛, 2

• Blade shape is defined by four PGA coordinates and a thickness value

PGA-based Blade Design
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Outer blade section design

Building towards full blade design, we two perform INN-based 
designs on the outboard section of the blade

Goal: Trade-off some power to mitigate loads

Consider two design problems:
1. Design of chord & twist profiles based on 3D CFD
2. Design of blade tip shape and chord & twist profiles based on BEM
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• Need to encode twist and chord profiles along the blade span in a 
manner that is compatible with our INN framework

• Parameterize profiles using a Karhunen–Loève basis expansion

�𝑘𝑘 𝑓𝑓 𝑟̃𝑟 ,𝑓𝑓 𝑟𝑟 𝜙𝜙 𝑟̃𝑟 d𝑟̃𝑟 = 𝜆𝜆 𝜙𝜙(𝑟𝑟) → 𝑓𝑓 𝛼𝛼 ≈�
𝑖𝑖=0

𝑁𝑁

𝑐𝑐𝑖𝑖 𝜙𝜙𝑖𝑖(𝑟𝑟)

Blade Twist & Chord
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Design Metrics

• Aerodynamic design metrics are (i) axial induction factor, 
(ii) lift-to-drag ratio, and (iii) stall margin

• Max thickness-to-chord ratio is included as a structural 
design for the BEM design problem
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∈ ℝ1∈ ℝ2z1

INN architectureINN architecture – Scenario 1 – CFDINN architecture – Scenario 2 – BEM

∈ ℝ12

∈ ℝ11twist
chord

0
⋮
0

induction
lift-to-drag
stall margin

z1

z2

∈ ℝ14

PGA
twist
chord

0
⋮
0

∈ ℝ12
induction

lift-to-drag
stall margin

max thickness
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Training

• MSE losses of aerodynamic 
quantities improve by an 
order of magnitude before 
leveling off

• Unsupervised losses
– Gaussian distribution over 

latent variables is nearly 
recovered at initialization

– Target input distribution 
converges relatively 
quickly

Scenario 2 – BEM 

Scenario 1 – CFD 
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Results – Scenario 1 – CFD

Five generated 
twist/chord profiles

→

Match target 
outputs within 
error thresholds

→
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Results – Scenario 2 – BEM

Ten generated 
blade designs →

Match target 
outputs within 
error thresholds

→
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Results – Scenario 2 – BEM
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Conclusion & Next Steps

• Used invertible neural network (INN) architecture to 
perform design of the outboard section of the blade
– Learns a bijection between inputs and outputs
– Relies on Grassmann airfoil shape representations and KL 

expansions for blade span profile quantities

• Next steps: Perform full 3D blade shape design using the 
INN framework
– Used PGA perturbations to sample new blade shapes
– Used Mercury 3D CFD framework to evaluate over 5,000 blades
– Train the INN using this data and validate the generated designs
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