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Overview

Goal: enable full 3D inverse design of wind turbine blades

using machine learning techniques

* Design workflows generally rely on engineering tools
e.g., blade element momentum (BEM) theory

INTEGRATE:
A Sparse DNN Amng

Approach 5 * For larger offshore rotors, nonlinear
T aerodynamic effects dominate, and BEM
& R assumptions break down

* Use ML to bring computational fluid dynamics (CFD)
', DN fidelity in the design process

* Grassmann-based shape representations

INNOVATION, * Invertible neural network (INN) framework
* Trained on high-fidelity CFD data
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Inverse problems and INNs

Consider a forward mapping f: (X ¢ R™) — (75' C ]Rd) with
the input space weighted by p: (X ¢ R™) - R*

We seek to characterize the inverse image

) ={xex:f=f} p(x|f)

for some conditional value f € F

Use an invertible neural network that learns a bijection
f
finn(x;0) = [z]

where the latent variables z - R™~¢ parameterize the set f~!
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INN architecture

Supervised: x = f
Unsupervised: x = z
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Invertible blocks

Partition the incoming vector into two equal pieces and apply

¢i(x;) = ¢; ([l\:]) [u16851(m Fal )] ul+1 Xi+1

v;Qes2(W) + ¢, (u; Vl+1

which has the closed—form invertible mapping
B B U;,q (V'+1 — tz(u.+1))®e_52(ui+1) u;
¢; ' (Xi1) = ¢; ([ o D =" l = [ l] = X;

Vit (Uig = £1(Vigq)) Qe 1 Vird) i

regardless of the form of sy, t1, S, ty: R™/2 — R™/2
[Ardizzone, et al., 2019]
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Training losses

e Supervised quantities are trained using MSE losses
2
Li = ||f — finn(x; G))[1:d]||2

* Unsupervised quantities are trained using the maximum mean discrepancy (MMD)
[Gretton, et al. 2012]

Two probability distributions are identical if and only if
MMD(p,q) = sup |Exp[p(0)] — Eyoglp(]]| =0
In practice, we compute
MMD?(p, q) = Ey s [k, x)] = 2By <p gl e, W] + Ey g [k(y, ¥]

where k(-,-) is some kernel function

1

— for this work, we use k(x,y) = 1+x-yl3
- 2
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Blade Shape Representation

* We need a framework for blade shape representations that to enable
design with the INN model

— Blade is comprised of a sequence of landmark airfoils

— Each airfoil shape is efined using the Class-Shape Transformation (CST)

W) =CNW)SW) +wlr /__\
Cup == T~

i=0

* 5 landmark shapes X 20 shape parameters = 100 dimensions
— Doesn’t account for chord or twist
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Blade Shape Representation

* Treating airfoil shape perturbations independently can
result in bad blade shapes with undesirable features

(e.g., kinks or dimples)
— Define cohesive perturbations applied to each airfoil
— Pathway for dimension reduction

e Consistent perturbations applied to CST coefficients does
not map to consistent shape deformations
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Grassmannian Shape Representations

* Represent shapes as n (x, y)-landmarks along the curve @N
* Perform landmark-affine (LA) standardization to shapes

— Treats each airfoil shape as an element of the

Grassmann manifold G(n, 2) X= (X—1diag®)M-*
— Remammg o.llfferences in shapes are driven by higher —
order variations S5os o
X X
* Perform principal geodesic analysis on Grassmann shapes T%,)5(2)

— A generalization of principal component analysis (PCA)
to Riemannian manifolds

— Defines principal components within the central
tangent space T[Xo]g(n, 2) at some point [XO]
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PGA-based Blade Design

Goal: Seek to apply cohesive perturbations to the

landmark airfoils in the blade blade
* PGA coordinates are defined relative to a central tangent space of
the Grassmannian defined at a specific point T[go]g(n, 2)

 Parallel transport is a process by which we can smoothly translate
the PGA coordinates to a new tangent space T[gk]g(n, 2)

TG 2) Txg§(n2)

— parallel transport —

 Blade shape is defined by four PGA coordinates and a thickness value
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Outer blade section design

Building towards full blade design, we two perform INN-based
designs on the outboard section of the blade

Goal: Trade-off some power to mitigate loads

Consider two design problems:
1. Design of chord & twist profiles based on 3D CFD
2. Design of blade tip shape and chord & twist profiles based on BEM
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Blade Twist & Chord

* Need to encode twist and chord profiles along the blade spanin a
manner that is compatible with our INN framework
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Design Metrics

* Aerodynamic design metrics are (i) axial induction factor,
(i) lift-to-drag ratio, and (iii) stall margin
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e Max thickness-to-chord ratio is included as a structural
design for the BEM design problem
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INN architecture — Scenario 2 — BEM
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Training

* MSE losses of aerodynamic

quantities improve by an
order of magnitude before  -*
leveling off
* Unsupervised losses
— Gaussian distribution over
latent variables is nearly

recovered at initialization ..

— Target input distribution . |
converges relatively
quickly

Scenario1-CFD

1000 2000 3000 4000

0.16 4
0.16 4
0.14 4
0.14 4
0.12 1
0121
S 70104
- 0-10- - M
0.08 0.08 4
0.06 1 0.061
0 0 500 1000 1500 0 500 1000 1500
Epochs Epochs
0.200 4 0.12
0.175 4
0.10 7
0.150
L] o
~'0.125 2 o.08 -
0.100
0.075 4 0.06
0.050 4 0.04

0 1000 2000 3000 4000
Epochs

0 1000 2000 3000 4000
Epochs

NREL | 15



Results — Scenario 1 — CFD

Five generated
twist/chord profiles
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Results — Scenario 2 — BEM
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Results — Scenario 2 — BEM

NREL | 18



Conclusion & Next Steps

e Used invertible neural network (INN) architecture to
perform design of the outboard section of the blade
— Learns a bijection between inputs and outputs
— Relies on Grassmann airfoil shape representations and KL

expansions for blade span profile quantities

* Next steps: Perform full 3D blade shape design using the
INN framework
— Used PGA perturbations to sample new blade shapes
— Used Mercury 3D CFD framework to evaluate over 5,000 blades
— Train the INN using this data and validate the generated designs
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Thanks!

www.nrel.gov

NREL/PR-2C00-84402

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08G028308. Funding provided
by the Advanced Research Projects Agency-Energy (ARPA-E) Design Intelligence Fostering Formidable Energy
Reduction and Enabling Novel Totally Impactful Advanced Technology Enhancements (DIFFERENTIATE) program.

The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The
U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S.
Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published

form of this work, or allow others to do so, for U.S. Government purposes. A portion of this research was
performed using computational resources sponsored by the Department of Energy's Office of Energy Efficiency
and Renewable Energy and located at the National Renewable Energy Laboratory.

Transforming ENERGY




	Overview
	Inverse problems and INNs
	INN architecture
	Invertible blocks
	Training losses
	Blade Shape Representation
	Blade Shape Representation
	Grassmannian Shape Representations
	PGA-based Blade Design
	Outer blade section design
	Blade Twist & Chord
	Design Metrics
	INN architecture – Scenario 1 – CFD
	Training
	Results – Scenario 1 – CFD
	Results – Scenario 2 – BEM
	Results – Scenario 2 – BEM
	Conclusion & Next Steps

